Quantum Computing
Quantum Computing

- Uses qubits: 2 dimensional quantum systems
Quantum Computing

- Uses qubits: 2 dimensional quantum systems
- Exploits entanglement
Quantum Computing

- Uses qubits: 2 dimensional quantum systems
- Exploits entanglement
- Requires implementing precise transformations on the qubits.
The Trouble with Qubits
The Trouble with Qubits

We need to be able to make exquisitely delicate manipulations of qubits
The Trouble with Qubits

- We need to be able to make exquisitely delicate manipulations of qubits
- while preserving entanglement and
The Trouble with Qubits

- We need to be able to make exquisitely delicate manipulations of qubits
- while preserving entanglement and
- ensuring absence of decoherence.
The Trouble with Qubits

- We need to be able to make exquisitely delicate manipulations of qubits
- while preserving entanglement and
- ensuring absence of decoherence.
- A tall order!
We need stability
We need stability

Kitaev’s great idea: use topologically nontrivial configurations to represent qubits.
We need stability

- Kitaev's great idea: use topologically nontrivial configurations to represent qubits.
- The topology will keep the configuration from coming apart.
We need stability

- Kitaev's great idea: use topologically nontrivial configurations to represent qubits.

- The topology will keep the configuration from coming apart.

- Where do we find quantum braids or knots?
Quantum Statistics
Quantum Statistics

You have two boxes, A and B, and two particles that can each be in either box with equal probability. What is the probability that there is one particle in each box?
Quantum Statistics

You have two boxes, A and B, and two particles that can each be in either box with equal probability. What is the probability that there is one particle in each box?

If you answered 1/2 you are correct classically, but this is not what happens in quantum mechanics!
Quantum Statistics

You have two boxes, A and B, and two particles that can each be in either box with equal probability. What is the probability that there is one particle in each box?

If you answered 1/2 you are correct classically, but this is not what happens in quantum mechanics!

Depending on the type of particle the answer could be 1/3 (bosons) or 0 (fermions).
Symmetry
Symmetry

A symmetry of a system is a transformation that leaves the system looking unchanged.
Symmetry

A symmetry of a system is a transformation that leaves the system looking unchanged.

Symmetries can be composed, there is an identity, there is an inverse for every symmetry and composition is associative.
Symmetry

- A symmetry of a system is a transformation that leaves the system looking unchanged.
- Symmetries can be composed, there is an identity, there is an inverse for every symmetry and composition is associative.
- Symmetries form a group.
Symmetry in QM
Symmetry in QM

If a quantum system has a symmetry group G, then applying elements of G to the state space H must cause some transformation of H.
Symmetry in QM

If a quantum system has a symmetry group G, then applying elements of G to the state space H must cause some transformation of H.

In short, the state space carries a representation of the group.
Symmetry in QM

- If a quantum system has a symmetry group G, then applying elements of G to the state space H must cause some transformation of H.

- In short, the state space carries a representation of the group.
Symmetry in QM

- If a quantum system has a symmetry group G, then applying elements of G to the state space H must cause some transformation of H.

- In short, the state space carries a representation of the group.

$$\rho : G \to GL(H)$$
Identical particles
Identical particles

In QM particles are absolutely identical. You cannot label them and use arguments that mention “the first particle” or “the second particle.”
Identical particles

In QM particles are absolutely identical. You cannot label them and use arguments that mention “the first particle” or “the second particle.”

The permutation group is a symmetry of a quantum system: the system looks the same if you interchange particles of the same type.
Representations of the Permutation Group
Representations of the Permutation Group

The simplest two representations possible:
Representations of the Permutation Group

The simplest two representations possible:

- the trivial representation: every permutation is mapped onto the identity element of $\text{GL}(H)$,
Representations of the Permutation Group

The simplest two representations possible:

- the trivial representation: every permutation is mapped onto the identity element of $GL(H)$,

- or the alternating representation: a permutation P is mapped to $+1$ or -1 according to whether P is odd or even.
What nature does
What nature does

Nature has chosen to implement these basic representations and no others, as far as we know.
What nature does

- Nature has chosen to implement these basic representations and no others, as far as we know.

- The state vector of a system either changes sign under an interchange of any pair of identical particles (fermions) or does not (bosons).
Consequences 1
Consequences 1

If the state vector changes sign under an interchange of identical particles but must also look the same if they are in the same state we have \(v = -v \); where \(v \) is the state vector describing two identical particles in the same state.
Consequences 1

If the state vector changes sign under an interchange of identical particles but must also look the same if they are in the same state we have $v = -v$; where v is the state vector describing two identical particles in the same state.

In short $v = 0$!
Consequences 1

If the state vector changes sign under an interchange of identical particles but must also look the same if they are in the same state we have $v = -v$; where v is the state vector describing two identical particles in the same state.

In short $v = 0$!

With fermions two particles cannot be in exactly the same state: Pauli exclusion principle. The reason for chemistry!!
Consequences 2
Consequences 2

Bosons can indeed be packed into the same state.
Consequences 2

- Bosons can indeed be packed into the same state.
- The fundamental reason for early quantum mechanics.
Consequences 2

- Bosons can indeed be packed into the same state.
- The fundamental reason for early quantum mechanics.
- The explanation of lasers, superconductivity and many other collective phenomena.
Spin in Quantum Mechanics
Spin in Quantum Mechanics

• Quantum systems are rotationally symmetric.
Spin in Quantum Mechanics

- Quantum systems are rotationally symmetric.
- Therefore the rotation group must act on them.
Spin in Quantum Mechanics

• Quantum systems are rotationally symmetric.

• Therefore the rotation group must act on them.

• This group is called $SO(3)$: the group of 3×3 orthogonal matrices with determinant $+1$.
Spin in Quantum Mechanics

• Quantum systems are rotationally symmetric.

• Therefore the rotation group must act on them.

• This group is called $SO(3)$: the group of 3×3 orthogonal matrices with determinant $+1$.

• To describe a member of the group we need an angle and a unit vector pointing along the axis of rotation.
Spin in Quantum Mechanics

- Quantum systems are rotationally symmetric.
- Therefore the rotation group must act on them.
- This group is called $SO(3)$: the group of 3×3 orthogonal matrices with determinant $+1$.
 - To describe a member of the group we need an angle and a unit vector pointing along the axis of rotation.
 - The group can be viewed as a solid ball of radius π. The angle of rotation is the distance from the centre.
Spin in Quantum Mechanics

- Quantum systems are rotationally symmetric.
- Therefore the rotation group must act on them.
- This group is called $SO(3)$: the group of 3×3 orthogonal matrices with determinant $+1$.
- To describe a member of the group we need an angle and a unit vector pointing along the axis of rotation.
- The group can be viewed as a solid ball of radius π. The angle of rotation is the distance from the centre.
- We have to identify a rotation of θ and $\pi - \theta$, so we identify antipodal points on the surface of the ball.
Spin in Quantum Mechanics

• Quantum systems are rotationally symmetric.

• Therefore the rotation group must act on them.

• This group is called \(SO(3) \): the group of \(3 \times 3 \) orthogonal matrices with determinant \(+1\).

• To describe a member of the group we need an angle and a unit vector pointing along the axis of rotation.

• The group can be viewed as a solid ball of radius \(\pi \). The angle of rotation is the distance from the centre.

• We have to identify a rotation of \(\theta \) and \(\pi - \theta \), so we identify antipodal points on the surface of the ball.

• The resulting group is not simply connected: there are loops that cannot be continuously deformed to a point.
A picture of $SO(3)$ showing a loop that can be shrunk to a point and one that cannot.

$SO(3)$ is not simply connected.
There is another group $SU(2)$: the group of unitary 2×2 matrices with determinant 1.

There is a homomorphism from $SU(2)$ to $SO(3)$ which is onto and 2 to 1 and which locally looks just like $SO(3)$ but globally is simply connected.

Now which is the relevant symmetry group for quantum mechanics?
Nature implements the representations of $SU(2)$.
Nature implements the representations of $SU(2)$.

Some representations of $SU(2)$ behave like representations of $SO(3)$ but others behave strangely.
Nature implements the representations of $SU(2)$.

Some representations of $SU(2)$ behave like representations of $SO(3)$ but others behave strangely.

The representations of $SU(2)$ can be classified by a number j which can be either an integer or half an integer.
Nature implements the representations of $SU(2)$.

Some representations of $SU(2)$ behave like representations of $SO(3)$ but others behave strangely.

The representations of $SU(2)$ can be classified by a number j which can be either an integer or half an integer. The quantity j is called the spin of the particle.
Nature implements the representations of $SU(2)$.

Some representations of $SU(2)$ behave like representations of $SO(3)$ but others behave strangely.

The representations of $SU(2)$ can be classified by a number j which can be either an integer or half an integer. The quantity j is called the spin of the particle.

The second type of representations correspond to objects that change sign under rotation of 2π: they are called spinors.
Nature implements the representations of $SU(2)$.

Some representations of $SU(2)$ behave like representations of $SO(3)$ but others behave strangely.

The representations of $SU(2)$ can be classified by a number j which can be either an integer or half an integer. The quantity j is called the spin of the particle.

The second type of representations correspond to objects that change sign under rotation of 2π: they are called spinors.

Nature has two types of particles: those for which a 2π rotation is the identity and those for which a 4π rotation is the identity.
The Spin-Statistics Theorem
The Spin-Statistics Theorem

In any relativistic quantum field theory particles have half-integer spin if and only if they are fermions and have integer spin iff they are bosons.
The Spin-Statistics Theorem

In any relativistic quantum field theory particles have half-integer spin if and only if they are fermions and have integer spin iff they are bosons.

Note that this is a general theorem.
The Spin-Statistics Theorem

In any relativistic quantum field theory particles have half-integer spin if and only if they are fermions and have integer spin iff they are bosons.

Note that this is a general theorem.

No truly topological proof exists.
The Spin-Statistics Theorem

In any relativistic quantum field theory particles have half-integer spin if and only if they are fermions and have integer spin iff they are bosons.

Note that this is a general theorem.

No truly topological proof exists.

All this is true in three dimensions.
The Spin-Statistics Theorem

In any relativistic quantum field theory particles have half-integer spin if and only if they are fermions and have integer spin iff they are bosons.

Note that this is a general *theorem*.

No truly topological proof exists.

All this is true in *three* dimensions.

What happens in two dimensions?
Two dimensional physics
Two dimensional physics

Now the rotation group is $SO(2)$, which is just a circle.
Two dimensional physics

Now the rotation group is $SO(2)$, which is just a circle.

Though a simpler group, the topology is much more complicated.
Two dimensional physics

Now the rotation group is $SO(2)$, which is just a circle.

Though a simpler group, the topology is much more complicated.

There are infinitely many classes of loops (homotopy classes). So a rotation by 4π is not necessarily the identity and a rotation by 2π is not necessarily a multiplication by ± 1.
Two dimensional physics

Now the rotation group is $SO(2)$, which is just a circle.

Though a simpler group, the topology is much more complicated.

There are infinitely many classes of loops (homotopy classes). So a rotation by 4π is not necessarily the identity and a rotation by 2π is not necessarily a multiplication by ± 1.

A rotation of 2π may result in a phase change $e^{i\theta}$ that could be anything.
Two dimensional physics

Now the rotation group is $SO(2)$, which is just a circle.

Though a simpler group, the topology is much more complicated.

There are infinitely many classes of loops (homotopy classes). So a rotation by 4π is not necessarily the identity and a rotation by 2π is not necessarily a multiplication by ± 1.

A rotation of 2π may result in a phase change $e^{i\theta}$ that could be anything.

Such entities are called anyons.
What happened to the Spin-Statistics theorem?

It still holds in two dimensions! The relevant group is no longer the permutation group but the braid group.

To understand why we need to think about the physics of two dimensional entities.

In the laboratory we get 2D physics with a thin gas of free electrons trapped between two semiconductor layers.

A strong magnetic field is applied in the perpendicular direction confining the “gas” to a 2D layer.

Excited states of this system are not electrons but virtual particles with strange properties.
Imagine some (5 in the picture) particles and consider what happens when some of them are exchanged.

Here $1 \mapsto 4, 2 \mapsto 1, 3 \mapsto 3, 4 \mapsto 5$ and $5 \mapsto 2$

In 3D the strands can always be disentangled; the only thing that matters is the start and end point. So we can describe the effect just by giving a permutation.

In 2D the entangling matters. One has to distinguish between different braidings.
Here the permutations are the same but the braiding is different.
The Braid Group

Fix n and consider n points on a line with another n points on a line below. We connect them with strands. The generators of the group are interchanges of adjacent strands.

This is an element of B_6.

Much richer theory than the permutation group.
For \(n \) points the generators are \(b_1 \) to \(b_{n-1} \) and their inverses. The generators obey the following equations:

\[
\begin{align*}
 b_i b_j & = b_j b_i \quad \text{for} \quad |i - j| \geq 2 \\
 b_i b_{i+1} b_i & = b_{i+1} b_i b_{i+1} \quad \text{for} \quad 1 \leq i \leq n - 1.
\end{align*}
\]

which respectively depicts as:

\[
\begin{align*}
 \cdots & \\
 i & \quad i+1 \\
 \cdots & \\
 j & \quad j+1 \\
 \cdots & = \cdots \\
 i & \quad i+1 \\
 j & \quad j+1 \\
 \cdots & \\
\end{align*}
\]

and

\[
\begin{align*}
 \cdots & \\
 i & \quad i+1 \quad i+2 \\
 \cdots & = \cdots \\
 i & \quad i+1 \quad i+2 \\
 \cdots & \\
\end{align*}
\]
Generalized Spin-Statistics theorem holds in dimensions 2 and 3.

See the paper by Froelich and Gabbiani: Local Quantum Theory and Braid Group Statistics.

There is a lot more to be said about knots, braids, physics and related things but we need to get on with the main story.
Combining Anyons
Combining Anyons

We can associate a type with anyons according to the phase they pick up during an exchange.
Combining Anyons

We can associate a *type* with anyons according to the phase they pick up during an exchange.

What happens if we combine n anyons of type θ? What is the resulting type?
Combining Anyons

We can associate a *type* with anyons according to the phase they pick up during an exchange.

What happens if we combine \(n \) anyons of type \(\theta \)? What is the resulting type?

Consider the exchange process. If we exchange two clusters of \(n \) anyons (of type \(\theta \)) each, we get a phase change of \(n^2 \theta \). Thus we have a particle of type \(n^2 \theta \).
Combining Anyons

We can associate a type with anyons according to the phase they pick up during an exchange.

What happens if we combine n anyons of type θ? What is the resulting type?

Consider the exchange process. If we exchange two clusters of n anyons (of type θ) each, we get a phase change of $n^2 \theta$. Thus we have a particle of type $n^2 \theta$.

This is an example of what is called a fusion rule.
Combining Anyons

We can associate a type with anyons according to the phase they pick up during an exchange.

What happens if we combine n anyons of type θ? What is the resulting type?

Consider the exchange process. If we exchange two clusters of n anyons (of type θ) each, we get a phase change of $n^2\theta$. Thus we have a particle of type $n^2\theta$.

This is an example of what is called a fusion rule.

Thus if we have a cluster of n anyons and another cluster of m anyons (all the basic anyons are type θ) when we combine them we get a cluster of type $(n + m)^2\theta$.
Combining Anyons

We can associate a \textit{type} with anyons according to the phase they pick up during an exchange.

What happens if we combine \(n \) anyons of type \(\theta \)? What is the resulting type?

Consider the exchange process. If we exchange two clusters of \(n \) anyons (of type \(\theta \)) each, we get a phase change of \(n^2 \theta \). Thus we have a particle of type \(n^2 \theta \).

This is an example of what is called a \textit{fusion} rule.

Thus if we have a cluster of \(n \) anyons and another cluster of \(m \) anyons (all the basic anyons are type \(\theta \)) when we combine them we get a cluster of type \((n + m)^2 \theta \).

\textbf{Not all anyons are so simple!}
Representations of the braid group.
Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What do they look like?
Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What do they look like?

The braid groups are infinite and there are infinitely many irreducible representations.
Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What do they look like?

The braid groups are infinite and there are infinitely many irreducible representations.

Let us consider 1D representations. A 1D vector space is just a copy of \mathbb{C}. So every linear map on \mathbb{C} is just a complex number. So every generator b_j of the braid group looks like $e^{i\theta_j}$ in a 1D rep.
Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What do they look like?

The braid groups are infinite and there are infinitely many irreducible representations.

Let us consider 1D representations. A 1D vector space is just a copy of \(\mathbb{C} \). So every linear map on \(\mathbb{C} \) is just a complex number. So every generator \(b_j \) of the braid group looks like \(e^{i\theta_j} \) in a 1D rep.

One of the basic equations in the braid group is:

\[
b_j b_{j+1} b_j = b_{j+1} b_j b_{j+1}
\]

The Yang-Baxter equation.
Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What do they look like?

The braid groups are infinite and there are infinitely many irreducible representations.

Let us consider 1D representations. A 1D vector space is just a copy of \mathbb{C}. So every linear map on \mathbb{C} is just a complex number. So every generator b_j of the braid group looks like $e^{i\theta_j}$ in a 1D rep.

One of the basic equations in the braid group is:

$$b_j b_{j+1} b_j = b_{j+1} b_j b_{j+1}$$

The Yang-Baxter equation.

Applying this we get that $e^{i\theta_j + i\theta_{j+1} + i\theta_j} = e^{i\theta_{j+1} + i\theta_j + i\theta_{j+1}}$
Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What do they look like?

The braid groups are infinite and there are infinitely many irreducible representations.

Let us consider 1D representations. A 1D vector space is just a copy of \mathbb{C}. So every linear map on \mathbb{C} is just a complex number. So every generator b_j of the braid group looks like $e^{i\theta_j}$ in a 1D rep.

One of the basic equations in the braid group is:

$$b_j b_{j+1} b_j = b_{j+1} b_j b_{j+1}$$

The Yang-Baxter equation.

Applying this we get that $e^{i\theta_j + i\theta_{j+1} + i\theta_j} = e^{i\theta_{j+1} + i\theta_j + i\theta_{j+1}}$

or $\theta_j = \theta_{j+1}$. All the generators of the group produce the same phase shift.
Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What do they look like?

The braid groups are infinite and there are infinitely many irreducible representations.

Let us consider 1D representations. A 1D vector space is just a copy of \(\mathbb{C} \). So every linear map on \(\mathbb{C} \) is just a complex number. So every generator \(b_j \) of the braid group looks like \(e^{i\theta_j} \) in a 1D rep.

One of the basic equations in the braid group is:

\[
b_j b_{j+1} b_j = b_{j+1} b_j b_{j+1}
\]

The Yang-Baxter equation.

Applying this we get that

\[
e^{i\theta_j + i\theta_{j+1} + i\theta_j} = e^{i\theta_{j+1} + i\theta_j + i\theta_{j+1}}
\]

or \(\theta_j = \theta_{j+1} \). All the generators of the group produce the same phase shift.

However, there are more interesting representations.
Non-abelian anyons
Non-abelian anyons

There are (we hope!) anyons that transform according to higher-dimensional representations of the braid group. This happens when the ground state of the system is degenerate and the actions of the braid group elements are given by matrices.
Non-abelian anyons

There are (we hope!) anyons that transform according to higher-dimensional representations of the braid group. This happens when the ground state of the system is degenerate and the actions of the braid group elements are given by matrices.

Now we can hope to implement non-trivial unitary transformations by braiding these anyons together.
Non-abelian anyons

There are (we hope!) anyons that transform according to higher-dimensional representations of the braid group. This happens when the ground state of the system is degenerate and the actions of the braid group elements are given by matrices.

Now we can hope to implement non-trivial unitary transformations by braiding these anyons together.

We have got to have non-abelian anyons in order to use them for quantum computation.
Non-abelian anyons

There are (we hope!) anyons that transform according to higher-dimensional representations of the braid group. This happens when the ground state of the system is degenerate and the actions of the braid group elements are given by matrices.

Now we can hope to implement non-trivial unitary transformations by braiding these anyons together.

We have got to have non-abelian anyons in order to use them for quantum computation.

There are candidates but there are no definite laboratory demonstrations of non-abelian anyons.
Fusing non-abelian anyons

Now the type of an anyon is not just a complex number but a matrix.
Fusing non-abelian anyons

Now the *type* of an anyon is not just a complex number but a matrix.

What happens when we combine anyons of different types? Write \([a, b]\) for the combination of a type-\(a\) anyon and a type-\(b\) anyon.
Fusing non-abelian anyons

Now the type of an anyon is not just a complex number but a matrix.

What happens when we combine anyons of different types? Write $[a, b]$ for the combination of a type-a anyon and a type-b anyon.

We get general fusion rules of the form $[a, b] = \sum_c N_{ac}^b$; where the Ns are just natural numbers.
Fusing non-abelian anyons

Now the type of an anyon is not just a complex number but a matrix.

What happens when we combine anyons of different types? Write \([a, b]\) for the combination of a type-\(a\) anyon and a type-\(b\) anyon.

We get general fusion rules of the form \([a, b] = \sum c N_{ab}^c\); where the \(N\)s are just natural numbers.

Thus a rule like \([a, b] = 2a + b + 3c\) means that fusing an \(a\) and a \(b\) produces either an \(a\) – and this can happen in two ways – or a \(b\) or a \(c\), which last can happen in 3 ways.
Fusing non-abelian anyons

Now the type of an anyon is not just a complex number but a matrix.

What happens when we combine anyons of different types? Write \([a, b]\) for the combination of a type-\(a\) anyon and a type-\(b\) anyon.

We get general fusion rules of the form
\[
[a, b] = \sum_c N_{ac}^b c
\]
where the \(N\)s are just natural numbers.

Thus a rule like \([a, b] = 2a + b + 3c\) means that fusing an \(a\) and a \(b\) produces either an \(a\) – and this can happen in two ways – or a \(b\) or a \(c\), which last can happen in 3 ways.

It is the space of fusion possibilities that describes the qubits! If \([a, b] = 2c\) we use the 2D fusion space of the resulting \(c\) anyon to encode a qubit.
Fusing non-abelian anyons

Now the type of an anyon is not just a complex number but a matrix.

What happens when we combine anyons of different types? Write \([a, b]\) for the combination of a type-\(a\) anyon and a type-\(b\) anyon.

We get general fusion rules of the form \([a, b] = \sum c N_{ab}^c\); where the \(N\)s are just natural numbers.

Thus a rule like \([a, b] = 2a + b + 3c\) means that fusing an \(a\) and a \(b\) produces either an \(a\) – and this can happen in two ways – or a \(b\) or a \(c\), which last can happen in 3 ways.

It is the space of fusion possibilities that describes the qubits! If \([a, b] = 2c\) we use the 2D fusion space of the resulting \(c\) anyon to encode a qubit.

How do we describe all this complicated algebra? There are different types of things that combine in non-trivial ways. We have essentially an exotic type theory.
What do we need?
What do we need?

We need a system of types. Physicists call them “charges.”
What do we need?

We need a system of types. Physicists call them “charges.”

We need to capture the idea of combining types and getting new types as a result. We also need the idea of “putting together” and “or”.

Friday, July 10, 2009
What do we need?

We need a system of types. Physicists call them “charges.”

We need to capture the idea of combining types and getting new types as a result. We also need the idea of “putting together” and “or”.

We need to have the ability to describe braids.
What do we need?

We need a system of types. Physicists call them “charges.”

We need to capture the idea of combining types and getting new types as a result. We also need the idea of “putting together” and “or”.

We need to have the ability to describe braids.

In fact, the anyons are extended objects with more than “string-like” structure. We need braided ribbons that may have twists in them.
What do we need?

We need a system of types. Physicists call them “charges.”

We need to capture the idea of combining types and getting new types as a result. We also need the idea of “putting together” and “or”.

We need to have the ability to describe braids.

In fact, the anyons are extended objects with more than “string-like” structure. We need braided ribbons that may have twists in them.

We need braided monoidal categories. The tensor product structure gives the fusion possibility. The additive structure gives the different possibilities.
What do we need?

We need a system of types. Physicists call them “charges.”

We need to capture the idea of combining types and getting new types as a result. We also need the idea of “putting together” and “or”.

We need to have the ability to describe braids.

In fact, the anyons are extended objects with more than “string-like” structure. We need braided *ribbons* that may have *twists* in them.

We need braided monoidal categories. The tensor product structure gives the fusion possibility. The additive structure gives the different possibilities.

To accomodate everything we use what are called *modular tensor categories*.
An example: Fibonacci anyons

Two basic types: 1 and τ.

$1 \otimes 1 \simeq 1$

$1 \otimes \tau \simeq \tau \otimes 1 \simeq \tau$

$\tau \otimes \tau \simeq 1 \oplus \tau$

Here are the fusion rules.
An example: Fibonacci anyons

Two basic types: 1 and τ.

\[
\begin{align*}
1 \otimes 1 & \simeq 1 \\
1 \otimes \tau & \simeq \tau \otimes 1 \simeq \tau \\
\tau \otimes \tau & \simeq 1 \oplus \tau
\end{align*}
\]

Here are the fusion rules.

Consider the following calculation:
An example: Fibonacci anyons

Two basic types: 1 and τ.

$$1 \otimes 1 \simeq 1$$
$$1 \otimes \tau \simeq \tau \otimes 1 \simeq \tau$$
$$\tau \otimes \tau \simeq 1 \oplus \tau$$

Here are the fusion rules.

Consider the following calculation:

$$(\tau \otimes \tau) \otimes \tau \simeq (1 \oplus \tau) \otimes \tau$$
$$\simeq (1 \otimes \tau) \oplus (\tau \otimes \tau)$$
$$\simeq \tau \oplus (1 \oplus \tau)$$
$$\simeq 1 \oplus 2 \cdot \tau.$$
We now pass to the context of finite-dimensional complex vector spaces via the splitting spaces whose basis vectors are dual to the fusion states described above. Consider $\text{Hom}(\tau, (\tau \otimes \tau) \otimes \tau) \cong \text{Hom}(\tau, \mathbf{1} \oplus 2 \cdot \tau) \cong \text{Hom}(\tau, \mathbf{1}) \oplus 2 \cdot \text{Hom}(\tau, \tau)$. As $2 \cdot \tau := \tau \oplus \tau$ this is $\cong \text{Hom}(\tau, \mathbf{1}) \oplus 2 \cdot \text{Hom}(\tau, \tau)$. Now, using Lemma 1 in conjunction with the property that for any $b \in \{1, \tau\}$, $\text{End}(b) \cong \mathbb{C}$; if we set $b = 1$ the last expression is isomorphic to $\mathbb{C} \oplus 2 \cdot 0$. Conversely if $b = \tau$, then it is isomorphic to $0 \oplus 2 \cdot \mathbb{C}$. From this, we conclude that considering the space of states with global charge $b \in \{1, \tau\}$ is the same as considering $\text{Hom}(\tau, (\tau \otimes \tau) \otimes \tau)$. In its turn, such a consideration fixes either of the splitting spaces \mathbb{C} or $2 \cdot \mathbb{C} = \mathbb{C}^2$ as orthogonal subspaces of \mathbb{C}^3, the topological space representing our triple of anyons. It is within this two-dimensional complex vector space that we will simulate our qubit. Indeed, if $b = \tau$, we are left with two degrees of freedom which are the two possible outputs of the second splitting.

Remark 8. It is worth stressing that it takes three anyons of charge τ to simulate a single qubit. Moreover, we shall see later that braiding these anyons together simulates a unitary transformation on such a simulated qubit.

Remark 9. Since Fib is rigid, we can apply Proposition 1. We have $\text{Hom}(\tau, (\tau \otimes \tau) \otimes \tau) \cong \text{Hom}(\mathbf{1} \otimes \tau, (\tau \otimes \tau) \otimes \tau) \cong \text{Hom}(\mathbf{1}, ((\tau \otimes \tau) \otimes \tau) \otimes \tau)$. Comparing this fact with what we got in Example [example], we see that the two different encodings are essentially the same. It is also because of this, some authors, for instance J. Preskill in [31], prefer to encode their qubit within a quadruple of anyons of individual charge τ with global charge 1 instead. We choose the former to align with the work of Bonesteel et al. [7] that we will explain in section 6.
The basic idea to simulate quantum computation with anyons is given by the following steps:

1. Consider a compound system of anyons. We initialise a state in the splitting space by fixing the charges the subsets of anyons according to the way they will fuse. This determines the basis state in which the computation starts.
2. We braid the anyons together, it will induce a unitary action on the chosen splitting space.
3. Finally, we let the anyon fuse together and the way they fuse determines which state is measured and this constitutes the output of our computation.
The basic idea to simulate quantum computation with anyons is given by the following steps:

1. Consider a compound system of anyons. We initialise a state in the splitting space by fixing the charges the subsets of anyons according to the way they will fuse. This determines the basis state in which the computation starts.

2. We braid the anyons together, it will induce a unitary action on the chosen splitting space.

3. Finally, we let the anyon fuse together and the way they fuse determines which state is measured and this constitutes the output of our computation.

In fact it is possible to show that the Fibonacci anyons are universal for quantum computation.
Simulating qubits
Simulating qubits

If we fuse 3 \(\tau \)s together we get
Simulating qubits

If we fuse 3 \(\tau \)s together we get

one two-dimensional space of possible \(\tau \) results
Simulating qubits

If we fuse 3 τs together we get one two-dimensional space of possible τ results and we can label the basis vectors as:

$|((\tau \otimes \tau) \otimes \tau; \tau, 1)\rangle$ and $|((\tau \otimes \tau) \otimes \tau; \tau, 2)\rangle$.

Simulating qubits

If we fuse 3 τs together we get

one two-dimensional space of possible τ results

and we can label the basis vectors as:
$|((\tau \otimes \tau) \otimes \tau; \tau, 1)\rangle$ and $|((\tau \otimes \tau) \otimes \tau; \tau, 2)\rangle$.

We also get a one-dimensional space corresponding to the fusion outcome being 1.
Simulating qubits

If we fuse 3 τs together we get

one two-dimensional space of possible τ results

and we can label the basis vectors as:
$|\left(\tau \otimes \tau\right) \otimes \tau; \tau, 1\rangle$ and $|\left(\tau \otimes \tau\right) \otimes \tau; \tau, 2\rangle$.

We also get a one-dimensional space corresponding to the fusion outcome being 1.

The two-dimensional space of fusion outcomes is our qubit.
Simulating qubits

If we fuse 3 τs together we get

one two-dimensional space of possible τ results

and we can label the basis vectors as:
$| (\tau \otimes \tau) \otimes \tau; \tau, 1 \rangle$ and $| (\tau \otimes \tau) \otimes \tau; \tau, 2 \rangle$.

We also get a one-dimensional space corresponding to the fusion outcome being 1.

The two-dimensional space of fusion outcomes is our qubit.

The one-dimensional space represents possible “leakage.”
Where are the gates?
Where are the gates?

We can braid the anyons together. Recall that anyons carry representations of the \textit{braid} group.
Where are the gates?

We can braid the anyons together. Recall that anyons carry representations of the \textit{braid} group.

Furthermore, these are \textit{nonabelian} anyons so they carry a higher-dimensional representation of the braid group.
Where are the gates?

We can braid the anyons together. Recall that anyons carry representations of the \textit{braid} group.

Furthermore, these are \textit{nonabelian} anyons so they carry a higher-dimensional representation of the braid group.

Thus there are matrices which act on the space of the anyons when they are braided. We physically drag the anyons around one another to create a braid and then we have a unitary transformation of the qubit space.
Where are the gates?

We can braid the anyons together. Recall that anyons carry representations of the *braid* group.

Furthermore, these are *nonabelian* anyons so they carry a higher-dimensional representation of the braid group.

Thus there are matrices which act on the space of the anyons when they are braided. We physically drag the anyons around one another to create a braid and then we have a unitary transformation of the qubit space.

These turn out to be dense in $SU(2)$. So we can come close to any *one*-qubit unitary by braiding.
Where are the gates?

We can braid the anyons together. Recall that anyons carry representations of the *braid* group.

Furthermore, these are *nonabelian* anyons so they carry a higher-dimensional representation of the braid group.

Thus there are matrices which act on the space of the anyons when they are braided. We physically drag the anyons around one another to create a braid and then we have a unitary transformation of the qubit space.

These turn out to be dense in $SU(2)$. So we can come close to any *one*-qubit unitary by braiding.

We are almost there, but we need at least one *two*-qubit gate.
The CNOT gate
The CNOT gate

We need two triplets of τ anyons to represent the two qubits and we need to braid them together.
The CNOT gate

We need two triplets of τ anyons to represent the two qubits and we need to braid them together.

The first step is to insert an anyon from the control triplet into the target triplet carefully producing a trivial unitary.
The **CNOT gate**

We need two triplets of τ anyons to represent the two qubits and we need to braid them together.

The first step is to insert an anyon from the control triplet into the target triplet carefully producing a trivial unitary.
The CNOT gate

We need two triplets of τ anyons to represent the two qubits and we need to braid them together.

The first step is to insert an anyon from the control triplet into the target triplet carefully producing a trivial unitary.

The above scheme (by Bonesteel et al.) does the trick.
The CNOT gate

We need two triplets of τ anyons to represent the two qubits and we need to braid them together.

The first step is to insert an anyon from the control triplet into the target triplet carefully producing a trivial unitary.

The above scheme (by Bonesteel et al.) does the trick.

The dark dots are the anyons of the control triplet but after the braiding the fusion space has one of the target anyons in it.
The CNOT gate

We need two triplets of τ anyons to represent the two qubits and we need to braid them together.

The first step is to insert an anyon from the control triplet into the target triplet carefully producing a trivial unitary.

The above scheme (by Bonesteel et al.) does the trick.

The dark dots are the anyons of the control triplet but after the braiding the fusion space has one of the target anyons in it.

An explicit calculation shows that the unitary in this case is the identity.
The CNOT gate

We need two triplets of \(\tau \) anyons to represent the two qubits and we need to braid them together.

The first step is to insert an anyon from the control triplet into the target triplet carefully producing a trivial unitary.

The above scheme (by Bonesteel et al.) does the trick.

The dark dots are the anyons of the control triplet but after the braiding the fusion space has one of the target anyons in it.

An explicit calculation shows that the unitary in this case is the identity.

How do they come up with this?
The CNOT gate

We need two triplets of τ anyons to represent the two qubits and we need to braid them together.

The first step is to insert an anyon from the control triplet into the target triplet carefully producing a trivial unitary.

The above scheme (by Bonesteel et al.) does the trick.

The dark dots are the anyons of the control triplet but after the braiding the fusion space has one of the target anyons in it. An explicit calculation shows that the unitary in this case is the identity.

How do they come up with this? By being clever!
A categorical presentation of quantum computation with anyons

As an action on the fusion space of the three anyons involved, this is:

\[
B_3 R^{-2} B^{-4} R_2 B_4 R_2 B_2 R^{-2} B^{-4} R^{-4} B_2 R_2 B_2 R_3 \sim \begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & i & 0 & 0 \\
i & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

This tells us how the given combination of braid insert an anyon within a triplet without disturbing it. In fact, this stresses the distinction between the dynamics of the anyons and the consequences on the fusion space. Indeed, even if we disturbed the initial configuration of anyons via multiple braidings, the effect on the splitting space is approximately the identity.

b) Now, we implement an \textit{i·NOT} as the following braid:

The unitary acting on the splitting space of the initial triple is given by:

\[
R^{-2} B^{-4} R_4 B_2 R_2 B_2 R_2 R_2 B^{-2} R^{-2} B_4 R_2 B_2 R_3 \sim \begin{pmatrix}
0 & i & 0 & 0 \\
i & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

This combination of braids tells us how to implement a \textit{i·NOT} gate on the two dimensional fusion space of our triple of anyons. Again, this gate is approximated.

c) Finally, the \textit{i·CNOT} gate acting on two topological qubits is realised as follows:

First, instead of inserting 1 anyons, we insert a couple that will be used as a test couple and that in the very same manner as described in a) – as these two will fuse together yielding either 1 or \(\tau\), this is exactly what we want.

Secondly, we apply the \textit{i·NOT}-gate computed in b). Finally, we extract the control pair returning it to its original position by applying the insertion procedure in reverse order. This is done, again, without disturbing the triple at stance here.

The above shows the general scheme.

A \textbf{NOT} can be implemented as a one-qubit unitary. We insert a \textit{pair} of test anyons. They fuse to produce a \(\tau\) or a 1.

If the fusion produces a 1 then any tensoring with the other anyons has no effect. If it produces a \(\tau\) the \textbf{NOT} will have an effect. At the end we restore the state of the control triplet.

Details are admittedly hairy and formalizing all this is daunting.
Conclusions
Conclusions

New model of computation based on entirely new physics.
Conclusions

New model of computation based on entirely new physics.

Lies at the crossroads of mathematics (representation theory of the braid group, modular tensor categories), quantum computation (universality theorems) and physics.
Conclusions

New model of computation based on entirely new physics.

Lies at the crossroads of mathematics (representation theory of the braid group, modular tensor categories), quantum computation (universality theorems) and physics.

How does it relate to other models? Like the one-way model?
Conclusions

New model of computation based on entirely new physics.

Lies at the crossroads of mathematics (representation theory of the braid group, modular tensor categories), quantum computation (universality theorems) and physics.

How does it relate to other models? Like the one-way model?

We need more structured “logical” ways of reasoning. This is where this community can help.
Conclusions

New model of computation based on entirely new physics.

Lies at the crossroads of mathematics (representation theory of the braid group, modular tensor categories), quantum computation (universality theorems) and physics.

How does it relate to other models? Like the one-way model?

We need more structured “logical” ways of reasoning. This is where this community can help.

Tremendously exciting synergy between the three communities.
Some references

J. Preskill, Lectures notes in quantum computation, chapter 9. Available at http://www.theory.caltech.edu/people/preskill/ph229

