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Leader Election

A system of autonomous agents have to choose a
special distinguished agent for the purposes of some
task.

Paradigmatic of distributed decision making.

That’s easy: designate a leader when the system is
set up.

Not always appropriate: what happens if the
designated leader crashes?

Designate a backup ...

What if membership in the group changes
dynamically?
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Anonymous Systems

We work in a system where all the agents execute
the same program and start in the same initial state.

We assume that agents cannot be named.

We want all agents to have an equal chance of being
the leader.

We assume that communication takes place in
rounds and that all agents communicate with all other
agents in every step: broadcast.
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The Classical Situation

Leader election cannot be solved: Angluin 1980.

The initial state is symmetric and there is no
mechanism to break the symmetry.

Much effort in “almost” anonymous situations, special
patterns of interconnectivity and probabilistic
solutions.
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Using Probability

If two processes have coins they can elect a leader
by tossing their coins. The one who gets “heads” is
the leader.

If both get “heads” or both get “tails” they toss again.

They are not guaranteed to terminate though they
will terminate with probability 1.

Expected number of rounds is just 2.

INRIA Paris 13th May 2005 – p.5/31



+ < >

Using Probability

If two processes have coins they can elect a leader
by tossing their coins. The one who gets “heads” is
the leader.

If both get “heads” or both get “tails” they toss again.

They are not guaranteed to terminate though they
will terminate with probability 1.

Expected number of rounds is just 2.

INRIA Paris 13th May 2005 – p.5/31



+ < >

Using Probability

If two processes have coins they can elect a leader
by tossing their coins. The one who gets “heads” is
the leader.

If both get “heads” or both get “tails” they toss again.

They are not guaranteed to terminate though they
will terminate with probability 1.

Expected number of rounds is just 2.

INRIA Paris 13th May 2005 – p.5/31



+ < >

Using Probability

If two processes have coins they can elect a leader
by tossing their coins. The one who gets “heads” is
the leader.

If both get “heads” or both get “tails” they toss again.

They are not guaranteed to terminate though they
will terminate with probability 1.

Expected number of rounds is just 2.

INRIA Paris 13th May 2005 – p.5/31



+ < >

What Can be Done With Quantum Resources?

We can obviously mimic the probabilistic solutions.

Can we come up with a technique that is guaranteed
to terminate after some fixed number of rounds?

Can we ensure that each one has equal chance of
being the leader?
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Why is Quantum Mechanics so complicated?

Experimental observation: systems can be in
superpositions of states. Thus the state space must
have a notion of addition: a vector space.

Some states are “completely different” from other
states: a notion of orthogonality, hence a vector
space equipped with an inner product.

The results of measurements are probabilistic: we
cannot model physical observables as functions.

Measurements disturb the system, they have to be
operators of some kind.
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Postulates of Quantum Mechanics

States form a Hilbert Space H

The evolution of an isolated system is governed by a
unitary transformation

Measurements are described by Hermitian
operators. For an operator M the possible outcomes
are the eigenvalues of M .
If M is an observable (Hermitian operator) with
eigenvalues λi and eigenvectors φi and ψ =

∑
i ciφi

then, - Pr(λi|ψ) = |ci|
2

- E[M |ψ] =
∑

i |ci|
2λi =

∑
i(φi,Mφi)

= (ψ,Mψ).
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The Effect of a Measurement

Note that the effect of the measurement M is not the
application of the operator M ; one of the projection
operators appearing in the spectral decomposition of M
will be applied.
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Measurements

Given a Hermitian operator M it has a spectral
decomposition

M =
∑

i

λiPi

where λi are the eigenvalues and Pi is the projection
operator onto the subspace corresponding to λi.

When M is measured in a quantum state ψ,
branching occurs. One of the outcomes λi will be
observed and the corresponding Pi is applied.

If we measure M immediately again then we will
certainly get the value λi again.
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Unitary Evolution

If a system in state ψ is subjected to interactions and
evolves it does so by a unitary operator U ; ψ 7→ Uψ.

This is in stark contrast to what happens during a
measurement.

Typically the unitary is of the form exp(−iHt) where
H is a Hermitian operator called the Hamiltonian.
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Combining Systems

When two systems are put together their individual
Hilbert spaces, H1 and H2 are combined to give
H1 ⊗H2.

There is no à priorireason why this should happen;
this is what we see in nature.

The “size” (dimensionality) of the combined state
space grows exponentially.

This is what gives quantum computation its power.
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Dirac Notation

Vectors in a state space are written |φ〉.

Vectors in the dual space are written 〈ψ|.

Pairing is written: 〈ψ|φ〉.

A linear operator can be written in the form∑
i |φi〉〈ψi|. When it acts on |η〉 we get

∑
i〈ψ|η〉|ψi〉.

A projection operator onto |ψ〉 is written |ψ〉〈ψ|.

INRIA Paris 13th May 2005 – p.13/31



+ < >

Dirac Notation

Vectors in a state space are written |φ〉.

Vectors in the dual space are written 〈ψ|.

Pairing is written: 〈ψ|φ〉.

A linear operator can be written in the form∑
i |φi〉〈ψi|. When it acts on |η〉 we get

∑
i〈ψ|η〉|ψi〉.

A projection operator onto |ψ〉 is written |ψ〉〈ψ|.

INRIA Paris 13th May 2005 – p.13/31



+ < >

Dirac Notation

Vectors in a state space are written |φ〉.

Vectors in the dual space are written 〈ψ|.

Pairing is written: 〈ψ|φ〉.

A linear operator can be written in the form∑
i |φi〉〈ψi|. When it acts on |η〉 we get

∑
i〈ψ|η〉|ψi〉.

A projection operator onto |ψ〉 is written |ψ〉〈ψ|.

INRIA Paris 13th May 2005 – p.13/31



+ < >

Dirac Notation

Vectors in a state space are written |φ〉.

Vectors in the dual space are written 〈ψ|.

Pairing is written: 〈ψ|φ〉.

A linear operator can be written in the form∑
i |φi〉〈ψi|. When it acts on |η〉 we get

∑
i〈ψ|η〉|ψi〉.

A projection operator onto |ψ〉 is written |ψ〉〈ψ|.

INRIA Paris 13th May 2005 – p.13/31



+ < >

Dirac Notation

Vectors in a state space are written |φ〉.

Vectors in the dual space are written 〈ψ|.

Pairing is written: 〈ψ|φ〉.

A linear operator can be written in the form∑
i |φi〉〈ψi|. When it acts on |η〉 we get

∑
i〈ψ|η〉|ψi〉.

A projection operator onto |ψ〉 is written |ψ〉〈ψ|.

INRIA Paris 13th May 2005 – p.13/31



+ < >

Notation for Quantum Computation

The basic unit is a two-dimensional state space
called a qubit. The basis states are typically written
|0〉 and |1〉. Note that |0〉 is not the zero of the vector
space!

Tensor product is denoted by juxtaposition:
|0〉 ⊗ |0〉 = |00〉.

We can measure in the computational basis by using
the Hermitian operator |0〉〈0|+ |1〉〈1|.
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Entanglement

Consider two qubit states, a basis is given by:
|00〉, |01〉, |10〉, |11〉.

Some states, e.g. |00〉+ |01〉 = |0〉 ⊗ (|0〉+ |1〉) are
tensor products while others, e.g. |01〉+ |10〉 are not.
These are called “entangled” states.

There are many notions of entanglement and
proposed measures of how entangled two states are.
For two qubits the state |01〉+ |10〉 is maximally
entangled, as is, e.g. |00〉+ |11〉. They are called Bell
states or Bell pairs.

These states can be prepared in the laboratory.
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Measuring a Bell Pair

Suppose that we prepare the state |01〉+ |10〉 and
separate the two qubits but preserve the
entanglement. We have two experimenters sharing
an entangled pair.

Suppose that one of them - say the first - measures
the observable |0〉〈0|+ |1〉〈1|. He will get the outcome
|0〉 or |1〉 with equal probability. The outcome will be
random; if there is a whole collection of such pairs he
will see either |0〉 or |1〉 with equal probability.

The other observer will detect the same outcomes
and by themselves these outcomes will seem
random. However, the two sets of outcomes will be
perfectly correlated.
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Using a Bell pair for Leader Election

Suppose that two agents want to choose one of
themselves as a leader and they share a Bell pair.

They can each measure |0〉〈0| + |1〉〈1|; the one who
gets |1〉 is the leader.

Each agent has the same chance of getting elected,
the process is guaranteed to terminate in one step.
Exactly what is classically impossible!

Does this generalize to more than two agents?
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Networks of Agents

A network of agents is a system in which several
inter-communicating agents carry out computations
concurrently.

Synchronous: communication occurs in fixed rounds
of broadcasts. Communication is classical, we send
bits not qubits.

Anonymous: All agents run the same protocol and
there is no mechanism for naming the agents.

All agents start in the same state.

Known network size.

No faulty or malicious agents.
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Anonymity

All agents are completely identical: they do not carry
individual names with which they can be identified.

The initial network specification must be invariant
under permutations of agents.

Agents start out in identical local classical states.

Angluin 80: there is no solution to leader election that
is guaranteed to terminate.
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Anonymity in the Quantum Setting

Each processor must have the same “local view” of
its quantum state. This can be formalized by
requiring that they have the same reduced density
matrix.

We adopt the slightly stronger assumption that the
initial quantum state is invariant under permutation of
the agents subspaces.

This rules out some states like |0〉A|0〉B + eiθ|1〉A|1〉B.
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Total Correctness

A totally correct distributed protocol is a protocol that is

terminating, i.e. it reaches a terminal configuration in

each computation, and partially correct, i.e. for each of

the reachable terminal configurations the goal of the pro-

tocol is achieved.
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Easy Consequences

No totally correct leader election protocol exists
without prior shared entanglement.

Totally correct leader election algorithms for
anonymous quantum networks are fair, i.e. each
processor has equal probability of being elected
leader.
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Three party states

What kind of entangled states are there for 3 parties?

There are inequivalent enatngled states, numerical
entanglement measures are inadequate.

W := |100〉+ |010〉+ |001〉 and GHZ := |000〉+ |111〉.

Both are maximally entangled but W is persistent, it
requires two measurements to destroy the
entanglement. GHZ becomes disentangled with just
one measurement.

Wn requires n− 1 measurements to destroy the
entanglement while GHZn becomes disentangled
with just one measurement.
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QLE with the W state

q ← ith qubit of Wn

b=0
result=wait

b:= measure q

if b = 1 then result:= leader, else result:=follower.
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The Main result

If a system of n agents with a shared quantum state can

solve leader election then they must have had the Wn

state or its “mirror image.”
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k-symmetric moves

Suppose an n-partite state |ψ〉 ∈ H⊗n, where H is a
2m−dimensional Hilbert space, is distributed over n
processors. We say that there exists a k-symmetric
move for the processors i1, . . . , ik with respect to |ψ〉,
where 0 < k ≤ n, if for all observables M =

∑J
j=1

λjPj ,
with J ≤ 2m and all Pj projectors, we have that

∃l ∈ {1, . . . , J} : (Pl)
⊗k
i1,...,ik

(Pjk+1 6=l)ik+1
. . . (Pjn 6=l)in|ψ〉 6= 0

(0)
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k-symmetric moves 2

The idea is that all measurements potentially give
identical measurement results for k out of the n
processors.

Because anonymous networks are invariant under per-

mutations we need not specify any particular subset of

processors.
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Proof Ideas

k-symmetric moves exist if and only if a certain form
of the state holds.

If a k-symmetric move is possible this will persist in
any successor state.

Any protocol for which k-symmetric branches exist
with k different from 1 or n− 1 is not totally correct.

From the form of the state in the first item we get the
desired result.

We can extend to the case where they share more
than 1 qubit each.
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Without Anonymity

Suppose that we set up the state W2,n−2 and give
each processor one qubit. Each processor measures
its qubit.

If it gets |1〉 it becomes a candidate otherwise it is a
voter. Now we can hold an election and choose a
leader, if n is odd there is a unique winner.

But how can the voters name their preference in an
anonymous network?
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Using Network Structure

If the network is a ring then each voter sends a
message clockwise.

Voters pass on messages they receive, candidates
count messages that they receive.

As soon as one of them gets more than half the
votes it will declare itself leader.
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Conclusions

The leader election problem can be exactly solved
with shared correlation; either with classical
correlated random variables or with the W state.

The W state is the only state that has this power. It is
worth studying the different kinds of entanglement
and their relative power in different computational
situations.

These kind of symmetry breaking arguments have
been used to prove expressiveness theorems before
(e.g. Palamidessi 2003).

A group of researchers in Japan have -
independently - given a quantum algorithm for leader
election. They allow qubits to be passed around.
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