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Overview

We have discovered an - apparently - new kind of duality
for automata.

Special case of this construction known since 1962 to
Brzozowski.

Works for probabilistic automata.

Seems interesting for learning and planning.
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Joint work with Doina Precup, Joelle Pineau at the RL Lab at
McGill and Chris Hundt now working for Google. More recently
with Nick Bezhanishvili and Clemens Kupke.
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Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite automaton. S is
the set of states , A an input alphabet (actions), O is a set
of observations .

δ : S ×A −→ S is the state transition function .

γ : S −→ 2O or γ : S ×O −→ 2 is a labeling function.

If O = {accept } we have ordinary deterministic finite
automata.
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An Example
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States are {A,B,C,D,E ,F} and {G,R,Y} are lights.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

Testing the Machine

What can we do with this machine?

We can ask if in the present state the red light is on.

We can ask whether after an a-transition the yellow light is
on.

We can ask whether after some fixed sequence of
transitions a particular light is on.
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States Satisfy Tests (Or Not)

R is satisfied by states {B,E}

After a, red is on, is satisfied by {C,F}.

After ba, yellow is on is satisfied by {A,D}
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A Simple Modal Logic

Thinking of the elements of O as formulas we can use
them to define a simple modal logic. We define a formula ϕ
according to the following grammar:

ϕ ::== ω ∈ O | (a)ϕ

where a ∈ A.

We say s |= ω, if ω ∈ γ(s) (or γ(s, ω) = T ).
We say s |= (a)ϕ if δ(s,a) |= ϕ.

Now we define [[ϕ]]M = {s ∈ S|s |= ϕ}.
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An Equivalence Relation on Formulas

We write sa as shorthand for δ(s,a).

Define ∼M between formulas as ϕ ∼M ψ if [[ϕ]]M = [[ψ]]M.

Note that this allows us to identify an equivalence class for
ϕ with the set of states [[ϕ]]M that satisfy ϕ.

Note that another way of defining this equivalence relations
is

ϕ ∼M ϕ′ := ∀s ∈ S.s |= ϕ ⇐⇒ s |= ϕ′.
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Examples of Equivalent Formulas

The formulas G and aG are only satisfied by A,D. They
are thus equivalent.

Other equivalent formulas are all formulas of the form amG.

There are a lot of formulas in this equivalence class!

But there are only finitely many equivalence classes.
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An Equivalence Relation on States

We also define an equivalence ≡ between states in M as
s1 ≡ s2 if for all formulas ϕ on M, s1 |= ϕ ⇐⇒ s2 |= ϕ.

The equivalence relations ∼ and ≡ are clearly closely
related: they are the hinge of the duality between states
and observations.

We say that M is reduced if the ≡-equivalence classes are
singletons.

Since there is more than just one proposition in general the
relation ≡ is finer than the usual equivalence of automata
theory.
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A Dual Automaton

Given a finite automaton M = (S,A,O, δ, γ).
Let T be the set of ∼M-equivalence classes of formulas on
M.

We define M′ = (S′,A,O′, δ′, γ′) as follows:

S′ = T = {[[ϕ]]M}

O′ = S

δ′([[ϕ]]M,a) = [[(a)ϕ]]M
γ′([[ϕ]]M) = [[ϕ]]M or γ′([[ϕ]]A, s) = (s |= ϕ).
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The intuition

We have interchanged the states and the observations or
propositions; more precisely we have interchanged equivalence
classes of formulas - based on the observations - with the
states. We have made the states of the old machine the
observations of the dual machine.
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The States of the Dual: Our Example

A,D

t1

B,E

t2

C,F

t3
The states are equivalence classes of formulas but we have
labelled them with the set of states of the original machine that
satisfies the tests.
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The Dual Machine in Full: Our Example
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The Double Dual

Now consider M′′ = (M′)′, the dual of the dual.

Its states are equivalence classes of M′-formulas.

Each such class is identified with a set [[ϕ′]]M′ of M′-states
by which formulas in that class are satisfied, and

each M′-state is an equivalence class of M-formulas.

Thus we can look at states in M′′ as collections of
M-formula equivalence classes.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

The Double Dual

Now consider M′′ = (M′)′, the dual of the dual.

Its states are equivalence classes of M′-formulas.

Each such class is identified with a set [[ϕ′]]M′ of M′-states
by which formulas in that class are satisfied, and

each M′-state is an equivalence class of M-formulas.

Thus we can look at states in M′′ as collections of
M-formula equivalence classes.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

The Double Dual

Now consider M′′ = (M′)′, the dual of the dual.

Its states are equivalence classes of M′-formulas.

Each such class is identified with a set [[ϕ′]]M′ of M′-states
by which formulas in that class are satisfied, and

each M′-state is an equivalence class of M-formulas.

Thus we can look at states in M′′ as collections of
M-formula equivalence classes.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

The Double Dual

Now consider M′′ = (M′)′, the dual of the dual.

Its states are equivalence classes of M′-formulas.

Each such class is identified with a set [[ϕ′]]M′ of M′-states
by which formulas in that class are satisfied, and

each M′-state is an equivalence class of M-formulas.

Thus we can look at states in M′′ as collections of
M-formula equivalence classes.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

The Double Dual

Now consider M′′ = (M′)′, the dual of the dual.

Its states are equivalence classes of M′-formulas.

Each such class is identified with a set [[ϕ′]]M′ of M′-states
by which formulas in that class are satisfied, and

each M′-state is an equivalence class of M-formulas.

Thus we can look at states in M′′ as collections of
M-formula equivalence classes.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

The Double Dual 2

Let M′′ be the double dual, and for any state s ∈ S in the
original automaton we define

Sat(s) = {[[ϕ]]M : s |= ϕ}.

Lemma: For any s ∈ S, Sat(s) is a state in M′′.

In fact all the states of the double dual have this form.

Lemma: Let s′′ = [[ϕ]]M′ ∈ S′′ be any state in M′′. Then
s′′ = Sat(sϕ) for some state sϕ ∈ S.

The proof is by an easy induction on ϕ.
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Minimality Properties

If A is reduced then Sat is a bijection from S to S′′.

The statement above can be strengthened to show that we
actually have an isomorphism of automata.

If we define a notion of bisimulation we can show that a
machine and its double dual are bisimilar.

The minimality is, of course, due to the use of the
equivalence relations in the duality.
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The Nondeterministic Case

Here we consider automata of the type

M = (S,A,O, δ : S ×A −→ 2S, γ : S −→ 2O).

We use the same formulas but we have a different notion
of satisfaction: Q ⊆ S

Q |= ω ⇐⇒ ∃s ∈ Q : ω ∈ γ(s)

Q |= (a)ϕ ⇐⇒ δ(Q,a) |= ϕ.

We define an appropriate notion of simulation and prove:
M is simulated by M′′.
The double dual is always deterministic; we have sneaked
in the notion of determinization into the satisfaction
relation.
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Brzozowski’s Algorithm 1962

Take a NFA and just reverse all the transitions and
interchange initial and final states.

Determinize the result.

Reverse all the transitions again and interchange initial and
final states.

Determinize the result.

This gives the minimal DFA recognizing the same
language. The intermediate step can blow up the size of
the automaton exponentially before minimizing it.
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Probabilistic systems

Everything is discrete.

Markov Decision Processes aka Labelled Markov
Processes:

M = (S,A,∀a ∈ A, τa : S × S −→ [0,1]).

The τa are transition probability functions (matrices).

Usually MDPs have rewards but I will not consider them for
now.

We could make things continuous but that is orthogonal.
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Partial Observations

Partially Observable Markov Decision Processes
(POMDPs). We cannot see the entire state but we can see
something.

In process algebra we typically take actions as not always
being enabled and we observe whether actions are
accepted or rejected.

In POMDPs we assume actions are always accepted but
with each transition some propositions are true, or some
boolean observables are “on.”

Note that the observations can depend probabilistically on
the action taken and the final state. Many variations are
possible.
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Formal Definition of a POMDP

M = (S,A,O, δ : S ×A× S −→ [0,1], γ : S ×A×O
−→ [0,1]),

where S is the set of states, O is the set of observations, A
is the set of actions, δ is the transition probability function
and γ gives the observation probabilities.
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Automata with State-based Observations

A deterministic automaton with stochastic
observations is a quintuple

E = (S,A,O, δ : S ×A −→ S, γ : S ×O −→ [0,1]).

Note that this has deterministic transitions and stochastic
observations.

A probabilistic automaton with stochastic
observations is

F = (S,A,O, δ : S ×A× S −→ [0,1], γ : S ×O −→ [0,1]).
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Simple Tests

Rather than thinking of propositions and formulas we will
think of observations and tests. I will look at state-based
notions of observations.

Recall probabilistic automata

E = (S,A,O, δ, γ),

where δ : S ×A× S −→ [0,1] is the transition function

and γ : S ×O −→ [0,1] is the observation function.
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Simple Tests 2

We use the same logic as before except that we give a
probabilistic semantics and call the formulas “tests.” I write
a.t or at rather than (a)ϕ.

Tests define functions from states to [0,1]. If they define
the same function they are equivalent.

The explicit definition of these functions are:

[[o]]E(s) = γ(s,o)

[[at]]E (s) =
∑

s′
δ(s,a, s′)[[t]]E (s′).

In AI these are called “e-tests.”
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Duality with e-tests

S′ = {[[t]]E}

O′ = S

γ′([[t]]E , s) = [[t]]E (s)

δ′([[t]]E ,a, [[at]]E ) = 1; 0 otherwise.

This machine has deterministic transitions and γ′ is just the
transpose of γ.
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The Double Dual

If E is the primal and E ′ is the dual then the states of the
double dual, E ′′ are E ′-equivalence classes of tests.
An “atomic” test is just an observation of E ′, which is just a
state of E so it has the form [[s]]E ′ for some s.
We see that

γ′′([[s]]E ′ , [[o]]E ) = [[s]]E ′([[o]]E) = γ′([[o]]E , s) = [[o]]E(s) = γ(s,o).

An easy calculation shows:

[[a1a2 · · · ako]]E ′′([[s]]E ′)

= [[a1a2 · · · ako]]E(s).
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Inadequacy of e-tests

There is a loss of information in the previous construction.

The double dual behaves just like the primal with respect to
“e-tests” but not with respect to more refined kinds of
observations.

[[o1a1o2a2o3]]E ′′([[s]]E ′) =

[[o1]]E ′′([[s]]E ′′) · [[a1o2]]E ′′([[s]]E ′) · [[a1a2o3]]E ′′([[s]]E ′).

This does not hold in the primal.

The double dual does not conditionalize with respect to
intermediate observations.
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More General Tests

Recall the definition of a POMDP

M = (S,A,O, δa : S × S −→ [0,1], γa : S ×O −→ [0,1]).

A test t is a non-empty sequence of actions followed by an
observation, i.e. t = a1 · · · ano, with n ≥ 1.

An experiment is a non-empty sequence of tests
e = t1 · · · tm with m ≥ 1.
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Some Notation

We need to generalize the transition function to keep track
of the final state.

δǫ(s, s′) = 1s=s′ ∀s, s′ ∈ S

δaα(s, s′) =
∑

s′′
δa(s, s′′)δα(s′′, s′) ∀s, s′ ∈ S.

We have written 1s=s′ for the indicator function.

We define the symbol 〈s|t |s′〉 which gives the probability
that the system starts in s, is subjected to the test t and
ends up in the state s′; similarly 〈s|e|s′〉.
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Notation continued

We have

〈s|a1 · · · ano|s′〉 = δα(s, s′)γan(s
′,o).

We define
〈s|e〉 =

∑

s′
〈s|e|s′〉.
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Equivalence on Experiments

For experiments e1,e2, we say

e1 ∼M e2 ⇔ 〈s|e1〉 = 〈s|e2〉∀s ∈ S.

Then [e]M is the ∼M-equivalence class of e.

The construction of the dual proceeds as before by making
equivalence classes of experiments the states of the dual
machine and

the states of the primal machine become the observations
of the dual machine.
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The Dual Machine

We define the dual as M′ =

(S′,A,O′, δ′ : S′ ×A −→ S′, γ′ : S′ ×O′ −→ [0,1]),

where S′ = {[e]M}, O′ = S

δ′([e]M,a0) = [a0e]M and

γ′([e]M, s) = 〈s|e〉.

We get a deterministic transition system with stochastic
observations.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

The Dual Machine

We define the dual as M′ =

(S′,A,O′, δ′ : S′ ×A −→ S′, γ′ : S′ ×O′ −→ [0,1]),

where S′ = {[e]M}, O′ = S

δ′([e]M,a0) = [a0e]M and

γ′([e]M, s) = 〈s|e〉.

We get a deterministic transition system with stochastic
observations.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

The Dual Machine

We define the dual as M′ =

(S′,A,O′, δ′ : S′ ×A −→ S′, γ′ : S′ ×O′ −→ [0,1]),

where S′ = {[e]M}, O′ = S

δ′([e]M,a0) = [a0e]M and

γ′([e]M, s) = 〈s|e〉.

We get a deterministic transition system with stochastic
observations.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

The Dual Machine

We define the dual as M′ =

(S′,A,O′, δ′ : S′ ×A −→ S′, γ′ : S′ ×O′ −→ [0,1]),

where S′ = {[e]M}, O′ = S

δ′([e]M,a0) = [a0e]M and

γ′([e]M, s) = 〈s|e〉.

We get a deterministic transition system with stochastic
observations.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

The Dual Machine

We define the dual as M′ =

(S′,A,O′, δ′ : S′ ×A −→ S′, γ′ : S′ ×O′ −→ [0,1]),

where S′ = {[e]M}, O′ = S

δ′([e]M,a0) = [a0e]M and

γ′([e]M, s) = 〈s|e〉.

We get a deterministic transition system with stochastic
observations.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

The Double Dual

We use the e-test construction to go from the dual to the
double dual.

The double dual is

M′′ = (S′′,A′,O′′, δ′′, γ′′),

where

S′′ = {[t]M′}, O′′ = S′,

δ′′([t]M′ ,a0) = [a0e]M and

γ′′([t]M′ , [t]M) = 〈[t]M|e〉 = 〈s|αR t〉 (e = αs).
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The Main Theorem

One has to check that everything is well defined.

The main result is: The probability of a state s in the primal
satisfying a experiment e, i.e. 〈s|e〉 is given by
〈[s]M′ |[e]M〉 = γ′′([s]M′)|[e]M〉, where [s] indicates the
equivalence class of the e-test on the dual which has s as
an observation and an empty sequence of actions.
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AI Motivation

One can plan when one has the model: value iteration etc.,
but quite often one does not have the model.

In the absence of a model, one is forced to learn from data.

Learning is hopeless when one has no idea what the state
space is.

There should be no such thing as absolute state! State is
just a summary of past observations that can be used to
make predictions.

The double dual shows that the state can be regarded as
just the summary of the outcomes of experiments.
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What is the right categorical description?

Is this is any kind of familiar Stone-type duality?

We know that machines are co-algebras and logics are
algebras but

why is the dual another automaton?
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Automata as Coalgebras

Our automata are coalgebras of the following functor:

F (S) = SA×2O, F (f : S −→ S′) = λ(α : A −→ S, O ⊂ O).(f ◦ α, O).

The category of these coalgebras is called PODFA.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

Homomorphisms

A homomorphism for these coalgebras is a function f : S −→ S′

such that the following diagram commutes:

S
f //

(δ, γ)
��

S′

(δ′, γ′)
��

SA × 2O

fA×id
// S′A × 2O

where fA(α) = f ◦ α.
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This translates to the following conditions:

∀s ∈ S, ω ∈ O, ω ∈ γ(s) ⇐⇒ ω ∈ γ′(f (s)) (1)

and
∀s ∈ S,a ∈ A, f (δ(s,a)) = δ′(f (s),a). (2)
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The Dual Category

The category of finite boolean algebras with operators
(FBAO ) has as objects finite boolean algebras B with

the usual operations ∧, ¬ and constants T and ⊥ and, in
addition,

together with unary operators (a) and constants ω.

We denote an object by
B = (B, {(a)|a ∈ A}, {ω|ω ∈ O},T,∧,¬).
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Morphisms

The morphisms are the usual boolean homomorphisms
preserving, in addition, the constants and the unary operators.
The following three equations hold:

(a)(b1 ∧ b2) = (a)b1 ∧ (a)b2, (3a)

(a)T = T, (3b)

¬(a)¬b = (a)b. (3c)
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Duality Theorem

There is a dual equivalence of categories

PODFAop ∼= FBAO .

One functor P is just the contravariant power set functor and
the other one H maps a boolean algebra to its set of atoms.

Panangaden Duality in Probabilistic Automata



Introduction
Deterministic Automata

Nondeterministic automata
Probabilistic Systems

Categorical Considerations
Conclusions

Minimization?

Obviously, if we have an equivalence of categories we get
the same machine back when we go back and forth.

So how do we explain the minimization?
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Definable Subsets

Define a logic L by

φ ::== T|⊥|φ1 ∧ φ2|¬φ|(a)φ|ω

and define the definable subsets D(S) of a machine
M = (S, δ, γ) as sets of the form [[φ]].
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D(S) is a subobject of P(M)

in fact it is the smallest possible subalgebra and

any other subalgebra must contain D(S).
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In Pictures

M // P(M)
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M // P(M)

D(S)
?�

1

OO
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M //

2
����

P(M)

H(D(S)) D(S)oo
?�

1

OO
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The Secret of Minimization
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A Simpler Logic

Why did the minimization work with just the logic

φ ::== ω|(a)φ?

With this logic the definable subsets E(S) do not form a
boolean algebra

it is just a “set with operations”

in other words it can be viewed as an automaton!
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Deterministic vs Nondeterministic Automata

For deterministic automata we can flatten formulas like
(a)(ω1 ∧ (b)ω2) to (a)ω1 ∧ (a)(b)ω2.

Thus for deterministic automata the boolean algebra
generated by E(S) is just the same as D(S) so the
minimization picture works with boolean algebra generated
by E(S).

For nondeterministic automata the story is different.
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Conclusions

We need to understand the categorical story for
nondeterministic automata, probabilistic automata
(weighted automata) and perhaps other things as well.
We are experimenting with these ideas for use in
approximation in the RL Lab at McGill; joint with Doina
Precup and Joelle Pineau and their students.
Extension to continuous observation and continuous state
spaces.
It is possible to eliminate state completely in favour of
histories; when can this representation be compressed and
made tractable?
Connect with the theory of derivatives and perhaps to
on-the-fly algorithms for minimization.
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