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Who am I?

Professor at McGill University and Core Member of Montreal
Institute of Learning Algorithms (MILA)

Research interests (1) reasoning about probabilistic systems:
equivalences, logics, metrics, approximation, applications to
verification and to machine learning.
(2) Logic: epistemic logic and distributed systems, logics of belief,
quantitative equational logic, categorical logic, modal logics for
concurrency
(3) Concurrency: dataflow languages, concurrent constraint
programming languages, expressiveness, type systems for
dataflow languages, monoidal categories for concurrent systems
(4) Quantum information theory, quantum computation, quantum
mechanics and formerly quantum field theory in curved spacetime.
(5) Type theory, programming language semantics.
(6) Occasional forays into physics (GR) and pure mathematics.
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Main achievements outside research

bowled my elder brother out for a duck with a vicious leg break,

was MWTC Men’s B Division Consolation Round Runner-up.
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Today’s topic

Probabilistic bisimulation: originally invented with a view to verification
but we have found it useful in reinforcement learning.
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Behavioural equivalence is fundamental

When do two states have exactly the same behaviour?

What can one observe of the behaviour?
What should be guaranteed?
(i) If two states are equivalent we should not be able to “see” any
differences in observable behaviour.
(ii) If two states are equivalent they should stay equivalent as they
evolve.
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A bit of history

Cantor and the back-and-forth argument

Lumpability in queueing theory 1960’s
Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park
Probabilistic bisimulation, discrete systems: Larsen and Skou
1989
Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...
Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999
Fixed-point version: van Breugel and Worrell 2001
Bisimulation for MDP’s : Givan and Dean 2003
Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004, 2005
(UAI)
Representation learning using “metrics”: Castro, Kastner, P.,
Rowland 2021 (NeurIPS)
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The definition of an LTS

A set of states S,

a set of labels or actions, L or A and
a transition relation ⊆ S×A× S, usually written

→a⊆ S× S.

The transitions could be indeterminate (nondeterministic).
We write s a−−→ s′ for (s, s′) ∈→a.
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Formal definition

s s′

t t′

a

a

[Bisimulation definition]
If s ∼ t then

∀s ∈ S, ∀a ∈ A, s a−−→ s′ ⇒ ∃t′, t a−−→ t′ with s′ ∼ t′

and vice versa with s and t interchanged.
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Discrete probabilistic transition systems

Just like a labelled transition system with probabilities associated
with the transitions.

(S,A,∀a ∈ A Ta : S× S −→ [0, 1])

The model is reactive: All probabilistic data is internal - no
probabilities associated with environment behaviour.
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Probabilistic bisimulation : Larsen and Skou

s0

s1

s2

s3

a, 1
3

a, 1
3

a, 1
3

b, 1 c, 1 c, 1

t0

t1 t2

a, 1
3 a, 2

3

b, 1 c, 1
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Are s0 and t0 bisimilar?

Yes, but one needs to add up the probabilities to s2 and s3.

If s is a state, a an action and C a set of states, we write
Ta(s,C) =

∑
s′∈S Ta(s, s′) for the probability of jumping on an a-action to

one of the states in C.

Definition
R is a bisimulation relation if whenever sRt and C is an equivalence
class of R then Ta(s,C) = Ta(t,C).

Panangaden Research Lunch Talk March 2022 23 March 2022 11 / 37



Are s0 and t0 bisimilar?

Yes, but one needs to add up the probabilities to s2 and s3.

If s is a state, a an action and C a set of states, we write
Ta(s,C) =

∑
s′∈S Ta(s, s′) for the probability of jumping on an a-action to

one of the states in C.

Definition
R is a bisimulation relation if whenever sRt and C is an equivalence
class of R then Ta(s,C) = Ta(t,C).

Panangaden Research Lunch Talk March 2022 23 March 2022 11 / 37



Are s0 and t0 bisimilar?

Yes, but one needs to add up the probabilities to s2 and s3.

If s is a state, a an action and C a set of states, we write
Ta(s,C) =

∑
s′∈S Ta(s, s′) for the probability of jumping on an a-action to

one of the states in C.

Definition
R is a bisimulation relation if whenever sRt and C is an equivalence
class of R then Ta(s,C) = Ta(t,C).

Panangaden Research Lunch Talk March 2022 23 March 2022 11 / 37



Markov decision processes?

Markov decision processes are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.

There is a reward associated with each transition.
We observe the interactions and the rewards - not the internal
states.
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Markov decision processes: formal definition

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

where
S : the state space, we will take it to be a finite set.
A : the actions, a finite set
Pa : the transition function; D(S) denotes distributions over S
R : the reward, could readily make it stochastic.
Will write Pa(s,C) for Pa(s)(C).
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Policies

MDP

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

We control the choice of action; it is not some external scheduler.

Policy

π : S −→ D(A)

The goal is choose the best policy: numerous algorithms to find or
approximate the optimal policy.
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Bisimulation

Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a)
and all equivalence classes C of R:

(i) R(a, s) = R(a, t)
(ii) Pa(s,C) = Pa(t,C)

s, t are bisimilar if there is a bisimulation relation R with sRt them.
Basic pattern: immediate rewards match (initiation), stay related
after the transition (coinduction).
Bisimulation can be defined as the greatest fixed point of a
relation transformer.
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Continuous state spaces: why?

Software controllers attached to physical devices or sensors -
robots, controllers.

Continuous state space but discrete time.
Applications to control systems.
Applications to probabilistic programming languages.
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Some remarks on the use of continuous spaces

Can be used for reasoning - but much better if we could have a
finite-state version.

Why not discretize right away and never worry about the
continuous case?
How can we say that our discrete approximation is “accurate”?
We lose the ability to refine the model later.
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The Need for Measure Theory

Basic fact: There are subsets of R for which no sensible notion of
size can be defined.

More precisely, there is no translation-invariant measure defined
on all the subsets of the reals.
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Stochastic Kernels

A stochastic kernel (Markov kernel) is a function h : S× Σ −→ [0, 1]
with (a) h(s, ·) : Σ −→ [0, 1] a (sub)probability measure and (b)
h(·,A) : X −→ [0, 1] a measurable function.

Though apparantly asymmetric, these are the stochastic
analogues of binary relations
and the uncountable generalization of a matrix.
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Logical Characterization

Very austere logic:

L ::== T|φ1 ∧ φ2|〈a〉qφ

s |= 〈a〉qφ means that if the system is in state s, then after the
action a, with probability at least q the new state will satisfy the
formula φ.
Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
No finite branching assumption.
No negation in the logic,
so one can obtain a logical characterization result for simulation
but it needs disjunction.
The proof uses tools from descriptive set theory and measure
theory.
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But...

In the context of probability is exact equivalence reasonable?

We say “no”. A small change in the probability distributions may
result in bisimilar processes no longer being bisimilar though they
may be very “close” in behaviour.
Instead one should have a (pseudo)metric for probabilistic
processes.
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A metric-based approximate viewpoint

Move from equality between processes to distances between
processes (Jou and Smolka 1990).

Quantitative measurement of the distinction between processes.
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In lieu of several slides of greek letters and symbols

If two states are not bisimilar there is a some observation on
which they disagree.

They may diasagree on the reward or on the probability
distribution that results from a transition.
We need to measure the latter, we use the Wasserstein
Kantorovich metric between probability distributions.
Intuitively, if the difference shows up only after a long and
elaborate observation then we should make the states “nearby” in
the bisimulation metric.
All this can be formalized and was originally done by Desharnais
et al. and later with a beautiful fixed-point construction by van
Breugel and Worrell.
Ferns et al. added rewards and showed that the bisimulation
metric bounds the difference in optimal value functions.
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The basic setting: metric spaces

A pseudometric on a set X is a function d : X×X −→ R≥0 such that

1 ∀x ∈ X, d(x, x) = 0
2 ∀x, y ∈ X, d(x, y) = d(y, x)
3 ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y)
4 If d(x, y) = 0 implies x = y we say that it is a metric

The setup
A set M equipped with a metric d obeying the above axioms (unlike,
for example, KL-divergence which is not a metric). A metric space is
complete if every Cauchy sequence has a limit point to which it
converges.
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The setup

We will assume that we have an underlying metric space—the
state space—and we are looking at probability distributions on top
of this space.

We will then look at ways to define a metric on the space of
probability distributions.
It should be, somehow, related to the metric of the underlying
space.

Panangaden Research Lunch Talk March 2022 23 March 2022 25 / 37



The setup

We will assume that we have an underlying metric space—the
state space—and we are looking at probability distributions on top
of this space.
We will then look at ways to define a metric on the space of
probability distributions.

It should be, somehow, related to the metric of the underlying
space.

Panangaden Research Lunch Talk March 2022 23 March 2022 25 / 37



The setup

We will assume that we have an underlying metric space—the
state space—and we are looking at probability distributions on top
of this space.
We will then look at ways to define a metric on the space of
probability distributions.
It should be, somehow, related to the metric of the underlying
space.

Panangaden Research Lunch Talk March 2022 23 March 2022 25 / 37



The Wasserstein Kantorovitch metric

What is the observable aspect of a probability distribution?

Expectation values.
κ(P,Q) = supf∈?? |

∫
f dP−

∫
f dQ|

But what kind of functions should we allow? Not just continuous
ones.
Nonexpansive or Lipschitz-1 functions: d(f (x), f (y)) ≤ d(x, y).

Such functions are always continuous but, clearly, continuous
functions are not necessarily Lipschitz-1.
κ(P,Q) = supf∈Lip1

|
∫

f dP−
∫

f dQ|
It is easy to verify all the metric conditions.
But this definition is only half the story.
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Couplings

How to relate two distributions? Think of a distribution as a pile of
sand.

We need to move some sand around to make the pile P look like
Q.
There are many different ways to do it. Each way is a “transport
plan.”
A coupling of two distributions P,Q defined on X is a joint
distribution γ on X × X such that the marginals of γ are P and Q.
There is always the independent coupling: γ(A× B) = P(A)Q(B).
But there are many others: the convex combinations of couplings
are couplings.
We write C(P,Q) for the set of couplings of P and Q.
We can also define a coupling to be a pair of random variables
R, S with distributions P,Q respectively.
We can also define couplings easily between two different
underlying spaces X and Y.
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The W metrics

A coupling γ defines a transport plan, how much does it cost?

If we measure the cost by a metric d we get
cost =

∫
X×X d(x, y)dγ

We define a metric: W1(P,Q) = infγ∈C(P,Q)

∫
X×X d(x, y)dγ.

Kantorovich-Rubinstein duality: κ = W1.

Wp(P,Q) = infγ∈C(P,Q)[
∫

X×X[d(x, y)]pdγ]
1
p .

Crucial point: if I find any coupling it gives an upper bound on W1.
We can define a map from a metric space (M, d) to the space
(P(M),W1) by x 7→ δx. This map is an isometry.
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Bisimulation via couplings

Recall MDP’s

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

An equivalence relation R on S is a bisimulation if sRt implies that
∀a ∈ A there is a coupling ω of Pa(s) and Pa(t) such that the
support of ω is contained in R.
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Computing the bisimulation metric�

LetM be the space of 1-bounded pseudometrics over S, ordered
by d1 ≤ d2 if ∀x, y; d2(x, y) ≤ d1(x, y).

This is a complete lattice.
We define TK :M−→M by
TK(d)(x, y) = maxa[|R(x, a)R(y, a)|+ γWd(Pa(x),Pa(y))]

This is a monotone function onM.
We can find the bisimulation as the fixed point of TK by iteration:
d∼.
An important bound proved by Ferns et al.
|V∗(x)− V∗(y)| ≤ d∼(x, y).
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Basic goals in RL

We are often dealing with large or infinite transition systems
whose behaviour is probabilistic.

The system responds to stimuli (actions) and moves to a new
state probabilistically and outputs a (possibly) random reward.
We seek optimal policies for extracting the largest possible reward
in expectation.
A plethora of algorithms and techniques, but the cost depends on
the size of the state space.
Can we learn representations of the state space that accelerate
the learning process?
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Representation learning

For large state spaces, learning value functions S×A −→ R is not
feasible.

Instead we define a new space of features M and try to come up
with an embedding φ : S −→ RM.
Then we can try to use this to predict values associated with
state,action pairs.
Representation learning means learning such a φ.
The elements of M are the “features” that are chosen. They can
be based on any kind of knowledge or experience about the task
at hand.
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Experimental setup
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Experiments

Added the MICo loss term to a variety of existing agents: all those
available in the Dopamine Library; 5 in all.

Ran each game 5 times with new seeds so 300 runs for each
agent.
Each game is run for 200 million environment interactions.
We look at final scores and learning curve.
We tried each agent with and without the MICo loss term on 60
different Atari games.
Every agent performed better on about 2

3 of the games.
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Results for Rainbow
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Results for DQN
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Conclusions

Bisimulation has a rich and venerable history.

The metric analogue holds promise for quantitative reasoning and
approximation as well as representation learning.
Research is alive and well and there are new areas where
bisimulation is being “discovered”.
Come talk to me any time about any of my research interests, or
tennis or cricket or poetry or pure mathematics.
Thanks to the Huawei Strategic Talent Scheme and to my host
Chris Heunen.
Thanks to Ajitha Rajan and Gordon Winton for organizing this talk.
Special thanks to School of Informatics for providing such a
wonderful welcoming environment.

Panangaden Research Lunch Talk March 2022 23 March 2022 37 / 37



Conclusions

Bisimulation has a rich and venerable history.
The metric analogue holds promise for quantitative reasoning and
approximation as well as representation learning.

Research is alive and well and there are new areas where
bisimulation is being “discovered”.
Come talk to me any time about any of my research interests, or
tennis or cricket or poetry or pure mathematics.
Thanks to the Huawei Strategic Talent Scheme and to my host
Chris Heunen.
Thanks to Ajitha Rajan and Gordon Winton for organizing this talk.
Special thanks to School of Informatics for providing such a
wonderful welcoming environment.

Panangaden Research Lunch Talk March 2022 23 March 2022 37 / 37



Conclusions

Bisimulation has a rich and venerable history.
The metric analogue holds promise for quantitative reasoning and
approximation as well as representation learning.
Research is alive and well and there are new areas where
bisimulation is being “discovered”.

Come talk to me any time about any of my research interests, or
tennis or cricket or poetry or pure mathematics.
Thanks to the Huawei Strategic Talent Scheme and to my host
Chris Heunen.
Thanks to Ajitha Rajan and Gordon Winton for organizing this talk.
Special thanks to School of Informatics for providing such a
wonderful welcoming environment.

Panangaden Research Lunch Talk March 2022 23 March 2022 37 / 37



Conclusions

Bisimulation has a rich and venerable history.
The metric analogue holds promise for quantitative reasoning and
approximation as well as representation learning.
Research is alive and well and there are new areas where
bisimulation is being “discovered”.
Come talk to me any time about any of my research interests, or
tennis or cricket or poetry or pure mathematics.

Thanks to the Huawei Strategic Talent Scheme and to my host
Chris Heunen.
Thanks to Ajitha Rajan and Gordon Winton for organizing this talk.
Special thanks to School of Informatics for providing such a
wonderful welcoming environment.

Panangaden Research Lunch Talk March 2022 23 March 2022 37 / 37



Conclusions

Bisimulation has a rich and venerable history.
The metric analogue holds promise for quantitative reasoning and
approximation as well as representation learning.
Research is alive and well and there are new areas where
bisimulation is being “discovered”.
Come talk to me any time about any of my research interests, or
tennis or cricket or poetry or pure mathematics.
Thanks to the Huawei Strategic Talent Scheme and to my host
Chris Heunen.

Thanks to Ajitha Rajan and Gordon Winton for organizing this talk.
Special thanks to School of Informatics for providing such a
wonderful welcoming environment.

Panangaden Research Lunch Talk March 2022 23 March 2022 37 / 37



Conclusions

Bisimulation has a rich and venerable history.
The metric analogue holds promise for quantitative reasoning and
approximation as well as representation learning.
Research is alive and well and there are new areas where
bisimulation is being “discovered”.
Come talk to me any time about any of my research interests, or
tennis or cricket or poetry or pure mathematics.
Thanks to the Huawei Strategic Talent Scheme and to my host
Chris Heunen.
Thanks to Ajitha Rajan and Gordon Winton for organizing this talk.

Special thanks to School of Informatics for providing such a
wonderful welcoming environment.

Panangaden Research Lunch Talk March 2022 23 March 2022 37 / 37



Conclusions

Bisimulation has a rich and venerable history.
The metric analogue holds promise for quantitative reasoning and
approximation as well as representation learning.
Research is alive and well and there are new areas where
bisimulation is being “discovered”.
Come talk to me any time about any of my research interests, or
tennis or cricket or poetry or pure mathematics.
Thanks to the Huawei Strategic Talent Scheme and to my host
Chris Heunen.
Thanks to Ajitha Rajan and Gordon Winton for organizing this talk.
Special thanks to School of Informatics for providing such a
wonderful welcoming environment.

Panangaden Research Lunch Talk March 2022 23 March 2022 37 / 37


	Introduction
	Bisimulation for LTS's
	Probabilistic bisimulation
	Continuous state spaces
	Metrics
	Representation learning
	Experimental results
	Conclusions

