Representation learning via metrics

Pablo Castro ¹	Tyler Kastner ^{2,3} Mark Rowla	Prakash Panangaden ^{2,3} nd ⁴	
 Google Brain, Montreal ² McGill University ³ Montreal Institute of Learning Algorithms (Mila) ⁴ DeepMind, London 			
June 16, 2021			

2 Markov decision processes

Introduction

- 2 Markov decision processes
- Bisimulation and metrics

Introduction

- 2 Markov decision processes
- Bisimulation and metrics
- 4 Limitations of Bisimulation Metrics

- 2 Markov decision processes
- Bisimulation and metrics
- 4 Limitations of Bisimulation Metrics
- 5 The MICo Distance

- 2 Markov decision processes
- Bisimulation and metrics
- 4 Limitations of Bisimulation Metrics
- 5 The MICo Distance
- 6 Experimental results

- 2 Markov decision processes
- Bisimulation and metrics
- 4 Limitations of Bisimulation Metrics
- 5 The MICo Distance
- 6 Experimental results

Conclusions

• We are often dealing with *large* or *infinite* transition systems whose behaviour is probabilistic.

- We are often dealing with *large* or *infinite* transition systems whose behaviour is probabilistic.
- The system responds to stimuli (actions) and moves to a new state probabilistically and outputs a (possibly) random reward.

- We are often dealing with *large* or *infinite* transition systems whose behaviour is probabilistic.
- The system responds to stimuli (actions) and moves to a new state probabilistically and outputs a (possibly) random reward.
- We seek optimal policies for extracting the largest possible reward in expectation.

- We are often dealing with *large* or *infinite* transition systems whose behaviour is probabilistic.
- The system responds to stimuli (actions) and moves to a new state probabilistically and outputs a (possibly) random reward.
- We seek optimal policies for extracting the largest possible reward in expectation.
- A plethora of algorithms and techniques, but the cost depends on the size of the state space.

- We are often dealing with *large* or *infinite* transition systems whose behaviour is probabilistic.
- The system responds to stimuli (actions) and moves to a new state probabilistically and outputs a (possibly) random reward.
- We seek optimal policies for extracting the largest possible reward in expectation.
- A plethora of algorithms and techniques, but the cost depends on the size of the state space.
- Can we *learn* representations of the state space that accelerate the learning process?

• When do two states have exactly the same behaviour?

- When do two states have exactly the same behaviour?
- What can one observe of the behaviour?

- When do two states have exactly the same behaviour?
- What can one observe of the behaviour?
- Immediate rewards.

- When do two states have exactly the same behaviour?
- What can one observe of the behaviour?
- Immediate rewards.
- What should be guaranteed?

- When do two states have exactly the same behaviour?
- What can one observe of the behaviour?
- Immediate rewards.
- What should be guaranteed?
- An equivalence relation on states so that if the equivalence classes are 'lumped' together we cannot tell that anything has changed.

- When do two states have exactly the same behaviour?
- What can one observe of the behaviour?
- Immediate rewards.
- What should be guaranteed?
- An equivalence relation on states so that if the equivalence classes are 'lumped' together we cannot tell that anything has changed.
- Ideally we assume exact equality of real numbers.

• Cantor and the back-and-forth argument

- Cantor and the back-and-forth argument
- Lumpability in queueing theory 1960's

- Cantor and the back-and-forth argument
- Lumpability in queueing theory 1960's
- Bisimulation of nondeterministic automata 1970's and process algebras 1980's: Milner and Park

- Cantor and the back-and-forth argument
- Lumpability in queueing theory 1960's
- Bisimulation of nondeterministic automata 1970's and process algebras 1980's: Milner and Park
- Probabilistic bisimulation in probabilistic automata : Larsen and Skou 1989

- Cantor and the back-and-forth argument
- Lumpability in queueing theory 1960's
- Bisimulation of nondeterministic automata 1970's and process algebras 1980's: Milner and Park
- Probabilistic bisimulation in probabilistic automata : Larsen and Skou 1989
- Bisimulation of Markov processes on continuous state spaces: Desharnais, Edalat, P. 1997...

- Cantor and the back-and-forth argument
- Lumpability in queueing theory 1960's
- Bisimulation of nondeterministic automata 1970's and process algebras 1980's: Milner and Park
- Probabilistic bisimulation in probabilistic automata : Larsen and Skou 1989
- Bisimulation of Markov processes on continuous state spaces: Desharnais, Edalat, P. 1997...
- Bisimulation metrics for Markov processes Desharnais, Gupta, Jagadeesan, P. 1999

- Cantor and the back-and-forth argument
- Lumpability in queueing theory 1960's
- Bisimulation of nondeterministic automata 1970's and process algebras 1980's: Milner and Park
- Probabilistic bisimulation in probabilistic automata : Larsen and Skou 1989
- Bisimulation of Markov processes on continuous state spaces: Desharnais, Edalat, P. 1997...
- Bisimulation metrics for Markov processes Desharnais, Gupta, Jagadeesan, P. 1999
- Fixed-point version: van Breugel and Worrell 2001

- Cantor and the back-and-forth argument
- Lumpability in queueing theory 1960's
- Bisimulation of nondeterministic automata 1970's and process algebras 1980's: Milner and Park
- Probabilistic bisimulation in probabilistic automata : Larsen and Skou 1989
- Bisimulation of Markov processes on continuous state spaces: Desharnais, Edalat, P. 1997...
- Bisimulation metrics for Markov processes Desharnais, Gupta, Jagadeesan, P. 1999
- Fixed-point version: van Breugel and Worrell 2001
- Bisimulation for MDP's : Givan and Dean 2003

- Cantor and the back-and-forth argument
- Lumpability in queueing theory 1960's
- Bisimulation of nondeterministic automata 1970's and process algebras 1980's: Milner and Park
- Probabilistic bisimulation in probabilistic automata : Larsen and Skou 1989
- Bisimulation of Markov processes on continuous state spaces: Desharnais, Edalat, P. 1997...
- Bisimulation metrics for Markov processes Desharnais, Gupta, Jagadeesan, P. 1999
- Fixed-point version: van Breugel and Worrell 2001
- Bisimulation for MDP's : Givan and Dean 2003
- Bisimulation metrics for MDP's: Ferns, Precup, P. 2004

What are Markov decision processes?

 Markov decisionprocesses are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.

What are Markov decision processes?

- Markov decisionprocesses are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- There is a *reward* associated with each transition.

What are Markov decision processes?

- Markov decisionprocesses are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- There is a *reward* associated with each transition.
- We observe the interactions and the rewards not the internal states.

Markov decision processes: formal definition

$$(S, \mathcal{A}, \forall a \in \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : \mathcal{A} \times S \to \mathbf{R})$$

where

- *S* : the state space, we will take it to be a finite set.
- \mathcal{A} : the actions, a finite set
- P^a : the transition function; $\mathcal{D}(S)$ denotes distributions over S
- \mathcal{R} : the reward, could readily make it stochastic.

Will write $P^{a}(s, C)$ for $P^{a}(s)(C)$.

$$(S, \mathcal{A}, \forall a \in \mathcal{A}, P^a : S \longrightarrow \mathcal{D}(S), \mathcal{R} : \mathcal{A} \times S \longrightarrow \mathbf{R})$$

We control the choice of action; it is not some external scheduler.

$$(S, \mathcal{A}, \forall a \in \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : \mathcal{A} \times S \to \mathbf{R})$$

We control the choice of action; it is not some external scheduler.

$$(S, \mathcal{A}, \forall a \in \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : \mathcal{A} \times S \to \mathbf{R})$$

We control the choice of action; it is not some external scheduler.

$$(S, \mathcal{A}, \forall a \in \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : \mathcal{A} \times S \to \mathbf{R})$$

We control the choice of action; it is not some external scheduler.

Policy $\pi: S \to \mathcal{D}(\mathcal{A})$

The goal is **choose** the best policy. We do not know it in advance; we must **learn** it.
• Given an MDP $(S, \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : S \times \mathcal{A} \to \mathbb{R}^{\geq 0})$

Panangaden (¹ Google Brain, Montreal ² Mc(

- Given an MDP $(S, \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : S \times \mathcal{A} \to \mathbf{R}^{\geq 0})$
- we define a **policy** $\pi : S \to \mathcal{D}(\mathcal{A})$, a strategy for choosing an action in a state.

- Given an MDP $(S, \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : S \times \mathcal{A} \to \mathbf{R}^{\geq 0})$
- we define a **policy** $\pi : S \to \mathcal{D}(\mathcal{A})$, a strategy for choosing an action in a state.
- The value function $V^{\pi} : S \to \mathbf{R}$ associated with the policy π is given by:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(s)(a) [\mathcal{R}(s,a) + \gamma \sum_{s' \in S} P^a(s,s') V^{\pi}(s')]$$

- Given an MDP $(S, \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : S \times \mathcal{A} \to \mathbf{R}^{\geq 0})$
- we define a **policy** $\pi : S \to \mathcal{D}(\mathcal{A})$, a strategy for choosing an action in a state.
- The value function $V^{\pi}: S \rightarrow \mathbf{R}$ associated with the policy π is given by:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(s)(a) [\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} P^{a}(s,s') V^{\pi}(s')]$$

• $\gamma \in (0,1)$ is a *contraction* factor.

- Given an MDP $(S, \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : S \times \mathcal{A} \to \mathbf{R}^{\geq 0})$
- we define a **policy** $\pi : S \to \mathcal{D}(\mathcal{A})$, a strategy for choosing an action in a state.
- The value function $V^{\pi}: S \rightarrow \mathbf{R}$ associated with the policy π is given by:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(s)(a) [\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} P^{a}(s, s') V^{\pi}(s')]$$

• $\gamma \in (0,1)$ is a *contraction* factor.

• There is a version for the optimal value function V*

$$V^*(s) = \max_{a \in \mathcal{A}} [\mathcal{R}(s, a) + \gamma \sum_{s' \in S} P^a(s, s') V^*(s')]$$

- Given an MDP $(S, \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : S \times \mathcal{A} \to \mathbf{R}^{\geq 0})$
- we define a **policy** π : S → D(A), a strategy for choosing an action in a state.
- The value function $V^{\pi}: S \rightarrow \mathbf{R}$ associated with the policy π is given by:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(s)(a) [\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} P^{a}(s, s') V^{\pi}(s')]$$

• $\gamma \in (0,1)$ is a *contraction* factor.

There is a version for the optimal value function V*

$$V^*(s) = \max_{a \in \mathcal{A}} [\mathcal{R}(s, a) + \gamma \sum_{s' \in S} P^a(s, s') V^*(s')]$$

• we can extract a Bellman operator as $T^{\pi}(V) = \sum_{a \in \mathcal{A}} \pi(s)(a)[r(s, a) + \gamma \sum_{s' \in S} P^{a}(s, s')V(s')]$

- Given an MDP $(S, \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : S \times \mathcal{A} \to \mathbf{R}^{\geq 0})$
- we define a **policy** π : S → D(A), a strategy for choosing an action in a state.
- The value function $V^{\pi}: S \rightarrow \mathbf{R}$ associated with the policy π is given by:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(s)(a) [\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} P^{a}(s, s') V^{\pi}(s')]$$

• $\gamma \in (0,1)$ is a *contraction* factor.

There is a version for the optimal value function V*

$$V^*(s) = \max_{a \in \mathcal{A}} [\mathcal{R}(s, a) + \gamma \sum_{s' \in S} P^a(s, s') V^*(s')]$$

 we can extract a Bellman operator as
 T^π(V) = Σ_{a∈A} π(s)(a)[r(s, a) + γ Σ_{s'∈S} P^a(s, s')V(s')]

 T^π(V^π) = V^π.

Policy evaluation by iteration

 Given a policy π we have the associated Bellman operator T^π on the space of value functions.

Policy evaluation by iteration

- Given a policy π we have the associated Bellman operator T^π on the space of value functions.
- If V^{π} is the value function we write V_n for its *n*th iterate: $V_{n+1} = T^{\pi}(V_n)$.

Policy evaluation by iteration

- Given a policy π we have the associated Bellman operator T^π on the space of value functions.
- If V^{π} is the value function we write V_n for its *n*th iterate: $V_{n+1} = T^{\pi}(V_n)$.
- The Banach fixed-point theorem says that V_n converges to V^{π} .

Policy iteration

• Start with some policy π_0 and compute V^{π_0}

Policy iteration

- Start with some policy π_0 and compute V^{π_0}
- Inductive step: evaluate V^{π_n} , then set π_{n+1} to be equal to the greedy policy based on V^{π_n} and repeat.

Policy iteration

- Start with some policy π_0 and compute V^{π_0}
- Inductive step: evaluate V^{π_n} , then set π_{n+1} to be equal to the greedy policy based on V^{π_n} and repeat.
- This converges to π* the optimal policy, but not by the Banach fixed point theorem.

Representation learning

For large state spaces, learning value functions S × A → R is not feasible.

Representation learning

- For large state spaces, learning value functions S × A → R is not feasible.
- Instead we define a new space of *features* M and try to come up with an embedding $\phi: S \rightarrow \mathbf{R}^{M}$.

- For large state spaces, learning value functions S × A → R is not feasible.
- Instead we define a new space of *features* M and try to come up with an embedding $\phi: S \rightarrow \mathbf{R}^{M}$.
- Then we can try to use this to predict values associated with state, action pairs.

- For large state spaces, learning value functions S × A → R is not feasible.
- Instead we define a new space of *features* M and try to come up with an embedding $\phi : S \rightarrow \mathbf{R}^{M}$.
- Then we can try to use this to predict values associated with state, action pairs.
- Representation learning means learning such a ϕ .

- For large state spaces, learning value functions S × A → R is not feasible.
- Instead we define a new space of *features* M and try to come up with an embedding $\phi: S \rightarrow \mathbf{R}^{M}$.
- Then we can try to use this to predict values associated with state, action pairs.
- Representation learning means learning such a ϕ .
- The elements of *M* are the "features" that are chosen. They can be based on any kind of knowledge or experience about the task at hand.

(i)
$$\mathcal{R}(a,s) = \mathcal{R}(a,t)$$

(i)
$$\mathcal{R}(a,s) = \mathcal{R}(a,t)$$

(ii) $P^{a}(s,C) = P^{a}(t,C)$

(i)
$$\mathcal{R}(a,s) = \mathcal{R}(a,t)$$

- (ii) $P^{a}(s, C) = P^{a}(t, C)$
- *s*, *t* are bisimilar if there is a bisimulation relation *R* with *sRt* them.

(i)
$$\mathcal{R}(a,s) = \mathcal{R}(a,t)$$

- (ii) $P^{a}(s, C) = P^{a}(t, C)$
- *s*, *t* are bisimilar if there is a bisimulation relation *R* with *sRt* them.
- Basic pattern: immediate rewards match (initiation), stay related after the transition (coinduction).

(i)
$$\mathcal{R}(a,s) = \mathcal{R}(a,t)$$

- (ii) $P^{a}(s, C) = P^{a}(t, C)$
- *s*, *t* are bisimilar if there is a bisimulation relation *R* with *sRt* them.
- Basic pattern: immediate rewards match (initiation), stay related after the transition (coinduction).
- Bisimulation can be defined as the *greatest fixed point* of a relation transformer.

A metric-based approximate viewpoint

• Move from equality between processes to distances between processes (Jou and Smolka 1990).

A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- Quantitative measurement of the distinction between processes.

• A *pseudometric* on a set *X* is a function $d: X \times X \rightarrow \mathbb{R}^{\geq 0}$ such that

• A *pseudometric* on a set *X* is a function $d : X \times X \longrightarrow \mathbb{R}^{\geq 0}$ such that • $\forall x \in X, d(x, x) = 0$

A *pseudometric* on a set X is a function d : X × X → R^{≥0} such that
∀x ∈ X, d(x, x) = 0
∀x, y ∈ X, d(x, y) = d(y, x)

• A *pseudometric* on a set *X* is a function $d: X \times X \to \mathbb{R}^{\geq 0}$ such that

$$\forall x \in X, d(x, x) = 0 \forall x, y \in X, d(x, y) = d(y, x) \exists \forall x, y, z \in X, d(x, y) \le d(x, z) + d(z, y)$$

• A *pseudometric* on a set *X* is a function $d: X \times X \to \mathbb{R}^{\geq 0}$ such that

$$\forall x \in X, d(x, x) = 0$$

$$\forall x, y \in X, d(x, y) = d(y, x)$$

$$\forall x, y, z \in X, d(x, y) \le d(x, z) + d(z, y)$$

If d(x, y) = 0 implies x = y we say that it is a *metric*

• A *pseudometric* on a set *X* is a function $d: X \times X \to \mathbb{R}^{\geq 0}$ such that

$$\forall x \in X, d(x, x) = 0 \forall x, y \in X, d(x, y) = d(y, x)$$

$$\forall x, y, z \in X, d(x, y) \le d(x, z) + d(z, y)$$

³ $\forall x, y, z \in X, d(x, y) ≤ d(x, z) + d(z, y)$ ³ If d(x, y) = 0 implies x = y we say that it is a *metric*

The setup

A set *M* equipped with a **metric** *d* obeying the above axioms (unlike, for example, KL-divergence which is **not** a metric). A metric space is complete if every Cauchy sequence has a limit point to which it converges.

• We will assume that we have an underlying metric space—the state space—and we are looking at probability distributions on top of this space.

- We will assume that we have an underlying metric space—the state space—and we are looking at probability distributions on top of this space.
- We will then look at ways to define a metric on the space of probability distributions.

- We will assume that we have an underlying metric space—the state space—and we are looking at probability distributions on top of this space.
- We will then look at ways to define a metric on the space of probability distributions.
- It should be, somehow, related to the metric of the underlying space.

- We will assume that we have an underlying metric space—the state space—and we are looking at probability distributions on top of this space.
- We will then look at ways to define a metric on the space of probability distributions.
- It should be, somehow, related to the metric of the underlying space.
- I will elide all measure theory issues in this discussion, but they are there, and one cannot really work on this topic without knowing basic measure theory on metric spaces.
• What is the observable aspect of a probability distribution?

- What is the observable aspect of a probability distribution?
- Expectation values.

- What is the observable aspect of a probability distribution?
- Expectation values.

•
$$\kappa(P,Q) = \sup_{f \in ??} |\int f dP - \int f dQ|$$

- What is the observable aspect of a probability distribution?
- Expectation values.
- $\kappa(P,Q) = \sup_{f \in ??} |\int f dP \int f dQ|$
- But what kind of functions should we allow? Not just continuous ones.

- What is the observable aspect of a probability distribution?
- Expectation values.
- $\kappa(P,Q) = \sup_{f \in ??} |\int f dP \int f dQ|$
- But what kind of functions should we allow? Not just continuous ones.
- Nonexpansive or Lipschitz-1 functions: $d(f(x), f(y)) \le d(x, y)$.

- What is the observable aspect of a probability distribution?
- Expectation values.
- $\kappa(P,Q) = \sup_{f \in ??} |\int f dP \int f dQ|$
- But what kind of functions should we allow? Not just continuous ones.
- Nonexpansive or Lipschitz-1 functions: $d(f(x), f(y)) \le d(x, y)$.
- Such functions are always continuous but, clearly, continuous functions are not necessarily Lipschitz-1.

- What is the observable aspect of a probability distribution?
- Expectation values.
- $\kappa(P,Q) = \sup_{f \in ??} |\int f dP \int f dQ|$
- But what kind of functions should we allow? Not just continuous ones.
- Nonexpansive or Lipschitz-1 functions: $d(f(x), f(y)) \le d(x, y)$.
- Such functions are always continuous but, clearly, continuous functions are not necessarily Lipschitz-1.

•
$$\kappa(P,Q) = \sup_{f \in \operatorname{Lip}_1} |\int f dP - \int f dQ|$$

- What is the observable aspect of a probability distribution?
- Expectation values.
- $\kappa(P,Q) = \sup_{f \in ??} |\int f dP \int f dQ|$
- But what kind of functions should we allow? Not just continuous ones.
- Nonexpansive or Lipschitz-1 functions: $d(f(x), f(y)) \le d(x, y)$.
- Such functions are always continuous but, clearly, continuous functions are not necessarily Lipschitz-1.
- $\kappa(P,Q) = \sup_{f \in \operatorname{Lip}_1} |\int f dP \int f dQ|$
- It is easy to verify all the metric conditions.

- What is the observable aspect of a probability distribution?
- Expectation values.
- $\kappa(P,Q) = \sup_{f \in ??} |\int f dP \int f dQ|$
- But what kind of functions should we allow? Not just continuous ones.
- Nonexpansive or Lipschitz-1 functions: $d(f(x), f(y)) \le d(x, y)$.
- Such functions are always continuous but, clearly, continuous functions are not necessarily Lipschitz-1.
- $\kappa(P,Q) = \sup_{f \in \operatorname{Lip}_1} |\int f dP \int f dQ|$
- It is easy to verify all the metric conditions.
- But this definition is only half the story.

 How to relate two distributions? Think of a distribution as a pile of sand.

- How to relate two distributions? Think of a distribution as a pile of sand.
- We need to move some sand around to make the pile *P* look like *Q*.

- How to relate two distributions? Think of a distribution as a pile of sand.
- We need to move some sand around to make the pile *P* look like *Q*.
- There are many different ways to do it. Each way is a "transport plan."

- How to relate two distributions? Think of a distribution as a pile of sand.
- We need to move some sand around to make the pile *P* look like *Q*.
- There are many different ways to do it. Each way is a "transport plan."
- A coupling of two distributions P, Q defined on X is a *joint* distribution γ on X × X such that the *marginals* of γ are P and Q.

- How to relate two distributions? Think of a distribution as a pile of sand.
- We need to move some sand around to make the pile *P* look like *Q*.
- There are many different ways to do it. Each way is a "transport plan."
- A coupling of two distributions P, Q defined on X is a *joint* distribution γ on X × X such that the *marginals* of γ are P and Q.
- There is always the independent coupling: $\gamma(A \times B) = P(A)Q(B)$.

- How to relate two distributions? Think of a distribution as a pile of sand.
- We need to move some sand around to make the pile *P* look like *Q*.
- There are many different ways to do it. Each way is a "transport plan."
- A coupling of two distributions P, Q defined on X is a *joint* distribution γ on X × X such that the *marginals* of γ are P and Q.
- There is always the independent coupling: $\gamma(A \times B) = P(A)Q(B)$.
- But there are many others: the convex combinations of couplings are couplings.

- How to relate two distributions? Think of a distribution as a pile of sand.
- We need to move some sand around to make the pile *P* look like *Q*.
- There are many different ways to do it. Each way is a "transport plan."
- A coupling of two distributions P, Q defined on X is a *joint* distribution γ on X × X such that the *marginals* of γ are P and Q.
- There is always the independent coupling: $\gamma(A \times B) = P(A)Q(B)$.
- But there are many others: the convex combinations of couplings are couplings.
- We write C(P, Q) for the set of couplings of *P* and *Q*.

- How to relate two distributions? Think of a distribution as a pile of sand.
- We need to move some sand around to make the pile *P* look like *Q*.
- There are many different ways to do it. Each way is a "transport plan."
- A coupling of two distributions P, Q defined on X is a *joint* distribution γ on X × X such that the *marginals* of γ are P and Q.
- There is always the independent coupling: $\gamma(A \times B) = P(A)Q(B)$.
- But there are many others: the convex combinations of couplings are couplings.
- We write C(P, Q) for the set of couplings of *P* and *Q*.
- We can also define a coupling to be a pair of random variables *R*, *S* with distributions *P*, *Q* respectively.

- How to relate two distributions? Think of a distribution as a pile of sand.
- We need to move some sand around to make the pile *P* look like *Q*.
- There are many different ways to do it. Each way is a "transport plan."
- A coupling of two distributions P, Q defined on X is a *joint* distribution γ on X × X such that the *marginals* of γ are P and Q.
- There is always the independent coupling: $\gamma(A \times B) = P(A)Q(B)$.
- But there are many others: the convex combinations of couplings are couplings.
- We write C(P, Q) for the set of couplings of *P* and *Q*.
- We can also define a coupling to be a pair of random variables *R*, *S* with distributions *P*, *Q* respectively.
- We can also define couplings easily between two different underlying spaces *X* and *Y*.

• A coupling γ defines a transport plan, how much does it cost?

- A coupling γ defines a transport plan, how much does it cost?
- If we measure the cost by a metric d we get

- A coupling γ defines a transport plan, how much does it cost?
- If we measure the cost by a metric d we get

•
$$cost = \int_{X \times X} d(x, y) d\gamma$$

- A coupling γ defines a transport plan, how much does it cost?
- If we measure the cost by a metric d we get
- $cost = \int_{X \times X} d(x, y) d\gamma$
- We define a metric: $W_1(P, Q) = \inf_{\gamma \in \mathcal{C}(P,Q)} \int_{X \times X} d(x, y) d\gamma$.

- A coupling γ defines a transport plan, how much does it cost?
- If we measure the cost by a metric d we get
- $cost = \int_{X \times X} d(x, y) d\gamma$
- We define a metric: $W_1(P,Q) = \inf_{\gamma \in \mathcal{C}(P,Q)} \int_{X \times X} d(x,y) d\gamma$.
- Kantorovich-Rubinstein duality: $\kappa = W_1$.

- A coupling γ defines a transport plan, how much does it cost?
- If we measure the cost by a metric d we get
- $cost = \int_{X \times X} d(x, y) d\gamma$
- We define a metric: $W_1(P, Q) = \inf_{\gamma \in \mathcal{C}(P,Q)} \int_{X \times X} d(x, y) d\gamma$.
- Kantorovich-Rubinstein duality: $\kappa = W_1$.
- $W_p(P,Q) = \inf_{\gamma \in \mathcal{C}(P,Q)} [\int_{X \times X} [d(x,y)]^p d\gamma]^{\frac{1}{p}}.$

- A coupling γ defines a transport plan, how much does it cost?
- If we measure the cost by a metric d we get
- $cost = \int_{X \times X} d(x, y) d\gamma$
- We define a metric: $W_1(P, Q) = \inf_{\gamma \in \mathcal{C}(P,Q)} \int_{X \times X} d(x, y) d\gamma$.
- Kantorovich-Rubinstein duality: $\kappa = W_1$.
- $W_p(P,Q) = \inf_{\gamma \in \mathcal{C}(P,Q)} \left[\int_{X \times X} [d(x,y)]^p d\gamma \right]^{\frac{1}{p}}$.
- Crucial point: if I find *any* coupling it gives an *upper bound* on *W*₁.

- A coupling γ defines a transport plan, how much does it cost?
- If we measure the cost by a metric d we get
- $cost = \int_{X \times X} d(x, y) d\gamma$
- We define a metric: $W_1(P,Q) = \inf_{\gamma \in \mathcal{C}(P,Q)} \int_{X \times X} d(x,y) d\gamma$.
- Kantorovich-Rubinstein duality: $\kappa = W_1$.
- $W_p(P,Q) = \inf_{\gamma \in \mathcal{C}(P,Q)} [\int_{X \times X} [d(x,y)]^p d\gamma]^{\frac{1}{p}}.$
- Crucial point: if I find *any* coupling it gives an *upper bound* on *W*₁.
- We can define a map from a metric space (M, d) to the space $(\mathcal{P}(M), W_1)$ by $x \mapsto \delta_x$. This map is an *isometry*.

Recall MDP's

$$(S, \mathcal{A}, \forall a \in \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : \mathcal{A} \times S \to \mathbf{R})$$

Recall MDP's

$$(S, \mathcal{A}, \forall a \in \mathcal{A}, P^a : S \to \mathcal{D}(S), \mathcal{R} : \mathcal{A} \times S \to \mathbf{R})$$

An equivalence relation *R* on *S* is a **bisimulation** if *sRt* implies that ∀*a* ∈ A there is a *coupling* ω of P^a(s) and P^a(t) such that the *support* of ω is contained in *R*.

Let *M* be the space of 1-bounded pseudometrics over *S*, ordered by *d*₁ ≤ *d*₂ if ∀*x*, *y*; *d*₂(*x*, *y*) ≤ *d*₁(*x*, *y*).

- Let *M* be the space of 1-bounded pseudometrics over *S*, ordered by *d*₁ ≤ *d*₂ if ∀*x*, *y*; *d*₂(*x*, *y*) ≤ *d*₁(*x*, *y*).
- This is a complete lattice.

- Let *M* be the space of 1-bounded pseudometrics over *S*, ordered by *d*₁ ≤ *d*₂ if ∀*x*, *y*; *d*₂(*x*, *y*) ≤ *d*₁(*x*, *y*).
- This is a complete lattice.
- We define $T_K : \mathcal{M} \to \mathcal{M}$ by

- Let *M* be the space of 1-bounded pseudometrics over *S*, ordered by *d*₁ ≤ *d*₂ if ∀*x*, *y*; *d*₂(*x*, *y*) ≤ *d*₁(*x*, *y*).
- This is a complete lattice.
- We define $T_K : \mathcal{M} \to \mathcal{M}$ by
- $T_K(d)(x, y) = \max_a[|\mathcal{R}(x, a)\mathcal{R}(y, a)| + \gamma W_d(P^a(x), P^a(y))]$

- Let *M* be the space of 1-bounded pseudometrics over *S*, ordered by *d*₁ ≤ *d*₂ if ∀*x*, *y*; *d*₂(*x*, *y*) ≤ *d*₁(*x*, *y*).
- This is a complete lattice.
- We define $T_K : \mathcal{M} \to \mathcal{M}$ by
- $T_K(d)(x, y) = \max_a[|\mathcal{R}(x, a)\mathcal{R}(y, a)| + \gamma W_d(P^a(x), P^a(y))]$
- This is a monotone function on \mathcal{M} .

- Let *M* be the space of 1-bounded pseudometrics over *S*, ordered by *d*₁ ≤ *d*₂ if ∀*x*, *y*; *d*₂(*x*, *y*) ≤ *d*₁(*x*, *y*).
- This is a complete lattice.
- We define $T_K : \mathcal{M} \to \mathcal{M}$ by
- $T_K(d)(x, y) = \max_a[|\mathcal{R}(x, a)\mathcal{R}(y, a)| + \gamma W_d(P^a(x), P^a(y))]$
- This is a monotone function on \mathcal{M} .
- We can find the bisimulation as the fixed point of T_K by iteration: d^{\sim} .

- Let *M* be the space of 1-bounded pseudometrics over *S*, ordered by *d*₁ ≤ *d*₂ if ∀*x*, *y*; *d*₂(*x*, *y*) ≤ *d*₁(*x*, *y*).
- This is a complete lattice.
- We define $T_K : \mathcal{M} \to \mathcal{M}$ by
- $T_K(d)(x, y) = \max_a[|\mathcal{R}(x, a)\mathcal{R}(y, a)| + \gamma W_d(P^a(x), P^a(y))]$
- $\bullet\,$ This is a monotone function on $\mathcal{M}.$
- We can find the bisimulation as the fixed point of T_K by iteration: d^{\sim} .
- An important bound proved by Ferns et al. $|V^*(x) - V^*(y)| \le d^{\sim}(x, y).$

Computational complexity

• Iteration of T_K to obtain an ε -approximation to the metric requires $O(\log(\varepsilon)/\log(\gamma))$ iterations.
- Iteration of T_K to obtain an ε -approximation to the metric requires $O(\log(\varepsilon)/\log(\gamma))$ iterations.
- Each iteration requires the computation of $|S|^2|A|$ distances.

- Iteration of T_K to obtain an ε -approximation to the metric requires $O(\log(\varepsilon)/\log(\gamma))$ iterations.
- Each iteration requires the computation of $|S|^2|A|$ distances.
- Each W_d distance computation is $O(|S|^3)$.

- Iteration of T_K to obtain an ε -approximation to the metric requires $O(\log(\varepsilon)/\log(\gamma))$ iterations.
- Each iteration requires the computation of $|S|^2|A|$ distances.
- Each W_d distance computation is $O(|S|^3)$.
- So the overall cost is $O(|S|^5|\mathcal{A}|\log(\varepsilon)/\log(\gamma))$.

- Iteration of T_K to obtain an ε -approximation to the metric requires $O(\log(\varepsilon)/\log(\gamma))$ iterations.
- Each iteration requires the computation of $|S|^2|A|$ distances.
- Each W_d distance computation is $O(|S|^3)$.
- So the overall cost is $O(|S|^5|\mathcal{A}|\log(\varepsilon)/\log(\gamma))$.
- Too high in practice!

 Computating T_K requires access to P^a(x) for each x and a; typically not available.

- Computating T_K requires access to P^a(x) for each x and a; typically not available.
- So we use sampling to estimate these quantities.

- Computating T_K requires access to P^a(x) for each x and a; typically not available.
- So we use sampling to estimate these quantities.
- Unfortunately it is not easy to obtain these samples and in particular most methods used give biased samples.

Non-optimal policies

• We have $|V^*(x) - V^*(y)| \le d^{\sim}(x, y)$.

Non-optimal policies

- We have $|V^*(x) V^*(y)| \le d^{\sim}(x, y)$.
- But if we have a fixed policy π, which may not be optimal, we do not have the inequality |V^π(x) − V^π(y)| ≤ d[~](x, y).

Non-optimal policies

- We have $|V^*(x) V^*(y)| \le d^{\sim}(x, y)$.
- But if we have a fixed policy π, which may not be optimal, we do not have the inequality |V^π(x) − V^π(y)| ≤ d[~](x, y).
- We often need V^π for non-optimal policies and the bismulation metric does not help us bound it.

• MICo: matching under independent couplings.

- MICo: matching under independent couplings.
- Do not try to find the optimal coupling use a simple known coupling, the independent coupling.

- MICo: matching under independent couplings.
- Do not try to find the optimal coupling use a simple known coupling, the independent coupling.
- We define a new update $T_M : \mathbf{R}^{S \times S} \to \mathbf{R}^{S \times S}$ instead of T_K .

- MICo: matching under independent couplings.
- Do not try to find the optimal coupling use a simple known coupling, the independent coupling.
- We define a new update $T_M : \mathbf{R}^{S \times S} \to \mathbf{R}^{S \times S}$ instead of T_K .
- We define $r^{\pi}(x) := \mathbb{E}_{a \sim \pi(s)}[\mathcal{R}(x, a)]$ and

- MICo: matching under independent couplings.
- Do not try to find the optimal coupling use a simple known coupling, the independent coupling.
- We define a new update $T_M : \mathbf{R}^{S \times S} \to \mathbf{R}^{S \times S}$ instead of T_K .
- We define $r^{\pi}(x) := \mathbb{E}_{a \sim \pi(s)}[\mathcal{R}(x, a)]$ and

•
$$P^{\pi}(x) = \sum_{a} \pi(x)(a) P^{a}(x)$$

- MICo: matching under independent couplings.
- Do not try to find the optimal coupling use a simple known coupling, the independent coupling.
- We define a new update $T_M : \mathbf{R}^{S \times S} \to \mathbf{R}^{S \times S}$ instead of T_K .
- We define $r^{\pi}(x) := \mathbb{E}_{a \sim \pi(s)}[\mathcal{R}(x, a)]$ and

•
$$P^{\pi}(x) = \sum_{a} \pi(x)(a) P^{a}(x)$$

• $(T_M^{\pi}U)(x,y) = |r^{\pi}(x) - r^{\pi}(y)| + \gamma \mathbb{E}_{x' \sim P^{\pi}(x), y' \sim P^{\pi}(y)}[U(x',y')].$

- MICo: matching under independent couplings.
- Do not try to find the optimal coupling use a simple known coupling, the independent coupling.
- We define a new update $T_M : \mathbf{R}^{S \times S} \to \mathbf{R}^{S \times S}$ instead of T_K .
- We define $r^{\pi}(x) := \mathbb{E}_{a \sim \pi(s)}[\mathcal{R}(x, a)]$ and

•
$$P^{\pi}(x) = \sum_{a} \pi(x)(a) P^{a}(x)$$

•
$$(T_M^{\pi}U)(x,y) = |r^{\pi}(x) - r^{\pi}(y)| + \gamma \mathbb{E}_{x' \sim P^{\pi}(x), y' \sim P^{\pi}(y)}[U(x',y')].$$

• If we use the L^{∞} norm, T_M is a contraction so we have a fixed point by Banach's fixed point theorem.

- MICo: matching under independent couplings.
- Do not try to find the optimal coupling use a simple known coupling, the independent coupling.
- We define a new update $T_M : \mathbf{R}^{S \times S} \to \mathbf{R}^{S \times S}$ instead of T_K .
- We define $r^{\pi}(x) := \mathbb{E}_{a \sim \pi(s)}[\mathcal{R}(x, a)]$ and

•
$$P^{\pi}(x) = \sum_{a} \pi(x)(a) P^{a}(x)$$

- $(T_M^{\pi}U)(x,y) = |r^{\pi}(x) r^{\pi}(y)| + \gamma \mathbb{E}_{x' \sim P^{\pi}(x), y' \sim P^{\pi}(y)}[U(x',y')].$
- If we use the L^{∞} norm, T_M is a contraction so we have a fixed point by Banach's fixed point theorem.
- Call the fixed point U^{π} .

- MICo: matching under independent couplings.
- Do not try to find the optimal coupling use a simple known coupling, the independent coupling.
- We define a new update $T_M : \mathbf{R}^{S \times S} \to \mathbf{R}^{S \times S}$ instead of T_K .
- We define $r^{\pi}(x) := \mathbb{E}_{a \sim \pi(s)}[\mathcal{R}(x, a)]$ and

•
$$P^{\pi}(x) = \sum_{a} \pi(x)(a) P^{a}(x)$$

- $(T_M^{\pi}U)(x,y) = |r^{\pi}(x) r^{\pi}(y)| + \gamma \mathbb{E}_{x' \sim P^{\pi}(x), y' \sim P^{\pi}(y)}[U(x',y')].$
- If we use the L^{∞} norm, T_M is a contraction so we have a fixed point by Banach's fixed point theorem.
- Call the fixed point U^{π} .
- Of course this will not give us a metric!

- MICo: matching under independent couplings.
- Do not try to find the optimal coupling use a simple known coupling, the independent coupling.
- We define a new update $T_M : \mathbf{R}^{S \times S} \to \mathbf{R}^{S \times S}$ instead of T_K .
- We define $r^{\pi}(x) := \mathbb{E}_{a \sim \pi(s)}[\mathcal{R}(x, a)]$ and

•
$$P^{\pi}(x) = \sum_{a} \pi(x)(a) P^{a}(x)$$

- $(T_M^{\pi}U)(x,y) = |r^{\pi}(x) r^{\pi}(y)| + \gamma \mathbb{E}_{x' \sim P^{\pi}(x), y' \sim P^{\pi}(y)}[U(x',y')].$
- If we use the L^{∞} norm, T_M is a contraction so we have a fixed point by Banach's fixed point theorem.
- Call the fixed point U^{π} .
- Of course this will not give us a metric!
- But who knows, maybe it tells us something good.

- MICo: matching under independent couplings.
- Do not try to find the optimal coupling use a simple known coupling, the independent coupling.
- We define a new update $T_M : \mathbf{R}^{S \times S} \to \mathbf{R}^{S \times S}$ instead of T_K .
- We define $r^{\pi}(x) := \mathbb{E}_{a \sim \pi(s)}[\mathcal{R}(x, a)]$ and

•
$$P^{\pi}(x) = \sum_{a} \pi(x)(a) P^{a}(x)$$

•
$$(T_M^{\pi}U)(x,y) = |r^{\pi}(x) - r^{\pi}(y)| + \gamma \mathbb{E}_{x' \sim P^{\pi}(x), y' \sim P^{\pi}(y)}[U(x',y')].$$

- If we use the L^{∞} norm, T_M is a contraction so we have a fixed point by Banach's fixed point theorem.
- Call the fixed point U^{π} .
- Of course this will not give us a metric!
- But who knows, maybe it tells us something good.
- Complexity is $O(|S|^4)$ still not good but Google has fancy hardware!

Computational complexity down to O(|S|⁴), a bit better. Also no factor of |A| since we are sticking to a particular policy.

- Computational complexity down to O(|S|⁴), a bit better. Also no factor of |A| since we are sticking to a particular policy.
- We can use online updates rather than iterating the actual *T_M* operator.

- Computational complexity down to O(|S|⁴), a bit better. Also no factor of |A| since we are sticking to a particular policy.
- We can use online updates rather than iterating the actual T_M operator.
- If stepsizes (ε_t(x, y)) decrease according to some specific conditions (Robbins-Munro) then we get convergence for the following sequence of updates

 $U_{t+1}(x,y) \to (1 - \varepsilon_t(x,y))U_t(x,y) + \varepsilon_t(x,y)(|r - \tilde{r}| + \gamma U_t(x',y'))$

- Computational complexity down to O(|S|⁴), a bit better. Also no factor of |A| since we are sticking to a particular policy.
- We can use online updates rather than iterating the actual T_M operator.
- If stepsizes (ε_t(x, y)) decrease according to some specific conditions (Robbins-Munro) then we get convergence for the following sequence of updates

 $U_{t+1}(x,y) \to (1 - \varepsilon_t(x,y))U_t(x,y) + \varepsilon_t(x,y)(|r - \tilde{r}| + \gamma U_t(x',y'))$

• where we are updating using a pair of transitions (x_t, a_t, r_t, x'_t) and $(y_t, b_t, \tilde{r}_t, y'_t)$.

- Computational complexity down to O(|S|⁴), a bit better. Also no factor of |A| since we are sticking to a particular policy.
- We can use online updates rather than iterating the actual T_M operator.
- If stepsizes (ε_t(x, y)) decrease according to some specific conditions (Robbins-Munro) then we get convergence for the following sequence of updates

 $U_{t+1}(x,y) \to (1 - \varepsilon_t(x,y))U_t(x,y) + \varepsilon_t(x,y)(|r - \tilde{r}| + \gamma U_t(x',y'))$

• where we are updating using a pair of transitions (x_t, a_t, r_t, x'_t) and $(y_t, b_t, \tilde{r}_t, y'_t)$.

•
$$|V^{\pi}(x) - V^{\pi}(y)| \le U^{\pi(x,y)}$$

Diffuse metric

Panangaden (¹ Google Brain, Montreal ² Mc(

Diffuse metric

Diffuse metric

$$f(x,y) \ge 0$$

$$d(x, y) = d(y, x)$$

Diffuse metric

 $\bigcirc \ d(x,y) \ge 0$

$$d(x, y) = d(y, x)$$

 $d(x, y) \le d(x, z) + d(z, y)$

Diffuse metric

 $\bigcirc \ d(x,y) \ge 0$

$$d(x, y) = d(y, x)$$

- $d(x,y) \le d(x,z) + d(z,y)$
- O not require d(x, x) = 0

What is MICo?

Similar to, but not the same as, partial metrics (Matthews) or weak partial pseudometrics (Heckmann). They require stronger conditions than our triangle and they can then extract a real metric and something like a "norm". Our examples violate their conditions.

What is MICo?

Similar to, but not the same as, partial metrics (Matthews) or weak partial pseudometrics (Heckmann). They require stronger conditions than our triangle and they can then extract a real metric and something like a "norm". Our examples violate their conditions.

MICo distance is a diffuse metric.

MICo loss

 Nearly all machine learning algorithms are optimization algorithms.

MICo loss

- Nearly all machine learning algorithms are optimization algorithms.
- One often introduces extra terms into the objective function that push the solution in a desired direction.

MICo loss

- Nearly all machine learning algorithms are optimization algorithms.
- One often introduces extra terms into the objective function that push the solution in a desired direction.
- We defined a loss term based on the fixed point of the MICo update operator.
MICo loss

- Nearly all machine learning algorithms are optimization algorithms.
- One often introduces extra terms into the objective function that push the solution in a desired direction.
- We defined a loss term based on the fixed point of the MICo update operator.
- We assume a value-based agent learning as estimate based on two function approximators ψ, ϕ with their own sets of parameters.

MICo loss

- Nearly all machine learning algorithms are optimization algorithms.
- One often introduces extra terms into the objective function that push the solution in a desired direction.
- We defined a loss term based on the fixed point of the MICo update operator.
- We assume a value-based agent learning as estimate based on two function approximators ψ, ϕ with their own sets of parameters.
- We then define a loss term based on the MICo distance.

MICo loss

- Nearly all machine learning algorithms are optimization algorithms.
- One often introduces extra terms into the objective function that push the solution in a desired direction.
- We defined a loss term based on the fixed point of the MICo update operator.
- We assume a value-based agent learning as estimate based on two function approximators ψ, ϕ with their own sets of parameters.
- We then define a loss term based on the MICo distance.
- For details read

https://psc-g.github.io/posts/research/rl/mico/

Experimental setup

Experiments

 Added the MICo loss term to a variety of existing agents: all those available in the Dopamine Library; 5 in all.

Experiments

- Added the MICo loss term to a variety of existing agents: all those available in the Dopamine Library; 5 in all.
- Hyperparamemters settings were taken from the Library.

Experiments

- Added the MICo loss term to a variety of existing agents: all those available in the Dopamine Library; 5 in all.
- Hyperparamemters settings were taken from the Library.
- The learning algorithms tried to learn good strategies for Atari games. We tried each agent with and without the MICo loss term on 60 different Atari games.

Results for Rainbow

Results for DQN

Conclusions

• Explored the use of state-similarity metrics in improving representation learning.

Conclusions

- Explored the use of state-similarity metrics in improving representation learning.
- Variations of the concept of metric seem to be important.

Conclusions

- Explored the use of state-similarity metrics in improving representation learning.
- Variations of the concept of metric seem to be important.
- Connections to Reproducing Kernel Hilbert Space theory is being explored.