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Process equivalence is fundamental

Markov chains:

Lumpability

Labelled Markov processes: Bisimulation
Markov decision processes: Bisimulation

Labelled Concurrent Markov Chains with 7 transitions: Weak
Bisimulation
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But...

@ In the context of probability is exact equivalence reasonable?

@ We say “no”. A small change in the probability distributions may
result in bisimilar processes no longer being bisimilar though they
may be very “close” in behaviour.

@ Instead one should have a (pseudo)metric for probabilistic
processes.
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Pseudometrics

@ Functiond : X x X — R

@ Vs,d(s,s) = 0; one can have x # y and d(x,y) = 0.

@ Vs, t,d(s,1) =d(t,s)

@ Vs, t,u,d(s,u) <d(s,t) + d(t,u); triangle inequality.

@ Quantitative analogue of an equivalence relation.

@ If we insist on d(x,y) = 0 iff x = y we get a metric.

@ A pseudometric defines an equivalence relation: x ~ y if
d(x,y) = 0.

@ Define d™~ on X/ ~ by d™~([x], [y]) = d(x,y); well-defined by triangle.
This is a proper metric.
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Bisimulation

@ Let R be an equivalence relation. R is a bisimulation if: s R ¢ if (V a):
(s P)=[t=Q,P=¢0

(t%Q)=I[s>P,P=¢Q

@ = means that the measures P, Q agree on unions of
R-equivalence classes.

@ s, are bisimilar if there is a bisimulation relating them.

@ There is a maximum bisimulation relation.
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Properties of bisimulation

@ Establishing equality of states: Coinduction. Establish a
bisimulation R that relates states s, 1.

@ Distinguishing states: Simple logic is complete for bisimulation.

¢ u=true | o1 Ay | (a)>q9
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A metric-based approximate viewpoint

@ Move from equality between processes to distances between
processes (Jou and Smolka 1990).

@ Quantitative measurement of the distinction between processes.
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Summary of results

@ Establishing closeness of states: Coinduction
@ Distinguishing states: Real-valued modal logics

@ Equational and logical views coincide: Metrics yield same
distances as real-valued modal logics

@ Compositional reasoning by non-expansiveness.
Process-combinators take nearby processes to nearby processes.

d(sl,l‘l) < €1, d(SZ,l‘z) < €
d(sy || s2,11 ||2) < e1 + €

@ Results work for Markov chains, Labelled Markov processes,
Markov decision processes and Labelled Concurrent Markov
chains with r-transitions.
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Criteria on metrics

@ Soundness:
d(s,t) = 0 < s,rare bisimilar

@ Stability of distance under temporal evolution:“Nearby states stay
close forever.”

@ Metrics should be computable.
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Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: s R ¢ if:
(s —P)=[t— Q,P=¢ Q]

(t—Q)=[s— P,P=¢ Q]

where P =¢ Q if
(VR — closed E) P(E) = Q(E)
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A putative definition of a metric-bisimulation

@ m is a metric-bisimulation if: m(s,t) < e =
s—P=1t—Q, m(P,Q)<e

t— Q= s— P, m(P,Q)<e
@ Problem: what is m(P, Q)? — Type mismatch!!

@ Need a way to lift distances from states to a distances on
distributions of states.
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A detour: Kantorovich metric

@ Metrics on probability measures on metric spaces.
@ M: 1-bounded pseudometrics on states.

d(p,v) = sup|/fdu— /fdy|,f 1-Lipschitz
f

@ Arises in the solution of an LP problem: transshipment.
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An LP version for Finite-State Spaces

When state space is finite: Let P, Q be probability distributions. Then:
m(P, Q) = max Z(P(Si) — QO(si))ai
subject to:

Vi.0 S a; S 1
Vi, j. ai — aj < m(si, s;).

Panangaden (McGill) Metrics for Markov Processes Metrics 14/32



The dual form

@ Dual form from Worrell and van Breugel:

°
min Z Lim(si, s;) + in + Z)’j
ij i J

subject to:
Vi. Zj l,‘j +x; = P(Sl')
Vj. Zi lj+y; = Q(sj)
Vi, j. L, xi,y; > 0.
@ We prove many equations by using the primal form to show one
direction and the dual to show the other.
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Example 1

@ m(P,P) =0.
@ In dual, match each state with itself, ;; = 6;;P(s;),x; = y; = 0. So:

Z l,-jm(s,-, Sj) + in + Zyj
ij i J

becomes 0.
@ This clearly cannot be lowered further so this is the min.
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Example 2

@ Letm(s,t) = r < 1. Let §,( resp. d;) be the probability measure
concentrated at s(resp. ¢). Then,

m(6s7 6[) =r

@ Upper bound from dual: Choose [; = 1 all other [;; = 0. Then
Zlijm(s,-,sj) =m(s,t) =r.
ij

@ Lower bound from primal: Choose a, = 0, a, = r, all others to
match the constraints. Then

D (0i(si) = Os(si))ai = r.

1
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The Importance of Example 2

We can isometrically embed the original space in the metric space of
distributions.
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Example 3 - |

@ LetP(s)=r,P(t)=0ifs#1r. Let Q(s) =7,0(t) =0if s # 1.
e Thenm(P,Q) = |r—7/|.
@ Assume that r > r'.

Lower bound from primal: yielded by Vi.a; = 1,

Z(P(si) —0(si))a; = P(s) — Q(s) =r— 7.

i
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Example 3 - I

Upper bound from dual: I, = ' and x; = r — 7/, all others 0
Zlijm(si,sj) + Zx,- + Zyj =x,=r—r.
i i J
and the constraints are satisfied:

lej—l—xs =ls+x,=r
J

Zlis +YS:lss:r,-
i
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Return from detour

Given a metric on states in a metric space, can lift to a metric on
probability distributions on states.
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Metric “bisimulation”

@ m is a metric-bisimulation if: m(s,7) < e =:
s—P=1t—Q, m(P,Q)<ce

t— Q= s— P, m(P,Q)<e

@ The required canonical metric on processes is the least such: ie.
the distances are the least possible.

@ Thm: Canonical least metric exists.
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Tarski’s theorem

If L is a complete lattice and F : L — L is monotone then the set of
fixed points of F with the induced order is itself a complete lattice. In
particular there is a least fixed point and a greatest fixed point.
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Metrics: some details

@ M: 1-bounded pseudometrics on states with ordering
my <X my if (Vs, 1) [my(s,t) > my(s,1)]

@ (M, =) is a complete lattice.
°

L) = { Oifs =1

1 otherwise
T(s,0) = 0,(Vs,1)
(l_l{mi}(sv t) = Sup mi(sv t)
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Greatest fixed-point definition

@ Letme M. F(m)(s,t) < elif:
s—P=1t—Q, mP,Q)<e¢

t— Q= s— P, m(P,Q)<e

@ F(m)(s,t) can be given by an explicit expression.
@ Fis monotone on M, and metric-bisimulation is the greatest fixed
point of F.
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A key tool

Splitting Lemma (Jones)

Let P and Q be probability distributions on a set of states. Let P, and
P, be such that: P = P; + P,. Then, there exist Q;, 0,, such that

01 +0>=0and

m(P, Q) = m(P1, Q1) + m(P2, 02).

The proof uses the duality theory of LP for discrete spaces and
Kantorovich-Rubinstein duality for continuous spaces.
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Kantorovich-Rubinstein duality

Definition

Given two probability measures P, P, on (X, ), a coupling is a
measure Q on the product space X x X such that the marginals are
Py, P,. Write C(P,, P,) for the set of couplings between Py, P;.

Let (X,d) be a compact metric space. Let Py, P, be Borel probability
measures on X

sup {/fdPl /fsz} inf {/ d dQ}
QeC(P1,P2) \Jxxx

f:X—>[0,1] nonexpansive
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Real-valued modal logic |

@ Develop a real-valued “modal logic” based on the analogy:

Kozen’s analogy

Program Logic Probabilistic Logic
State s Distribution 1
Formula ¢ Random Variable f

Satisfaction s = ¢ [ fdu

@ Define a metric based on how closely the random variables agree.

@ Another approach: use the Kantorovich metric [van Breugel and
Worrell]
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Real-valued modal logic Il

()
fra=1max(f.f) [ hof | (a)f
()
1(s) =1 True
max(fi,f2)(s) = max(fi(s),fa(s)) Conjunction
hof(s) = h(f(s)) Lipschitz
{a) f(s) = 7 [yesf(s')7a(s,ds")  a-transition

where h 1-Lipschitz : [0, 1] — [0, 1] and v € (0, 1].
® d(s,1) = supy|f(s) —f(1)]

@ Thm: d coincides with the fixed-point definition of
metric-bisimulation.
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Finitary syntax for the modal logic

1(s) = 1 True
max(fi,f2)(s) = max(fi(s),f(s)) Conjunction
(1=1)(s) = 1—f(s) Negation
s _ Ja.  flo= q
ne) = 92 Cutofts
(a) f(s) = 7 Juesf () Tals ds) a-transition
g is a rational.
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The role of v

@ ~ discounts the value of future steps.
@ v < 1 and vy = 1 yield very different topologies
@ For v < 1 there is an LP-based algorithm to compute the metric.

@ For v = 1 the existence of an algorithm to compute the metric has
been discovered by van Breugel, Sharma and Worrell.
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Approximation of LMPs and metric

@ One can define a sequence of finite-state approximants to any
LMP such that

@ the sequence converges in the metric to the original LMP.

@ One can put domain structure on LMPs and show that the
approximants converge in order as well.

@ One can construct a universal LMP (final co-algebra).

@ We have extended the metric to MDPs and used it to give bounds
on approximations to the optimal value function: Ferns, Precup, P.
(UAI 04,05).

@ Metric is hard to compute; need algorithms to approximate it:
SIAM 2011, QEST 2012, AAAI 2015, NIPS 2015.

@ Approximate equational reasoning using =. (Mardare, P., Plotkin).
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