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Discrete probabilistic transition systems

Just like a labelled transition system with probabilities
associated with the transitions.

(S, L,∀a ∈ L Ta : S × S −→ [0, 1])

The model is reactive: All probabilistic data is internal - no
probabilities associated with environment behaviour.
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Strong Probabilistic Bisimulation: Larsen-Skou

Let S = (S, L, Ta) be a PTS. An equivalence relation R on
S is a bisimulation if whenever sRs′, with s, s′ ∈ S, we
have that for all a ∈ A and every R-equivalence class, A,
Ta(s, A) = Ta(s′, A).

The notation Ta(s, A) means “the probability of starting
from s and jumping to a state in the set A.”

Two states are bisimilar if there is some bisimulation
relation R relating them.
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What are labelled Markov processes?

Labelled Markov processes are probabilistic versions of
labelled transition systems. Labelled transition systems
where the final state is governed by a probability
distribution - no other indeterminacy.

All probabilistic data is internal - no probabilities associated
with environment behaviour.

We observe the interactions - not the internal states.

In general, the state space of a labelled Markov
process may be a continuum.
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Stochastic Kernels

A stochastic kernel (Markov kernel) is a function

τ : S × Σ −→ [0, 1]

with (a) τ(s, ·) : Σ −→ [0, 1] a (sub)probability measure and
(b) τ(·, A) : X −→ [0, 1] a measurable function.

Though apparantly asymmetric, these are the stochastic
analogues of binary relations

and the uncountable generalization of a matrix.
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Formal Definition of LMPs

Fix a set of labels L. An LMP is a tuple (S,Σ,∀α ∈ L.τα) where
τα : S × Σ −→ [0, 1] is a stochastic kernel.
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Larsen-Skou Bisimulation

Let S = (S,Σ, τ) be a labelled Markov process. An
equivalence relation R on S is a bisimulation if whenever
sRs′, with s, s′ ∈ S, we have that for all a ∈ A and every
R-closed measurable set A ∈ Σ, τa(s, A) = τa(s′, A).
Two states are bisimilar if they are related by a bisimulation
relation.

Can be extended to bisimulation between two different
LMPs.

Prakash Panangaden Approximating Labelled Markov Processes



Introduction
Labelled Markov processes

Probabilistic bisimulation
Approximation

Better approximants
Approximating by averaging

Conclusion

Larsen-Skou Bisimulation

Let S = (S,Σ, τ) be a labelled Markov process. An
equivalence relation R on S is a bisimulation if whenever
sRs′, with s, s′ ∈ S, we have that for all a ∈ A and every
R-closed measurable set A ∈ Σ, τa(s, A) = τa(s′, A).
Two states are bisimilar if they are related by a bisimulation
relation.

Can be extended to bisimulation between two different
LMPs.

Prakash Panangaden Approximating Labelled Markov Processes



Introduction
Labelled Markov processes

Probabilistic bisimulation
Approximation

Better approximants
Approximating by averaging

Conclusion

Logical Characterization

L ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s, A) > q).

Two systems are bisimilar iff they obey the same formulas
of L. [DEP 1998 LICS, I and C 2002]
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The Approximation Construction: Take 1

Given a labelled Markov process S = (S, i ,Σ, τ), an
integer n and a rational number ǫ > 0, we define S(n, ǫ) to
be an n-step unfolding approximation of S.

Its state-space is divided into n + 1 levels which are
numbered 0, 1, . . . , n.

A state is a pair (X , l) where X ∈ Σ and l ∈ {0, 1, . . . , n}.

At each level, the sets that define states form a partition of
S. The initial state of S(n, ǫ) is at level n and transitions
only occur between a state of one level to a state of one
lower level.
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The states

States are defined by induction on their level. Level 0 has
one state (S, 0).

Given the sets from level l , we define states of level l + 1
as follows. Suppose that there are m states at level l , we
partition the interval [0, 1] into intervals of size ǫ/m. Let
(Bj)j∈I stand for this partition; i.e. for

{{0}, (0, ǫ/m], (ǫ/m, 2ǫ/m], . . . }.

Prakash Panangaden Approximating Labelled Markov Processes



Introduction
Labelled Markov processes

Probabilistic bisimulation
Approximation

Better approximants
Approximating by averaging

Conclusion

The states

States are defined by induction on their level. Level 0 has
one state (S, 0).

Given the sets from level l , we define states of level l + 1
as follows. Suppose that there are m states at level l , we
partition the interval [0, 1] into intervals of size ǫ/m. Let
(Bj)j∈I stand for this partition; i.e. for

{{0}, (0, ǫ/m], (ǫ/m, 2ǫ/m], . . . }.

Prakash Panangaden Approximating Labelled Markov Processes



Introduction
Labelled Markov processes

Probabilistic bisimulation
Approximation

Better approximants
Approximating by averaging

Conclusion

The states 2

For each (C, l) at level l and each Bj and each label we form
the sets

C(a)
j := τa(·, C)−1(Bj).

Now we form the partition generated by the C(a)
j ; these are the

sets at level l + 1.
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Transitions

Transitions can happen from a state of level l + 1 to a state of
level l , and the transition probability function is given by

ρa((X , k), (B, l)) =

{

inf
t∈X

τa(t , B)
)

if k = l + 1,

0 otherwise.

The initial state p0 of S(n, ǫ) is the unique state (X , n) such that
X contains i , the initial state of S.
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What is happening?

Bisimulation is the greatest fixed point of a suitable
functional on relations.

The fixed point is attained at ω.

The approximations are really approximating the
bisimulation relation by giving the equivalence classes.
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Approximants are below

Every labelled Markov process S simulates all its
approximations of the form S(n, ǫ). More precisely, every state
(X , l) of S(n, ǫ) (l ≤ n) is simulated in S by every s ∈ X .
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Approximants eventually get there

If a state s ∈ S satisfies a formula φ ∈ L∨, then there is
some approximation S(n, ǫ) such that (Xs, n) |= φ.

We also have a metric convergence theorem and a
domain-theoretic convergence theorem.
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How can we do better?

We would like to “orient” the approximation process so that
they are tailored to some formulas of interest.

We do not get the original process in the limit, but a
bisimulation equivalent of it. Sometimes this is
“spectacularly” not what we want.

We can fix both the problems above but then we end up
with the situation that the approximants are not LMPs. [DD,
LICS03]

We can fix this too with a new approach to approximation
based on conditional expectations. [DDP, CONCUR03]
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Unwinding a Loop

.�� .
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��. .
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In the limit we get the infinite chain. This is indeed bisimilar to
the loop but this seems a dumb way to approximate.
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Allow Cycles

The fix is simple: allow cycles.

The states are organized into levels as before; but the
depth defers to how much we observe the system rather
than to how deep its transition graph is.

Transitions occur between a state at a given level and
states at the same level or states at one level below.
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Transition Probabilities

Let (X , l + 1) and (Y , l + 1) be states of level l + 1 and (Z , l) a
state of level l .
Then

ρa((X , l + 1), (Y , l + 1)) = inf
x∈X

τa(x , Y )

ρa((X , l + 1), (Z , l)) = inf
x∈X

τa(x , Z )

−

k
∑

i=1

ρa((X , l + 1), (Zi , l + 1))

where ∪Zi = Z and (Zi , l + 1) is a state for every i .
Unspecified transitions are given the value 0.
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The Idea

The transition probabilities between states at the same
level are made as large as possible while still staying below
what the original system would say.

This is not enough to guarantee accuracy since the
partition is constructed to be matched with the transitions
to the lower level. We add in the transition probabilities to
the level l states to fix this.

If X is a state at level l (i.e. a member of the level l partition
of S) then every x ∈ X has transition probabilities within
ǫ/m of each other to any set of the partition at level l + 1.

This allows one to prove all the approximation lemmas.
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Approximations converge

The previous results about the approximations being
simulated by the process are still true.

The convergence theorems are still true.

The new result:
For every finite-state process there exists a bisimilar
approximation.
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Accuracy

The theorem about approximants eventually satisfying a
formula is painful to prove. Why?

By taking the infima we lose accuracy.

We have additivity because we define the state to state
transitions by infima and extend to sets of states by
additivity. If we try to define transition probabilities to all
sets states by infima directly, we are more accurate

but we lose additivity.
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Guiding the Approximation

To guide the approximation we can quotient by the
equivalence induced by a subset of formulas.

This should converge because of the logical
characterization of bisimulation.

We will have to deal with loss of additivity here too.

One can live with capacities instead of measures.

Details in LICS03 paper by Danos and Desharnais.
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Conclusion

Averages

Approximation has been based on the idea of
“approximating from below” as we are inspired by domain
theory and logic.

In probability it is natural to work with averages. We should
approximate by averaging over “cells.”

How does this interact with the logic?

We need a given measure on the system.
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Conditional Expectations

Let X : S −→ R be a random variable on a probability space
(S,Σ, p). The expectation value of X is Ep(X ) =

∫

Xdp; a
number.
What if we know that the outcome is in a set Q ∈ Σ? Then
we can revise the expectation to

Ep(X |Q) =

∫

Q
Xdp.

What if we know for every set B ∈ Λ, where Λ is a
σ-sub-algebra of Σ whether the outcome is in B or not?
We can recompute the expectation value for every set
B ∈ Λ. But how do we present all these revised expectation
values?
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Conditional Expectations 2

We can define a new random variable
Ep(X |Λ) : S −→ R called the conditional expectation of X
given Λ which is Λ-measurable and satisfies

∀B ∈ Λ

∫

B
XdP =

∫

B
EP(X |Λ)dP.

How do we know this exists? Yet another fundamental
result of Kolmogorov. The functional

Ep(·|Λ) : L1(S,Σ, p) −→ L1(S,Λ, p)

is linear, continuous and unique up to a set of p-measure 0.

Prakash Panangaden Approximating Labelled Markov Processes



Introduction
Labelled Markov processes

Probabilistic bisimulation
Approximation

Better approximants
Approximating by averaging

Conclusion

Conditional Expectations 2

We can define a new random variable
Ep(X |Λ) : S −→ R called the conditional expectation of X
given Λ which is Λ-measurable and satisfies

∀B ∈ Λ

∫

B
XdP =

∫

B
EP(X |Λ)dP.

How do we know this exists? Yet another fundamental
result of Kolmogorov. The functional

Ep(·|Λ) : L1(S,Σ, p) −→ L1(S,Λ, p)

is linear, continuous and unique up to a set of p-measure 0.

Prakash Panangaden Approximating Labelled Markov Processes



Introduction
Labelled Markov processes

Probabilistic bisimulation
Approximation

Better approximants
Approximating by averaging

Conclusion

Independence

Given a probability space (S,Σ, p) a random variable X is
said to be independent of a sub-σ-algebra Λ if for every
event A in the σ-algebra σ(X ) generated by X and B ∈ Λ
we have p(A ∩ B) = p(A)p(B).

If X is independent of Λ then Ep(X |Λ) = Ep(X ); i.e. a
constant. If X is completely dependent on Λ (i.e. it is
Λ-measurable) then Ep(X |Λ) = X .
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Equivalences and Expectations

Suppose that we have an equivalence relation R on
(S,Σ, p) and that Λ is generated by the equivalence
classes. Let A be an R-equivalence class and s ∈ A.

Then Y = Ep(X |Λ) has to be constant on R-equivalence
classes or else Y would not be Λ-measurable.

Y (s)p(A) =

∫

A
Ydp =

∫

A
Xdp = Ep1AX .

Thus we get

Y (s) =
1

p(A)
· Ep1AX
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Averaging

In other words: the values of Y are obtained by averaging over
the R-equivalence classes.
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Uniqueness Lost

Computatonally we do not like phrases like “defined upto a
set of measure 0” or “almost surely” or “a version of”...

(S,Σ, p), Λ ⊆ Σ a sub-σ-algebra and define an equivalence
relation s ∼ t if and only if ∀Q ∈ Λ.s ∈ Q ⇔ t ∈ Q.

We say p is granular over Λ if and only if for all
s ∈ S.p([s]) 6= 0.
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Granularity Examples

Consider the probability triple ([0, 1)2,B2, λ2). Take Λ to be
B × [0, 1]. Then [s] = {s} × [0, 1] and λ2([s]) = 0. The
Λ-measurable sets are too “thin” to be granular.

For the same space take Λ to be generated by the squares
[k/n, (k + 1)/n) × [h/n, (h + 1)/n) for k , h ∈ {0, . . . , n − 1}.
Then λ2([s]) = 1/n2; thus here λ2 is granular over Λ.
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Uniqueness Regained

Suppose that (S,Σ, p) is a probability triple and Λ ⊆ Σ with p
granular over Λ. It is easy to prove that if X , Y : S −→ R are both
Λ-measurable then

X = Ya.s. ⇒ X = Y .

Thus we get rid of “versions.”
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Approximation

Given an LMP (S,Σ, τ) and a finite set F of formulas of L∗

we consider the σ-algebra σ(F) generated by the sets
{[[φ]]|φ ∈ F}.

p is granular over σ(F). Taking Λ to be σ(F) we can
quotient to get SF a finite-state approximant of size at most
2|F|.
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Properties of the approximation

If F is a finite subformula-closed set of formulas of L∗ then
SF and S agree on all formulas of F .

If Fi is an increasing family of subformula-closed sets of
formulas of L∗ converging to all of L∗ then Si converges in
our metrics to S.
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Recent work

In QEST 2005 Bouchard-Cote et al. showed how to
“estimate” the approximants by sampling. Special
techniques to avoid small blocks in the partition.

Norm Ferns et al. have developed techniques based on
infinite-dimensional LPs to approximate MDPs (with
rewards).
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Conclusions

We have 3 approaches to approximation

The first is concrete but cannot be tailored to specific
formulas

The second can be tailored to specific formulas of interest
but takes one into the realm of pre-LMPs

The third - based on averaging - can also be tailored and
keeps us in the realm of LMPs.
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