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Joint work with

Chaput, Danos and Plotkin
Philippe Chaput, Vincent Danos, Prakash Panangaden, and
Gordon Plotkin. "Approximating Markov processes by
averaging." Journal of the ACM (JACM) 61, no. 1 (2014):
1-45.

The idea of functorializing conditional expectation is due to
Vincent.
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Approximation via Averaging

1 Approximation of Markov processes should be based
on “averaging”.

2 Averages are computed by expectation values.
3 Beautiful functorial presentation of expectation values

due to Vincent Danos.
4 Make bisimulation and approximation live in the same

universe
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Some notation

1 Given (X,Σ, p) and (Y,Λ) and a measurable function
f : X −→ Y we obtain a measure q on Y by
q(B) = p(f−1(B)). This is written Mf (p) and is called the
image measure of p under f .

2 We say that a measure ν is absolutely continuous
with respect to another measure µ if for any measurable
set A, µ(A) = 0 implies that ν(A) = 0. We write ν � µ.



Approximation
by Averaging

Panangaden

Introduction

Background

Cones and
Duality

Conditional
expectation

Markov
processes

Bisimulation

Conclusions

Some notation

1 Given (X,Σ, p) and (Y,Λ) and a measurable function
f : X −→ Y we obtain a measure q on Y by
q(B) = p(f−1(B)). This is written Mf (p) and is called the
image measure of p under f .

2 We say that a measure ν is absolutely continuous
with respect to another measure µ if for any measurable
set A, µ(A) = 0 implies that ν(A) = 0. We write ν � µ.



Approximation
by Averaging

Panangaden

Introduction

Background

Cones and
Duality

Conditional
expectation

Markov
processes

Bisimulation

Conclusions

The Radon-Nikodym Theorem

The Radon-Nikodym theorem is a central result in measure
theory allowing one to define a “derivative” of a measure
with respect to another measure.

Radon-Nikodym
If ν � µ, where ν, µ are finite measures on a measurable
space (X,Σ) there is a positive measurable function h on X
such that for every measurable set B

ν(B) =

∫
B

h dµ.

The function h is defined uniquely up to a set of µ-measure
0. The function h is called the Radon-Nikodym derivative of
ν with respect to µ; we denote it by dν

dµ . Since ν is finite,
dν
dµ ∈ L+

1 (X, µ).
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Notation for Radon-Nikodym

1 Given an (almost-everywhere) positive function
f ∈ L1(X, p), we let f · p be the measure which has
density f with respect to p.

2 Two identities that we get from the Radon-Nikodym
theorem are:

given q� p, we have dq
dp · p = q.

given f ∈ L+
1 (X, p), df ·p

dp = f

3 These two identities just say that the operations (−) · p
and d(−)

dp are inverses of each other as maps between
L+

1 (X, p) andM�p(X) the space of finite measures on
X that are absolutely continuous with respect to p.
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Expectation and conditional expectation

1 The expectation Ep(f ) of a measurable function f is the
average computed by

∫
f dp and therefore it is just a

number.

2 The conditional expectation is not a mere number but a
random variable.

3 It is meant to measure the expected value in the
presence of additional information.

4 The additional information takes the form of a sub-σ
algebra, say Λ, of Σ. The experimenter knows, for
every B ∈ Λ, whether the outcome is in B or not.

5 Now she can recompute the expectation values given
this information.
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Formalizing conditional expectation

It is an immediate consequence of the Radon-Nikodym
theorem that such conditional expectations exist.

Kolmogorov

Let (X,Σ, p) be a measure space with p a finite measure, f
be in L1(X,Σ, p) and Λ be a sub-σ-algebra of Σ, then there
exists a g ∈ L1(X,Λ, p) such that for all B ∈ Λ∫

B
f dp =

∫
B

gdp.

This function g is usually denoted by E(f |Λ).
We clearly have f · p� p so the required g is simply
df ·p
dp|Λ , where p |Λ is the restriction of p to the
sub-σ-algebra Λ.
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Properties of conditional expectation

1 The point of requiring Λ-measurability is that it
“smooths out” variations that are too rapid to show up in
Λ.

2 The conditional expectation is linear, increasing with
respect to the pointwise order.

3 It is defined uniquely p-almost everywhere.
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What are cones?

Want to combine linear structure with order structure.

If we have a vector space with an order ≤ we have a
natural notion of positive and negative vectors: x ≥ 0 is
positive.
What properties do the positive vectors have? Say
P ⊂ V are the positive vectors, we include 0.
Then for any positive v ∈ P and positive real r, rv ∈ P.
For u, v ∈ P we have u + v ∈ P and if v ∈ P and −v ∈ P
then v = 0.
We define a cone C in a vector space V to be a set with
exactly these conditions.
Any cone defines a order by u ≤ v if v− u ∈ C.
Unfortunately for us, many of the structures that we
want to look at are cones but are not part of any
obvious vector space: e.g. the measures on a space.
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Cones that we use I

If µ is a measure on X, then one has the well-known
Banach spaces L1 and L∞.

These can be restricted to cones by considering the
µ-almost everywhere positive functions.
We will denote these cones by L+

1 (X,Σ, µ) and
L+
∞(X,Σ).

These are complete normed cones.
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Cones that we use II

Let (X,Σ, p) be a measure space with finite measure p.
We denote byM�p(X), the cone of all measures on
(X,Σ, p) that are absolutely continuous with respect to p

If q is such a measure, we define its norm to be q(X).
M�p(X) is also an ω-complete normed cone.
The conesM�p(X) and L+

1 (X,Σ, p) are isometrically
isomorphic in ωCC.
We writeMp

UB(X) for the cone of all measures on
(X,Σ) that are uniformly less than a multiple of the
measure p: q ∈Mp

UB means that for some real
constant K > 0 we have q ≤ Kp.
The conesMp

UB(X) and L+
∞(X,Σ, p) are isomorphic.
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The pairing

Pairing function

There is a map from the product of the cones L+
∞(X, p) and

L+
1 (X, p) to R+ defined as follows:

∀f ∈ L+
∞(X, p), g ∈ L+

1 (X, p) 〈f , g〉 =

∫
fgdp.

This map is bilinear and is continuous and ω-continuous in
both arguments; we refer to it as the pairing.
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Duality expressed via pairing

This pairing allows one to express the dualities in a very
convenient way. For example, the isomorphism between
L+
∞(X, p) and (L+

1 (X, p))∗ sends f ∈ L+
∞(X, p) to

λg.〈f , g〉 = λg.
∫

fgdp.
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Duality is the Key

M�p(X)

��

∼ // L+
1 (X, p)oo

��

∼ // L+,∗
∞ (X, p)oo

��
Mp

UB

OO

∼ // L+
∞(X, p)oo ∼ //

OO

L+,∗
1 (X, p)

OO

oo

(1)

where the vertical arrows represent dualities and the
horizontal arrows represent isomorphisms.

Pairing function

There is a map from the product of the cones L+
∞(X, p) and

L+
1 (X, p) to R+ defined as follows:

∀f ∈ L+
∞(X, p), g ∈ L+

1 (X, p) 〈f , g〉 =

∫
fgdp.
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Where the action happens

We define two categories Rad∞ and Rad1 that will be
needed for the functorial definition of conditional
expectation.

This will allow for L∞ and L1 versions of the theory.
Going between these versions by duality will be very
useful.
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The “infinity” category

Rad∞
The category Rad∞ has as objects probability spaces, and
as arrows α : (X, p) −→ (Y, q), measurable maps such that
Mα(p) ≤ Kq for some real number K.

The reason for choosing the name Rad∞ is that α ∈ Rad∞
maps to d/dqMα(p) ∈ L+

∞(Y, q).
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The “one” category

Rad1

The category Rad1 has as objects probability spaces and as
arrows α : (X, p) −→ (Y, q), measurable maps such that
Mα(p)� q.

1 The reason for choosing the name Rad1 is that
α ∈ Rad1 maps to d/dqMα(p) ∈ L+

1 (Y, q).
2 The fact that the category Rad∞ embeds in Rad1

reflects the fact that L+
∞ embeds in L+

1 .
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Pairing function revisited

Recall the isomorphism between L+
∞(X, p) and L+,∗

1 (X, p)
mediated by the pairing function:

f ∈ L+
∞(X, p) 7→ λg : L+

1 (X, p).〈f , g〉 =

∫
fgdp.
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Precomposition

1 Now, precomposition with α in Rad∞ gives a map P1(α)
from L+

1 (Y, q) to L+
1 (X, p).

2 Dually, given α ∈ Rad1 : (X, p) −→ (Y, q) and
g ∈ L+

∞(Y, q) we have that P∞(α)(g) ∈ L+
∞(X, p).

3 Thus the subscripts on the two precomposition functors
describe the target categories.

4 Using the ∗-functor we get a map (P1(α))∗ from
L+,∗

1 (X, p) to L+,∗
1 (Y, q) in the first case and

5 dually we get (P∞(α))∗ from L+,∗
∞ (X, p) to L+,∗

∞ (Y, q).
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Expectation value functor

The functor E∞(·) is a functor from Rad∞ to ωCC
which, on objects, maps (X, p) to L+

∞(X, p) and on maps
is given as follows:

Given α : (X, p) −→ (Y, q) in Rad∞ the action of the
functor is to produce the map E∞(α) : L+

∞(X, p)
−→ L+

∞(Y, q) obtained by composing (P1(α))∗ with the
isomorphisms between L+,∗

1 and L+
∞

L+,∗
1 (X, p)

(P1(α))∗

��

L+
∞(X, p)oo

E∞(α)

��
L+,∗

1 (Y, q) // L+
∞(Y, q)
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Consequences

1 It is an immediate consequence of the definitions that
for any f ∈ L+

∞(X, p) and g ∈ L1(Y, q)

〈E∞(α)(f ), g〉Y = 〈f ,P1(α)(g)〉X.

λh : L+
1 (X, p).〈f , h〉

_

��

f�oo
_

��
λg : L+

1 (Y, q).〈f , g ◦ α〉 � // E∞(α)(f )

2 Note that since we started with α in Rad∞ we get the
expectation value as a map between the L+

∞ cones.
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The other expectation value functor

The functor E1(·) is a functor from Rad1 to ωCC which
maps the object (X, p) to L+

1 (X, p) and on maps is given as
follows:
Given α : (X, p) −→ (Y, q) in Rad1 the action of the functor is
to produce the map E1(α) : L+

1 (X, p) −→ L+
1 (Y, q) obtained by

composing (P∞(α))∗ with the isomorphisms between L+,∗
∞

and L+
1 as shown in the diagram below

L+,∗
∞ (X, p)

(P∞(α))∗

��

L+
1 (X, p)oo

E1(α)

��
L+,∗
∞ (Y, q) // L+

1 (Y, q)
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Markov kernels as linear maps

1 Given τ a Markov kernel from (X,Σ) to (Y,Λ), we
define Tτ : L+(Y) −→ L+(X), for f ∈ L+(Y), x ∈ X, as
Tτ (f )(x) =

∫
Y f (z)τ(x, dz).

2 This map is well-defined, linear and ω-continuous.
3 If we write 1B for the indicator function of the

measurable set B we have that Tτ (1B)(x) = τ(x,B).
4 It encodes all the transition probability information
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From linear maps to markov kernels

1 Conversely, any ω-continuous morphism L with
L(1Y) ≤ 1X can be cast as a Markov kernel by reversing
the process on the last slide.

2 The interpretation of L is that L(1B) is a measurable
function on X such that L(1B)(x) is the probability of
jumping from x to B.
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Backwards

1 We can also define an operator onM(X) by using τ the
other way.

2 We define T̄τ :M(X) −→M(Y), for µ ∈M(X) and
B ∈ Λ, as T̄τ (µ)(B) =

∫
X τ(x,B) dµ(x).

3 It is easy to show that this map is linear and
ω-continuous.
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other way.

2 We define T̄τ :M(X) −→M(Y), for µ ∈M(X) and
B ∈ Λ, as T̄τ (µ)(B) =

∫
X τ(x,B) dµ(x).

3 It is easy to show that this map is linear and
ω-continuous.



Approximation
by Averaging

Panangaden

Introduction

Background

Cones and
Duality

Conditional
expectation

Markov
processes

Bisimulation

Conclusions

Backwards

1 We can also define an operator onM(X) by using τ the
other way.

2 We define T̄τ :M(X) −→M(Y), for µ ∈M(X) and
B ∈ Λ, as T̄τ (µ)(B) =

∫
X τ(x,B) dµ(x).

3 It is easy to show that this map is linear and
ω-continuous.



Approximation
by Averaging

Panangaden

Introduction

Background

Cones and
Duality

Conditional
expectation

Markov
processes

Bisimulation

Conclusions

What do they mean?

1 The operator T̄τ transforms measures “forwards in
time”; if µ is a measure on X representing the current
state of the system, T̄τ (µ) is the resulting measure on Y
after a transition through τ .

2 The operator Tτ may be interpreted as a likelihood
transformer which propagates information “backwards”,
just as we expect from predicate transformers.

3 Tτ (f )(x) is just the expected value of f after one τ -step
given that one is at x.
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Labelled abstract Markov processes

The definition
An abstract Markov kernel from (X,Σ, p) to (Y,Λ, q) is an
ω-continuous linear map τ : L+

∞(Y) −→ L+
∞(X) with ‖τ‖ ≤ 1.

LAMPS
A labelled abstract Markov process on a probability
space (X,Σ, p) with a set of labels (or actions) A is a family
of abstract Markov kernels τa : L+

∞(X, p) −→ L+
∞(X, p)

indexed by elements a of A.
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The approximation map

The expectation value functors project a probability space
onto another one with a possibly coarser σ-algebra.
Given an AMP on (X, p) and a map α : (X, p) −→ (Y, q) in
Rad∞, we have the following approximation scheme:

Approximation scheme

L+
∞(X, p)

τa // L+
∞(X, p)

E∞(α)
��

L+
∞(Y, q)

α(τa) //

P∞(α)

OO

L+
∞(Y, q)
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A special case

Take (X,Σ) and (X,Λ) with Λ ⊂ Σ and use the
measurable function id : (X,Σ) −→ (X,Λ) as α.

Coarsening the σ-algebra

L+
∞(X,Σ, p)

τa // L+
∞(X,Σ, p)

E∞(id)
��

L+
∞(X,Λ, p)

id(τa) //

P∞(id)

OO

L+
∞(X,Λ, p)

Thus id(τa) is the approximation of τa obtained by
averaging over the sets of the coarser σ-algebra Λ.
We now have the machinery to consider approximating
along arbitrary maps α.
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Bisimulation traditionally

Larsen-Skou definition
Given an LMP (S,Σ, τa) an equivalence relation R on S is
called a probabilistic bisimulation if sRt then for every
measurable R-closed set C we have for every a

τa(s,C) = τa(t,C).

This variation to the continuous case is due to Josée
Desharnais and her Indian friends.
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Event bisimulation

In measure theory one should focus on measurable
sets rather than on points.

Event Bisimulation
Given a LMP (X,Σ, τa), an event-bisimulation is a
sub-σ-algebra Λ of Σ such that (X,Λ, τa) is still an LMP.

This means τa sends the subspace L+
∞(X,Λ, p) to itself;

where we are now viewing τa as a map on L+
∞(X,Λ, p).
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The bisimulation diagram

L+
∞(X,Σ, p)

τa // L+
∞(X,Σ, p)

L+
∞(X,Λ, p)
?�

OO

τa // L+
∞(X,Λ, p)
?�

OO

This is a “lossless” approximation!
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Zigzag maps

We can generalize the notion of event bisimulation by using
maps other than the identity map on the underlying sets.
This would be a map α from (X,Σ, p) to (Y,Λ, q), equipped
with LMPs τa and ρa respectively, such that the following
commutes:

L+
∞(X,Σ, p)

τa // L+
∞(X,Σ, p)

L+
∞(Y,Λ, q)

P∞(α)

OO

ρa // L+
∞(Y,Λ, q)

P∞(α)

OO
(2)
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A key diagram

When we have a zigzag the following diagram commutes:

L+
∞(Y)

ρa //

P∞(α)

$$

L+
∞(Y)

E1(α)(1X)·(−)

��

P∞(α)

zz
L+
∞(X)

τa // L+
∞(X)

E∞(α) $$
L+
∞(Y)

α(τa) //
P∞(α)

::

L+
∞(Y)

(3)

The upper trapezium says we have a zigzag. The lower
trapezium says that we have an “approximation” and
the triangle on the right is an earlier lemma.

If we “approximate” along a zigzag we actually get the
exact result.
Approximations are approximate bisimulations.
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Bisimulation as a cospan

Zigzags give a “functional” version of bisimulation; what
is the relational version.

Use co-spans of zigzags; it is usual to use spans but
co-spans give a smoother and more general theory.
With spans one can prove logical characterization of
bisimulation on analytic spaces.
With the cospan definition we get logical
characterization on all measurable spaces.
On analytic spaces the two concepts co-incide.
Recent results show that the theory cannot be made to
work with spans on general measurable spaces.
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The official definition of bisimulation

Bisimulation
We say that two objects of AMP, (X,Σ, p, τ) and (Y,Λ, q, ρ),
are bisimilar if there is a third object (Z,Γ, r, π) with a pair of
zigzags

α : (X,Σ, p, τ) −→ (Z,Γ, r, π)
β : (Y,Λ, q, ρ) −→ (Z,Γ, r, π)

giving a cospan diagram

(X,Σ, p, τ)

α

''

(Y,Λ, q, ρ)

βww
(Z,Γ, r, π)

(4)

Note that the identity function on an AMP is a zigzag, so if a
zigzag exists the two AMPs are bisimilar.
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Fundamental categorical result

The category AMP has pushouts

Furthermore, if the morphisms in the span are zigzags then
the morphisms in the pushout diagram are also zigzags.
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Bisimulation is an equivalence

X

α   

Y

β~~ δ ��

Z

γ��
W

ζ   

U

η
��

V

(5)

The pushouts of the zigzags β and δ yield two more zigzags
ζ and η (and the pushout object V). As the composition of
two zigzags is a zigzag, X and Z are bisimilar. Thus
bisimulation is transitive.



Approximation
by Averaging

Panangaden

Introduction

Background

Cones and
Duality

Conditional
expectation

Markov
processes

Bisimulation

Conclusions

What did we do with this theory?

1 We showed logical characterization of bisimulation for
any measurable space.

2 We developed a theory of approximation by looking at
finitely generated sub-σ-algebras coming form the
logic: approximate bisimulations.

3 We showed that there is a canonical minimal realization
that arises as the projective limit of the finite
approximations.
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