Quantum Leader Election or The Computational Power of the W State

Prakash Panangaden

joint work with

Ellie D'Hondt

McGill University Free University Brussels

INRIA Paris 13th May 2005 - p.1/3

+

>

A system of autonomous *agents* have to choose a special distinguished agent for the purposes of some task.

- A system of autonomous *agents* have to choose a special distinguished agent for the purposes of some task.
- Paradigmatic of *distributed* decision making.

<

Leader Election

- A system of autonomous *agents* have to choose a special distinguished agent for the purposes of some task.
- Paradigmatic of *distributed* decision making.
- That's easy: designate a leader when the system is set up.

Leader Election

- A system of autonomous *agents* have to choose a special distinguished agent for the purposes of some task.
- Paradigmatic of *distributed* decision making.
- That's easy: designate a leader when the system is set up.
- Not always appropriate: what happens if the designated leader crashes?

+

>

- A system of autonomous *agents* have to choose a special distinguished agent for the purposes of some task.
- Paradigmatic of *distributed* decision making.
- That's easy: designate a leader when the system is set up.
- Not always appropriate: what happens if the designated leader crashes?

+

>

<

Designate a backup ...

- A system of autonomous *agents* have to choose a special distinguished agent for the purposes of some task.
- Paradigmatic of *distributed* decision making.
- That's easy: designate a leader when the system is set up.
- Not always appropriate: what happens if the designated leader crashes?
- Designate a backup ...
- What if membership in the group changes dynamically?

+

<

We work in a system where all the agents execute the same program and start in the same initial state.

- We work in a system where all the agents execute the same program and start in the same initial state.
- We assume that agents cannot be *named*.

- We work in a system where all the agents execute the same program and start in the same initial state.
- We assume that agents cannot be *named*.
- We want all agents to have an equal chance of being the leader.

- We work in a system where all the agents execute the same program and start in the same initial state.
- We assume that agents cannot be *named*.
- We want all agents to have an equal chance of being the leader.
- We assume that communication takes place in rounds and that all agents communicate with all other agents in every step: broadcast.

The Classical Situation

Leader election cannot be solved: Angluin 1980.

+

- Leader election cannot be solved: Angluin 1980.
- The initial state is symmetric and there is no mechanism to break the symmetry.

- Leader election cannot be solved: Angluin 1980.
- The initial state is symmetric and there is no mechanism to break the symmetry.
- Much effort in "almost" anonymous situations, special patterns of interconnectivity and probabilistic solutions.

+

<

If two processes have coins they can elect a leader by tossing their coins. The one who gets "heads" is the leader.

<

- If two processes have coins they can elect a leader by tossing their coins. The one who gets "heads" is the leader.
- If both get "heads" or both get "tails" they toss again.

<

- If two processes have coins they can elect a leader by tossing their coins. The one who gets "heads" is the leader.
- If both get "heads" or both get "tails" they toss again.
- They are not guaranteed to terminate though they will terminate with probability 1.

>

+

- If two processes have coins they can elect a leader by tossing their coins. The one who gets "heads" is the leader.
- If both get "heads" or both get "tails" they toss again.
- They are not guaranteed to terminate though they will terminate with probability 1.
- Expected number of rounds is just 2.

+

<

What Can be Done With Quantum Resources?

We can obviously mimic the probabilistic solutions.

What Can be Done With Quantum Resources?

- We can obviously mimic the probabilistic solutions.
- Can we come up with a technique that is guaranteed to terminate after some fixed number of rounds?

What Can be Done With Quantum Resources?

- We can obviously mimic the probabilistic solutions.
- Can we come up with a technique that is guaranteed to terminate after some fixed number of rounds?
- Can we ensure that each one has equal chance of being the leader?

+

<

Experimental observation: systems can be in superpositions of states. Thus the state space must have a notion of addition: a vector space.

- Experimental observation: systems can be in superpositions of states. Thus the state space must have a notion of addition: a vector space.
- Some states are "completely different" from other states: a notion of orthogonality, hence a vector space equipped with an inner product.

+

<

- Experimental observation: systems can be in superpositions of states. Thus the state space must have a notion of addition: a vector space.
- Some states are "completely different" from other states: a notion of orthogonality, hence a vector space equipped with an inner product.
- The results of measurements are probabilistic: we cannot model physical observables as functions.

+

<

- Experimental observation: systems can be in superpositions of states. Thus the state space must have a notion of addition: a vector space.
- Some states are "completely different" from other states: a notion of orthogonality, hence a vector space equipped with an inner product.
- The results of measurements are probabilistic: we cannot model physical observables as functions.
- Measurements disturb the system, they have to be operators of some kind.

+

<

Postulates of Quantum Mechanics

States form a Hilbert Space \mathcal{H}

+

Postulates of Quantum Mechanics

- **States form a Hilbert Space** \mathcal{H}
- The evolution of an *isolated* system is governed by a unitary transformation

<

- **States form a Hilbert Space** \mathcal{H}
- The evolution of an *isolated* system is governed by a unitary transformation
- Measurements are described by Hermitian operators. For an operator M the possible outcomes are the *eigenvalues* of M.
 If M is an observable (Hermitian operator) with eigenvalues λ_i and eigenvectors φ_i and ψ = ∑_i c_iφ_i then, Pr(λ_i|ψ) = |c_i|²
 E[M|ψ] = ∑_i |c_i|²λ_i = ∑_i(φ_i, Mφ_i) = (ψ, Mψ).

+

<

Note that the effect of the measurement M is *not* the application of the operator M; one of the projection operators appearing in the spectral decomposition of M will be applied.

<

Given a Hermitian operator M it has a spectral decomposition

+

<

>

$$M = \sum_{i} \lambda_i P_i$$

where λ_i are the eigenvalues and P_i is the projection operator onto the subspace corresponding to λ_i .

Given a Hermitian operator M it has a spectral decomposition

$$M = \sum_{i} \lambda_i P_i$$

where λ_i are the eigenvalues and P_i is the projection operator onto the subspace corresponding to λ_i .

• When *M* is measured in a quantum state ψ , branching occurs. One of the outcomes λ_i will be observed and the corresponding P_i is applied.

<

Given a Hermitian operator M it has a spectral decomposition

$$M = \sum_{i} \lambda_i P_i$$

where λ_i are the eigenvalues and P_i is the projection operator onto the subspace corresponding to λ_i .

- When *M* is measured in a quantum state ψ , branching occurs. One of the outcomes λ_i will be observed and the corresponding P_i is applied.
- If we measure M immediately again then we will certainly get the value λ_i again.

+

<

Unitary Evolution

If a system in state ψ is subjected to interactions and evolves it does so by a unitary operator U; $\psi \mapsto U\psi$.

Unitary Evolution

- If a system in state ψ is subjected to interactions and evolves it does so by a unitary operator U; $\psi \mapsto U\psi$.
- This is in stark contrast to what happens during a measurement.

<

Unitary Evolution

- If a system in state ψ is subjected to interactions and evolves it does so by a unitary operator U; $\psi \mapsto U\psi$.
- This is in stark contrast to what happens during a measurement.
- Typically the unitary is of the form exp(-iHt) where H is a Hermitian operator called the *Hamiltonian*.

+

<

Combining Systems

• When two systems are put together their individual Hilbert spaces, \mathcal{H}_1 and \mathcal{H}_2 are combined to give $\mathcal{H}_1 \otimes \mathcal{H}_2$.

Combining Systems

- When two systems are put together their individual Hilbert spaces, \mathcal{H}_1 and \mathcal{H}_2 are combined to give $\mathcal{H}_1 \otimes \mathcal{H}_2$.
- There is no à priorireason why this should happen; this is what we see in nature.

<

Combining Systems

- When two systems are put together their individual Hilbert spaces, \mathcal{H}_1 and \mathcal{H}_2 are combined to give $\mathcal{H}_1 \otimes \mathcal{H}_2$.
- There is no à priorireason why this should happen; this is what we see in nature.
- The "size" (dimensionality) of the combined state space grows exponentially.

+

<

Combining Systems

- When two systems are put together their individual Hilbert spaces, \mathcal{H}_1 and \mathcal{H}_2 are combined to give $\mathcal{H}_1 \otimes \mathcal{H}_2$.
- There is no à priorireason why this should happen; this is what we see in nature.
- The "size" (dimensionality) of the combined state space grows exponentially.
- This is what gives quantum computation its power.

+

<

Dirac Notation

• Vectors in a state space are written $|\phi\rangle$.

<

Dirac Notation

- Vectors in a state space are written $|\phi\rangle$.
- Vectors in the dual space are written $\langle \psi |$.

<

- Vectors in a state space are written $|\phi\rangle$.
- Vectors in the dual space are written $\langle \psi |$.
- Pairing is written: $\langle \psi | \phi \rangle$.

<

- Vectors in a state space are written $|\phi\rangle$.
- Vectors in the dual space are written $\langle \psi |$.
- Pairing is written: $\langle \psi | \phi \rangle$.
- A linear operator can be written in the form $\sum_i |\phi_i\rangle\langle\psi_i|$. When it acts on $|\eta\rangle$ we get $\sum_i \langle\psi|\eta\rangle|\psi_i\rangle$.

<

>

+

- Vectors in a state space are written $|\phi\rangle$.
- Vectors in the dual space are written $\langle \psi |$.
- Pairing is written: $\langle \psi | \phi \rangle$.
- A linear operator can be written in the form $\sum_i |\phi_i\rangle\langle\psi_i|$. When it acts on $|\eta\rangle$ we get $\sum_i \langle\psi|\eta\rangle|\psi_i\rangle$.
- A projection operator onto $|\psi\rangle$ is written $|\psi\rangle\langle\psi|$.

<

Notation for Quantum Computation

The basic unit is a two-dimensional state space called a *qubit*. The basis states are typically written |0⟩ and |1⟩. Note that |0⟩ is not the zero of the vector space!

<

Notation for Quantum Computation

- The basic unit is a two-dimensional state space called a *qubit*. The basis states are typically written |0⟩ and |1⟩. Note that |0⟩ is not the zero of the vector space!
- Tensor product is denoted by juxtaposition: $|0\rangle \otimes |0\rangle = |00\rangle$.

+

<

Notation for Quantum Computation

- The basic unit is a two-dimensional state space called a *qubit*. The basis states are typically written |0> and |1>. Note that |0> is not the zero of the vector space!
- Tensor product is denoted by juxtaposition: $|0\rangle \otimes |0\rangle = |00\rangle$.
- We can measure in the computational basis by using the Hermitian operator $|0\rangle\langle 0| + |1\rangle\langle 1|$.

<

Entanglement

• Consider two qubit states, a basis is given by: $|00\rangle, |01\rangle, |10\rangle, |11\rangle$.

<

Entanglement

- Consider two qubit states, a basis is given by: $|00\rangle, |01\rangle, |10\rangle, |11\rangle$.
- Some states, e.g. |00⟩ + |01⟩ = |0⟩ ⊗ (|0⟩ + |1⟩) are tensor products while others, e.g. |01⟩ + |10⟩ are not. These are called "entangled" states.

<

>

+

- Consider two qubit states, a basis is given by: $|00\rangle, |01\rangle, |10\rangle, |11\rangle$.
- Some states, e.g. |00⟩ + |01⟩ = |0⟩ ⊗ (|0⟩ + |1⟩) are tensor products while others, e.g. |01⟩ + |10⟩ are not. These are called "entangled" states.
- There are many notions of entanglement and proposed measures of how entangled two states are. For two qubits the state |01> + |10> is maximally entangled, as is, e.g. |00> + |11>. They are called Bell states or Bell pairs.

<

- Consider two qubit states, a basis is given by: $|00\rangle, |01\rangle, |10\rangle, |11\rangle$.
- Some states, e.g. |00⟩ + |01⟩ = |0⟩ ⊗ (|0⟩ + |1⟩) are tensor products while others, e.g. |01⟩ + |10⟩ are not. These are called "entangled" states.
- There are many notions of entanglement and proposed measures of how entangled two states are. For two qubits the state |01> + |10> is maximally entangled, as is, e.g. |00> + |11>. They are called Bell states or Bell pairs.
- These states can be prepared in the laboratory.

<

Measuring a Bell Pair

Suppose that we prepare the state |01> + |10> and separate the two qubits but preserve the entanglement. We have two experimenters sharing an entangled pair.

<

Measuring a Bell Pair

- Suppose that we prepare the state |01> + |10> and separate the two qubits but preserve the entanglement. We have two experimenters sharing an entangled pair.
- Suppose that one of them say the first measures the observable |0><0| + |1><1|. He will get the outcome |0> or |1> with equal probability. The outcome will be random; if there is a whole collection of such pairs he will see either |0> or |1> with equal probability.

+

<

Measuring a Bell Pair

- Suppose that we prepare the state |01> + |10> and separate the two qubits but preserve the entanglement. We have two experimenters sharing an entangled pair.
- Suppose that one of them say the first measures the observable |0><0| + |1><1|. He will get the outcome |0> or |1> with equal probability. The outcome will be random; if there is a whole collection of such pairs he will see either |0> or |1> with equal probability.
- The other observer will detect the same outcomes and by themselves these outcomes will seem random. However, the two sets of outcomes will be perfectly correlated.

+

<

Suppose that two agents want to choose one of themselves as a leader and they share a Bell pair.

<

- Suppose that two agents want to choose one of themselves as a leader and they share a Bell pair.
- They can each measure $|0\rangle\langle 0| + |1\rangle\langle 1|$; the one who gets $|1\rangle$ is the leader.

<

- Suppose that two agents want to choose one of themselves as a leader and they share a Bell pair.
- They can each measure $|0\rangle\langle 0| + |1\rangle\langle 1|$; the one who gets $|1\rangle$ is the leader.
- Each agent has the same chance of getting elected, the process is guaranteed to terminate in one step. Exactly what is classically impossible!

+

<

- Suppose that two agents want to choose one of themselves as a leader and they share a Bell pair.
- They can each measure $|0\rangle\langle 0| + |1\rangle\langle 1|$; the one who gets $|1\rangle$ is the leader.
- Each agent has the same chance of getting elected, the process is guaranteed to terminate in one step. Exactly what is classically impossible!
- Does this generalize to more than two agents?

<

A network of agents is a system in which several inter-communicating agents carry out computations concurrently.

<

- A network of agents is a system in which several inter-communicating agents carry out computations concurrently.
- Synchronous: communication occurs in fixed rounds of broadcasts. Communication is classical, we send bits not qubits.

<

- A network of agents is a system in which several inter-communicating agents carry out computations concurrently.
- Synchronous: communication occurs in fixed rounds of broadcasts. Communication is classical, we send bits not qubits.
- Anonymous: All agents run the same protocol and there is no mechanism for naming the agents.

<

- A network of agents is a system in which several inter-communicating agents carry out computations concurrently.
- Synchronous: communication occurs in fixed rounds of broadcasts. Communication is classical, we send bits not qubits.
- Anonymous: All agents run the same protocol and there is no mechanism for naming the agents.

<

>

All agents start in the same state.

- A network of agents is a system in which several inter-communicating agents carry out computations concurrently.
- Synchronous: communication occurs in fixed rounds of broadcasts. Communication is classical, we send bits not qubits.
- Anonymous: All agents run the same protocol and there is no mechanism for naming the agents.

<

- All agents start in the same state.
- Known network size.

- A network of agents is a system in which several inter-communicating agents carry out computations concurrently.
- Synchronous: communication occurs in fixed rounds of broadcasts. Communication is classical, we send bits not qubits.
- Anonymous: All agents run the same protocol and there is no mechanism for naming the agents.

<

- All agents start in the same state.
- Known network size.
- No faulty or malicious agents.

All agents are completely identical: they do not carry individual names with which they can be identified.

<

- All agents are completely identical: they do not carry individual names with which they can be identified.
- The initial network specification must be invariant under permutations of agents.

<

- All agents are completely identical: they do not carry individual names with which they can be identified.
- The initial network specification must be invariant under permutations of agents.
- Agents start out in identical local classical states.

+

<

- All agents are completely identical: they do not carry individual names with which they can be identified.
- The initial network specification must be invariant under permutations of agents.
- Agents start out in identical local classical states.
- Angluin 80: there is no solution to leader election that is guaranteed to terminate.

<

Anonymity in the Quantum Setting

Each processor must have the same "local view" of its quantum state. This can be formalized by requiring that they have the same reduced density matrix.

>

<

Anonymity in the Quantum Setting

- Each processor must have the same "local view" of its quantum state. This can be formalized by requiring that they have the same reduced density matrix.
- We adopt the slightly stronger assumption that the initial quantum state is invariant under permutation of the agents subspaces.

+

<

Anonymity in the Quantum Setting

- Each processor must have the same "local view" of its quantum state. This can be formalized by requiring that they have the same reduced density matrix.
- We adopt the slightly stronger assumption that the initial quantum state is invariant under permutation of the agents subspaces.
- This rules out some states like $|0\rangle_A |0\rangle_B + e^{i\theta} |1\rangle_A |1\rangle_B$.

+

<

A *totally correct* distributed protocol is a protocol that is *terminating*, i.e. it reaches a terminal configuration in each computation, and *partially correct*, i.e. for each of the reachable terminal configurations the goal of the protocol is achieved.

+

<

Easy Consequences

No totally correct leader election protocol exists without prior shared entanglement.

<

Easy Consequences

- No totally correct leader election protocol exists without prior shared entanglement.
- Totally correct leader election algorithms for anonymous quantum networks are *fair*, i.e. each processor has equal probability of being elected leader.

+

<

Three party states

What kind of entangled states are there for 3 parties?

<

- What kind of entangled states are there for 3 parties?
- There are *inequivalent* enatngled states, numerical entanglement measures are inadequate.

<

- What kind of entangled states are there for 3 parties?
- There are *inequivalent* enatngled states, numerical entanglement measures are inadequate.
- $W := |100\rangle + |010\rangle + |001\rangle$ and $GHZ := |000\rangle + |111\rangle$.

<

>

+

- What kind of entangled states are there for 3 parties?
- There are *inequivalent* enatngled states, numerical entanglement measures are inadequate.
- $W := |100\rangle + |010\rangle + |001\rangle$ and $GHZ := |000\rangle + |111\rangle$.
- Both are maximally entangled but W is persistent, it requires two measurements to destroy the entanglement. GHZ becomes disentangled with just one measurement.

+

<

- What kind of entangled states are there for 3 parties?
- There are *inequivalent* enatngled states, numerical entanglement measures are inadequate.
- $W := |100\rangle + |010\rangle + |001\rangle$ and $GHZ := |000\rangle + |111\rangle$.
- Both are maximally entangled but W is persistent, it requires two measurements to destroy the entanglement. GHZ becomes disentangled with just one measurement.
- W_n requires n-1 measurements to destroy the entanglement while GHZ_n becomes disentangled with just one measurement.

+

<

QLE with the *W* **state**

■ $q \leftarrow i$ th qubit of W_n **b=0 result=**wait

<

QLE with the *W* **state**

- $q \leftarrow i$ th qubit of W_n **b=0** result=wait
- **b**:= measure q

<

QLE with the *W* **state**

- $q \leftarrow i$ th qubit of W_n **b**=0 **result**=wait
- **b**:= measure q
- if $\mathbf{b} = 1$ then **result**:= leader, else **result**:=follower.

<

>

+

If a system of n agents with a shared quantum state can solve leader election then they must have had the W_n state or its "mirror image."

<

Suppose an *n*-partite state $|\psi\rangle \in \mathcal{H}^{\otimes n}$, where \mathcal{H} is a 2^m -dimensional Hilbert space, is distributed over *n* processors. We say that there exists a *k*-symmetric move for the processors i_1, \ldots, i_k with respect to $|\psi\rangle$, where $0 < k \le n$, if for all observables $M = \sum_{j=1}^J \lambda_j P_j$, with $J \le 2^m$ and all P_j projectors, we have that

 $\exists l \in \{1, \dots, J\} : (P_l)_{i_1, \dots, i_k}^{\otimes k} (P_{j_{k+1} \neq l})_{i_{k+1}} \dots (P_{j_n \neq l})_{i_n} |\psi\rangle \neq 0$ (0)

+

The idea is that *all* measurements potentially give identical measurement results for k out of the n processors.

Because anonymous networks are invariant under permutations we need not specify any particular subset of processors.

<

>

+

k-symmetric moves exist if and only if a certain form of the state holds.

<

- k-symmetric moves exist if and only if a certain form of the state holds.
- If a k-symmetric move is possible this will persist in any successor state.

<

- k-symmetric moves exist if and only if a certain form of the state holds.
- If a k-symmetric move is possible this will persist in any successor state.
- Any protocol for which k-symmetric branches exist with k different from 1 or n 1 is not totally correct.

- k-symmetric moves exist if and only if a certain form of the state holds.
- If a k-symmetric move is possible this will persist in any successor state.
- Any protocol for which k-symmetric branches exist with k different from 1 or n 1 is not totally correct.
- From the form of the state in the first item we get the desired result.

<

- k-symmetric moves exist if and only if a certain form of the state holds.
- If a k-symmetric move is possible this will persist in any successor state.
- Any protocol for which k-symmetric branches exist with k different from 1 or n 1 is not totally correct.
- From the form of the state in the first item we get the desired result.
- We can extend to the case where they share more than 1 qubit each.

+

<

Without Anonymity

Suppose that we set up the state W_{2,n-2} and give each processor one qubit. Each processor measures its qubit.

<

Without Anonymity

- Suppose that we set up the state W_{2,n-2} and give each processor one qubit. Each processor measures its qubit.
- If it gets |1> it becomes a candidate otherwise it is a voter. Now we can hold an election and choose a leader, if n is odd there is a unique winner.

+

<

- Suppose that we set up the state W_{2,n-2} and give each processor one qubit. Each processor measures its qubit.
- If it gets |1⟩ it becomes a candidate otherwise it is a voter. Now we can hold an election and choose a leader, if n is odd there is a unique winner.
- But how can the voters name their preference in an anonymous network?

+

<

If the network is a ring then each voter sends a message clockwise.

<

Using Network Structure

- If the network is a ring then each voter sends a message clockwise.
- Voters pass on messages they receive, candidates count messages that they receive.

<

Using Network Structure

- If the network is a ring then each voter sends a message clockwise.
- Voters pass on messages they receive, candidates count messages that they receive.
- As soon as one of them gets more than half the votes it will declare itself leader.

+

<

The leader election problem can be exactly solved with shared correlation; either with classical correlated random variables or with the W state.

<

- The leader election problem can be exactly solved with shared correlation; either with classical correlated random variables or with the W state.
- The W state is the only state that has this power. It is worth studying the different kinds of entanglement and their relative power in different computational situations.

<

- The leader election problem can be exactly solved with shared correlation; either with classical correlated random variables or with the W state.
- The W state is the only state that has this power. It is worth studying the different kinds of entanglement and their relative power in different computational situations.
- These kind of symmetry breaking arguments have been used to prove expressiveness theorems before (e.g. Palamidessi 2003).

+

<

- The leader election problem can be exactly solved with shared correlation; either with classical correlated random variables or with the W state.
- The W state is the only state that has this power. It is worth studying the different kinds of entanglement and their relative power in different computational situations.
- These kind of symmetry breaking arguments have been used to prove expressiveness theorems before (e.g. Palamidessi 2003).
- A group of researchers in Japan have independently - given a quantum algorithm for leader election. They allow qubits to be passed around.

<

>

+