
Probability as Logic

Prakash Panangaden1

1School of Computer Science
McGill University

Estonia Winter School March 2015

Panangaden (McGill University) Probabilistic Languages and Semantics Estonia Winter School 2015 1 / 38



Introduction

Outline

1 Introduction

2 Conditional probability

3 Measures and measurable functions

4 Probabilistic relations

Panangaden (McGill University) Probabilistic Languages and Semantics Estonia Winter School 2015 2 / 38



Introduction

What am I trying to do?

1 Probability as logic: the central role of conditional probability.
[Today]

2 Describe the key mathematical concepts behind modern
probability: [Today] measure and integration.

3 Probabilistic systems and bisimulation [Lecture 2]
4 Metrics for probabilistic behaviour [Lecture 3]
5 Semantics of probabilistic programming languages [Lecture 4]
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Introduction

What I am not trying to do

Drown you in category theory.
Discuss applications to e.g. Bayes nets.
Discuss approximation theory.
Deal with continuous time.
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Conditional probability

A puzzle

Imagine a town where every birth is equally likely to give a boy or
a girl. Pr(boy) = Pr(girl) = 1

2 .
Each birth is an independent random event.
There is a family with two children.
One of them is a boy (not specified which one), what is the
probability that the other one is a boy?
Since the births are independent, the probability that the other
child is a boy should be 1

2 . Right?
Wrong! Before you are given the additional information that one
child isa boy, there are 4 equally likely situations: bb, bg, gb, gg.
The possibility gg is ruled out. So of the three equally likely
scenarios: bb, bg, gb, only one has the other child being a boy.
The correct answer is 1

3 .
If I had said, “The elder child is a boy”, then the probability that the
other child is a boy is indeed 1

2 .
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Conditional probability

The point of the puzzle

Conditional probability is tricky!
Conditional probability/expectation is the heart of probabilistic
reasoning.
Conditioning = revising probability (expectation) values in the
presence of new information.
Analogous to inference in ordinary logic.
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Conditional probability

Basic Terminology

Sample space: set of possible outcomes; X.
Event: subset of the sample space; A,B ⊂ X.
Probability: Pr : X −→ [0, 1],

∑
x∈X Pr(x) = 1.

Probability of an event A: Pr(A) =
∑

x∈A Pr(x).
A,B are independent: Pr(A ∩ B) = Pr(A) · Pr(B).
Subprobability:

∑
x∈X Pr(x) ≤ 1.
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Conditional probability

Conditional probability

Definition
If A and B are events, the conditional probability of A given B, written
Pr(A | B), is defined by:

Pr(A | B) = Pr(A ∩ B)/Pr(B).

What happens if Pr(B) = 0?
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Conditional probability

Revising probabilities

Bayes’ Rule

Pr(A | B) =
Pr(B | A) · Pr(A)

Pr(B)
.

Trivial proof: calculate from the definition.
Example: Two coins, one fake (two heads) one OK. One coin
chosen with equal probability and then tossed to yield a H. What
is the probability the coin was fake?
Answer: 2

3 .
Bayes’ rule shows how to update the prior probability of A with the
new information that the outcome was B: this gives the posterior
probability of A given B.
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Conditional probability

Expectation values

A random variable r is a real-valued function on X.
The expectation value of r is

E[r] =
∑
x∈X

Pr(x)r(x).

The conditional expectation value of r given A is:

E[r | A] =
∑
x∈X

r(x)Pr({x} | A).

Conditional probability is a special case of conditional expectation.
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Conditional probability

Expectation value puzzle

Game: 2 players, each rolls a fair 6-sided die repeatedly.
Player 1 wins if she rolls 1 followed by 2.
Player 2 wins if he rolls 1 followed by 1.
Which one is expected to win first?
More precisely: what is the expected number of rolls for each one
to win?
Hint: use conditional expectation.
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Conditional probability

Logic and probability

Kozen’s correspondence

Classical logic Generalization
Truth values {0, 1} Probabilities [0, 1]

Predicate Random variable
State Distribution

The satisfaction relation |= Integration
∫
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Measures and measurable functions

Motivation

Model and reason about systems with continuous state spaces.

Hybrid control systems; e.g. flight management systems.
Telecommunication systems with spatial variation; e.g. mobile
(cell) phones.
Performance modelling.
Continuous time systems.
Probabilistic programming languages with recursion.
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Measures and measurable functions

The Need for Measure Theory

Basic fact: There are subsets of R for which no sensible notion of
size can be defined.
More precisely, there is no translation-invariant measure defined
on all the subsets of the reals.
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Measures and measurable functions

Measurable spaces

Countability is the key: basic analysis works well with countable
summations.
A σ-algebra Ω on a set X is a family of subsets with the following
conditions:

1 ∅,X ∈ Ω
2 A ∈ Ω⇒ Ac ∈ Ω
3 {Ai ∈ Ω}i∈N ⇒

⋃
i Ai ∈ Ω

Closure under countable intersections is automatic.
A ∈ Ω and A ⊂ B or B ⊂ A does not imply B ∈ Ω.
A set with a σ-algebra (X,Ω) is called a measurable space.
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Measures and measurable functions

Properties of σ-algebras

The collection of all subsets of X is always a σ-algebra.
The intersection of any collection of σ-algebras is a σ-algebra.
Thus, given any family F of subsets of X there is a least σ-algebra
containing them: σ(F); the σ-algebra generated by F .
For most σ-algebras of interest a “generic” member is hard to
describe. We try to work with simpler generating families.
Because measurable sets are closed under complementation, the
character of the subject is very different from topology; e.g.
closure under limits.
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Measures and measurable functions

Two Examples

R: the real line. The open intervals do not form a σ-algebra.
However, they generate one: the Borel algebra.
Let A be an “alphabet” of symbols (say finite) and consider A∗:
words over A. Let Aω be finite and infinite words.
Let u ∈ A∗ and let u ↑def

= {v ∈ Aω | u ≤ v}.
A “natural” σ-algebra on Aω is the σ-algebra generated by
{u ↑| u ∈ A∗}.
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Measures and measurable functions

Measurable functions

f : (X,Σ) −→ (Y,Ω) is measurable if for every B ∈ Ω, f−1(B) ∈ Σ.
Just like the definition of continuous in topology.
Why is this the definition? Why backwards?
x ∈ f−1(B) if and only if f (x) ∈ B.
No such statement for the forward image.
Exactly the same reason why we give the Hoare triple for the
assignment statement in terms of preconditions.
Older books (Halmos) give a more general definition that is not
compositional.
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Measures and measurable functions

Examples

If A ⊂ X is a measurable set, 1A(x) = 1 if x ∈ A and 0 otherwise is
called the indicator or characteristic function of A and is
measurable.
The sum and product of real-valued measurable functions is
measurable.
If we take finite linear combinations of indicators we get simple
functions: measurable functions with finite range.
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Measures and measurable functions

Convergence properties

If {fi : R −→ R}i∈N converges pointwise to f and all the fi are
measurable then so is f .
Stark difference with continuity.
If f : (X,Σ) −→ (R,B) is non-negative and measurable then there is
a sequence of non-negative simple functions si such that
si ≤ si+1 ≤ f and the si converge pointwise to f .
The secret of integration.
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Measures and measurable functions

Measures

Want to define a “size” for measurable sets.
A measure on (X,Σ) is a function µ : Σ −→ [0,∞] or µ : Σ −→ [0, 1]
(probability) such that

1 µ(∅) = 0
2 A ∩ B = ∅ implies µ(A ∪ B) = µ(A) + µ(B).
3 A ⊂ B implies µ(A) ≤ µ(B), follows.
4 {Ai}i∈N ⊂ Σ pairwise disjoint implies µ(

⋃
i

Ai) =
∑

i

µ(Ai);

subsumes (2).
5 Actually, (4) is the only axiom needed.
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Measures and measurable functions

Up and down continuity

Up continuity
Suppose A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ . . . are all measurable and that

A =

∞⋃
i=1

Ai. Then µ(A) = lim
1−→∞µ(Ai).

Down continuity
Suppose A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . are all measurable and that

A =

∞⋂
i=1

Ai and µ(A1) <∞. Then µ(A) = lim
1−→∞µ(Ai).

Both follow from σ-additivity but they are not strong enough to imply it.
A Choquet capacity is finitely sub-additive (or super-additive) and
satisfies both continuity properties.
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Measures and measurable functions

Examples of measures

X countable, σ-algebra all subsets of X; c(A) = number of
elements in A. Counting measure; not very useful.
X any set, σ-algebra P(X), fix x0 ∈ X δx0(A) = 1 if x0 ∈ A, 0
otherwise. Dirac delta “function.”
X = R, σ-algebra generated by the open (or closed) intervals, the
Borel sets B. λ : B −→ R≥0 defined as the measure which assigns
to intervals their lengths.
How do we know that such a measure is defined or that it is
unique?
Similarly, we can define measures on Rn.
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Measures and measurable functions

Extension theorems

We look for simple “well-structured” families of sets, e.g. intervals
in R and define “suitable” functions on them.
Then we rely on extension theorems to obtain a unique measure
on the generated σ-algebra.
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Measures and measurable functions

Well structured families of sets

Definition
A Semi-ring A semi-ring of subsets of X is a family F of subsets of X
such that: (i) ∅ ∈ F , (ii) A,B ∈ F implies A ∩ B ∈ F (iii) if A,B ∈ F and
A ⊂ B then there are disjoint sets C1, . . . ,Ck in F such that

B \ A =

k⋃
i=1

Ci.

Think of rectangles in the plane.
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Measures and measurable functions

The extension theorem

Extension theorem
If F is a semi-ring and µ is a set function on F with values in [0,∞]
such that µ(∅) = 0, µ is finitely additive and countably subadditive, then
µ has an extension to a measure on σ(F).
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Measures and measurable functions

Π systems

A π-system is a family of sets closed under finite intersection.
If two measures agree on a π-system then they agree on the
generated σ-algebra.
Fantastically useful, because one can work with the much simpler
sets of a π-system instead of the horribly complicated sets of the
generated σ-algebra.

Panangaden (McGill University) Probabilistic Languages and Semantics Estonia Winter School 2015 27 / 38



Measures and measurable functions

The Lebesgue integral

Want to define
∫

f dµ, where f is measurable and µ is a measure.
Assume that f is everywhere non-negative and bounded and µ is
a probability measure.
If f is 1A then we define

∫
1Adµ = µ(A).

If f is r · 1A then we define
∫

f dµ = r · µ(A).

If f =

k∑
i=1

ri1Ai (simple function) then we define

∫
f dµ =

k∑
i=1

ri · µ(Ai).

Need to check that it does not matter how we write such an f as a
simple function.
There are some subtleties if sets can have infinite measure but
these do not arise if we are dealing with probability measures and
bounded measurable functions.
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Measures and measurable functions

The Lebesgue integral II

The Lebesgue integral

If f is non-negative and measurable and µ a probability measure we
define ∫

f dµ = sup
∫

sdµ

where the sup is over all simple non-negative functions below f .

One can define integrals of general functions by splitting them into
positive and negative pieces.
One can prove that the integral is linear and monotone.
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Measures and measurable functions

Monotone convergence

The monotone convergence theorem

Let {fn} be a sequence of measurable functions on X such that (1)
∀x ∈ X, 0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ fn(x) ≤ . . . ≤ f (x) and (2)
∀x ∈ X, supn fn(x) = f (x) then

sup
n

∫
fndµ =

∫
f dµ.

Should remind you of things in domain theory.
The integral is continuous in an order-theoretic sense.
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Measures and measurable functions

The monotone convergence mantra

Want to prove
∫
E(f )dµ =

∫
E ′(f )dν.

Prove it for the special case f = 1A, usually easy.
Then automatic for simple functions by linearity.
Then automatic for non-negative bounded measurable functions
by the monotone convergence theorem.
Then clear for general bounded measurable functions.
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Measures and measurable functions

The mantra in action

Suppose T : (X,Σ, µ) −→ (Y,Ω, ν) measurable and measure
preserving: ∀B ∈ Ω ν(B) = µ(T−1(B)).
f : Y −→ R is measurable.
Want to show ∀B ∈ Ω,

∫
B f dν =

∫
T−1(B) T ◦ f dµ.

Assume that f is χA for some A ∈ Ω.
Left-hand Side is ν(A ∩ B).
Right-hand side is µ(T−1(A)∩ T−1(B)) = µ(T−1(A∩B)) = ν(A∩B).
And that’s all we have to do!!
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Probabilistic relations

Ordinary binary relations

R : A −→ B is just R ⊆ A× B

Natural converse relation R◦ : B −→ A.
Composition: R1 : A −→ B, R2 : B −→ C then
R1 ◦ R2 = {(x, z) | ∃y ∈ B, xR1y and yR2z}.
Close relation with the powerset construction:
R̂ : A −→ P(B) is an equivalent description of R.
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Probabilistic relations

Markov kernels

A Markov kernel on a measurable space (S,Σ) is a function
h : S× Σ −→ [0, 1] with (a) h(s, ·) : Σ −→ [0, 1] a (sub)probability
measure and (b) h(·,A) : S −→ [0, 1] a measurable function.
Though apparantly asymmetric, these are the probabilistic
analogues of binary relations
and the uncountable generalization of a matrix.
They describe transition probabilities in situations where a
“point-to-point” approach does not make sense.
Composition: k “after” h, (k ◦ h)(x,A) =

∫
k(x′,A)dh(x, ·), where we

are integrating the variable x′ using the measure h(x, ·).
We construct these things using a major theorem (the
Radon-Nikodym theorem).
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Probabilistic relations

Probabilistic relations

Want to define R : (X,Σ) −→ (Y,Ω).
Define a probabilistic relation R from X to Y to be a Markov kernel
of type R : X × Ω −→ [0, 1] with the same measurability conditions.
Given relations R1 : (X,Σ) −→ (Y,Ω) and R2 : (Y,Ω) −→ (Z,Λ) we
define R2 ◦ R1 (R1; R2) as
(R2 ◦ R1)(x,C ∈ Λ) =

∫
R2(y,C)dR1(x, ·).

Just like the formula for composing ordinary relations with
integration for ∃.
Converse is tricky and requires more machinery and more
structure.
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Probabilistic relations

The category SRel

Objects: measurable spaces (X,ΣX)

Morphisms: h : (X,ΣX) −→ (Y,ΣY) are Markov kernels h : X × ΣY

−→ [0, 1].
Composition: h : X −→ Y, k : Y −→ Z then ∀x ∈ X,C ∈ ΣZ,
(k ◦ h)(x,C) =

∫
Y k(y,C)h(x, dy).

The identity morphisms: id : X −→ X is δ(x,A).
Prove associativity of composition by using the monotone
convergence mantra.
It has countable coproducts; very useful for semantics.
Unlike Rel this category is not self dual.
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Probabilistic relations

The Gíry Monad

Define Π : Mes −→Mes by Π((X,ΣX)) = {ν | ν : ΣX −→ [0, 1]}
where ν is a subprobability measure on X.
Actually, Gíry used probability measures; I made the small change
to subprobability measures in order to adapt it to programming
language semantics.
But Π(X) has to be a measurable space not just a set.
For every A ∈ ΣX we define evA : Π(X) −→ [0, 1] by evA(ν) = ν(A).
We define the σ-algebra on Π(X) to be the least σ-algebra making
all the evA measurable.
Given f : X −→ Y define (Π(f )(ν))(B ∈ ΣY) = ν(f−1(B)).
Need natural transformations: η : I −→ Π and µ : Π2 −→ Π.
ηX(x) = δ(x, ·)
µX(Ω ∈ Π2(X)) = λB ∈ ΣX.

∫
evBdΩΠ(X).
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Probabilistic relations

The Kleisli category of Π

If T : C −→ C is a monad, then CT has the same objects as C and
the morphisms in CT from X to Y are morphisms in C from X to TY.
For the powerset monad we get morphisms X −→ P(Y) which we
recognize as just binary relations.
Here we get h : X −→ Π(Y) or h : X −→ (ΣY −→ [0, 1]) or h : X × ΣY

−→ [0, 1].
These are exactly the Markov kernels.
How do we prove associativity of compostion of Markov kernels?
Use the monotone convergence mantra Luke!
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