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Basic goals in RL

We are often dealing with large or infinite transition systems
whose behaviour is probabilistic.

The system responds to stimuli (actions) and moves to a new
state probabilistically and ourputs a random reward.
We seek optimal policies for extracting the largest possible reward
in expectation.
A plethora of algorithms and techniques but the cost depends on
the size of the state space.
Can we shrink it?
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Behavioural equivalence is fundamental

When do two states have exactly the same behaviour?

What can one observe of the behaviour?
Immediate rewards.
What should be guaranteed?
An equivalence relation on states so that if the equivalence
classes are ’lumped’ together we cannot tell that anything has
changed.
Ideally we assume exact equality of real numbers.
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A bit of history

Cantor and the back-and-forth argument

Lumpability in queueing theory 1960’s
Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park
Probabilistic bisimulation in probabilistic automata : Larsen and
Skou 1989
Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...
Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999
Fixed-point version: van Breugel and Worrell 2001
Bisimulation for MDP’s : Givan and Dean 2003
Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004
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But...

In the context of probability is exact equivalence reasonable?

We say “no”. A small change in the probability distributions may
result in bisimilar processes no longer being bisimilar though they
may be very “close” in behaviour.
Instead one should have a (pseudo)metric for probabilistic
processes.
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What are Markov decision processes?

Markov decisionprocesses are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.

There is a reward associated with each transition.
We observe the interactions and the rewards - not the internal
states.
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Markov decision processes: formal definition

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

where
S : the state space, we will take it to be a finite set.
A : the actions, a finite set
Pa : the transition function; D(S) denotes distributions over S
R : the reward, could readily make it stochastic.
Will write Pa(s,C) for Pa(s)(C).

Panangaden (1 University of Illinois Urbana-Champaign 2 McGill University; 3 MILA 4 DeepMind; 5 GoogleBrain)Distributional analysis ... MPI, 5th May 2021 8 / 31



Bisimulation

Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a)
and all equivalence classes C of R:

(i) R(a, s) = R(a, t)
(ii) Pa(s,C) = Pa(t,C)

s, t are bisimilar if there is a bisimulation relation R with sRt them.
Basic pattern: immediate rewards match (initiation), stay related
after the transition (induction).
Bisimulation can be defined as the greatest fixed point of a
relation transformer.
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A metric-based approximate viewpoint

Move from equality between processes to distances between
processes (Jou and Smolka 1990).

Quantitative measurement of the distinction between processes.
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The basic setting: metric spaces

A pseudometric on a set X is a function d : X×X −→ R≥0 such that

1 ∀x ∈ X, d(x, x) = 0
2 ∀x, y ∈ X, d(x, y) = d(y, x)
3 ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y)
4 If d(x, y) = 0 implies x = y we say that it is a metric

The setup
A set M equipped with a metric d obeying the above axioms (unlike,
for example, KL-divergence which is not a metric). A metric space is
complete if every Cauchy sequence has a limit point to which it
converges.
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Banach fixed-point theorem

The grandmother of convergence arguments
If (M, d) is a complete metric space and f : M −→ M is a contractive
function (i.e. there is a c ∈ (0, 1) such that for every x, y ∈ M
d(f (x), f (y)) ≤ c · d(x, y)) there is a unique x0 ∈ M such that f (x0) = x0.

proof idea
Start anywhere and keep iterating f . The sequence
x, f (x), f (f (x)), f (f (f (x))), . . . gets closer and closer because of the
contractive property. Thus it has a limit (because of completeness)
which is the desired fixed point.
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Contractive functions and iteration

Contractive functions are automatically continuous but continuous
functions may or may not be contractive.

The Banach fixed-point theorem is used to justify the existence of
solutions to Bellman equations.
One has usually to do some work to show that the function of
interest is contractive.
The proof essentially says, “iterative algorithms converge.”
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Bellman equations

Given an MDP (S,A,Pa : S −→ D(S),R : S×A −→ R≥0)

we define a policy π : S −→ D(A), a strategy for choosing an
action in a state.
The value function Vπ : S −→ R associated with the policy π is
given by:

Vπ(s) =
∑
a∈A

π(s)(a)[R(s, a) + γ
∑
s′∈S

Pa(s, s′)Vπ(s′)]

γ ∈ (0, 1) is a contraction factor.
There is a version for the optimal value function V∗

V∗(s) = max
a∈A

[R(s, a) + γ
∑
s′∈S

Pa(s, s′)V∗(s′)]

we can extract a Bellman operator as
Tπ(V) =

∑
a∈A π(s)(a)[r(s, a) + γ

∑
s′∈S Pa(s, s′)V(s′)]

Tπ(Vπ) = Vπ.
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Policy evaluation by iteration

Given a policy π we have the associated Bellman operator Tπ on
the space of value functions.

If Vπ is the value function we write Vn for its nth iterate:
Vn+1 = Tπ(Vn).

The Banach fixed-point theorem says that Vn converges to Vπ.
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Policy iteration

Start with some policy π0 and compute Vπ0

Inductive step: evaluate Vπn , then set πn+1 to be equal to the
greedy policy based on Vπn and repeat.
This converges to π∗ the optimal policy, but not by the Banach
fixed point theorem.
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Convergence of monotone functions

A lattice is a partially ordered set in which every subset (even the
empty set) has a least upper bound (sup) and a greatest lower
bound (inf).

A monotone function f from a complete lattice L to itself is a
function such that for every x, y ∈ L if x ≤ y then f (x) ≤ f (y).
A monotone function from a complete lattice to itself has a least
fixed point and a greatest fixed point.
Actually the collection of fixed points itself is a complete lattice but
that does not concern us here.
The convergence to the optimal policy follows from the
montonicity of Tπ.
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RL algorithms

The Bellman operator for an MDP depends on details of the
model.

In the RL setting MDPs are usually not known so we cannot just
apply Bellman operators.
We have to update based on sampling.
For example in TD(0):
Vn+1(s) = (1− α)Vn(s) + α(r + γVn(s′))

where the action a is sampled according to the policy and the
reward r and next state s′ are sampled from the MDP.
Proof of convergence now involves stochastic approximation
theory.
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Value distributions

The functions obtained by sampling are random variables.

We should study the distributions not just the expectation values.
Distributional approach to RL: Marc Bellemare, Will Dabney and
Rémi Munos.
The sequence of distributions forms a Markov chain over the
space of value functions.
Does this converge? To what limit?
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Stochastic Approximation Algorithms as Markov
Chains

Algorithms like TD(0) are updating random variables.

A random variable induces a distribution so we are updating
distributions.
We view the algorithm as a Markov chain with the space of
distributions as the state space.
How do we reason about convergence in such a space?
We need a metric on the space of probability distributions.
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The basic setup

We will assume that we have an underlying metric space—the
state space—and we are looking at probability distributions on top
of this space.

We will then look at ways to define a metric on the space of
probability distributions.
It should be, somehow, related to the metric of the underlying
space.
I will elide all measure theory issues in this discussion, but they
are there, and one cannot really work on this topic without
knowing basic measure theory on metric spaces.
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The total variation metric

Let (X, d) be a metric space and let P,Q be probability
distributions defined on (the Borel sets of) X.

If E is any (measurable) subset of X we can compare P(E) and
Q(E).
We define TV(P,Q) = supE |P(E)− Q(E)|.
Why I love the TV metric: easy to define, relatively easy to
compute, provides all kinds of useful bounds.
Why I hate the TV metric: completely insensitive to the underlying
metric.
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metric.
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The Kantorovitch metric

What is the observable aspect of a probability distribution?

Expectation values.
κ(P,Q) = supf∈?? |

∫
f dP−

∫
f dQ|

But what kind of functions should we allow? Not just continuous
ones.
Nonexpansive or Lipschitz-1 functions: d(f (x), f (y)) ≤ d(x, y).

Such functions are always continuous but, clearly, continuous
functions are not necessarily Lipschitz-1.
κ(P,Q) = supf∈Lip1

|
∫

f dP−
∫

f dQ|
It is easy to verify all the metric conditions.
But this definition is only half the story.
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Couplings

How to relate two distributions? Think of a distribution as a pile of
sand.

We need to move some sand around to make the pile P look like
Q.
There are many different ways to do it. Each way is a “transport
plan.”
A coupling of two distributions P,Q defined on X is a joint
distribution γ on X × X such that the marginals of γ are P and Q.
There is always the independent coupling: γ(A× B) = P(A)Q(B).

But there are many others: the convex combinations of couplings
are couplings.
We write C(P,Q) for the set of couplings of P and Q.
We can also define a coupling to be a pair of random variables
R, S with distributions P,Q respectively.
We can also define couplings easily between two different
underlying spaces X and Y.
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The W metrics

A coupling γ defines a transport plan, how much does it cost?

If we measure the cost by a metric d we get
cost =

∫
X×X d(x, y)dγ

We define a metric: W1(P,Q) = infγ∈C(P,Q)

∫
X×X d(x, y)dγ.

Kantorovich-Rubinstein duality: κ = W1.

Wp(P,Q) = infγ∈C(P,Q)[
∫

X×X[d(x, y)]pdγ]
1
p .

Crucial point: if I find any coupling it gives an upper bound on W1.
We can define a map from a metric space (M, d) to the space
(P(M),W1) by x 7→ δx. This map is an isometry.
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Bisimulation via couplings

Recall MDP’s

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

An equivalence relation R on S is a bisimulation if sRt implies that
∀a ∈ A there is a coupling γ of Pa(s) and Pa(t) such that the
support of γ is contained in R.
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Markov chains on the space of functions

In RL algorithms the update rule usually depends only on the
current estimate and the random samples.

We take the MDP state space to be a finite set S.
The space of value functions is a finite-dimensional vector space
R|S| = Rd.
The update rule U takes an estimate f for the value function and
produces a new estimate f ′. This is not a function f 7→ f ′.
It is a probabilistic mapping called a Markov kernel:
K : Rd × B −→ [0, 1], where B are the (Borel) subsets of Rd.
K(f ,B) = Prob{f ′ ∈ B}, where B is a Borel set.
The kernel will depend on the update rule (and step size).
We can apply a kernel to a distribution over value functions:
K(P,B) =

∫
Rd K(~x,B)d~x.
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Stochastic operators

We want a general formalism to describe many update rules.

We have a source of randomness: (Ω,F ,Pr).
A stochastic operator T : Rd × Ω −→ Rd.
A generic form for an update rule:
fn+1 = (1− α)fn + αT (fn, ω).
Here α is the step size and T will depend on the algorithm.
We say T is an empirical Bellman operator for a policy π if
Eω∼Pr[T (f , ω)] = T π(f ).

For TD(0) the stochastic operator is:
T (V, (as, rs, s′s)s∈S = rsγV(s′s)

Here (as, rs, s′s) is sampled at every state s.
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Updates in TD(0)

We will show that TD(0) defines a contractive Markov kernel:
W1(K(P1),K(P2)) ≤ (1− α+ αγ)W1(P1,P2).

If our coupling is given in terms of random variables X,Y
W1(P,Q) = inf(X,Y)∈C(P,Q) E[‖X − Y‖∞]

Let us start with any two distributions P,Q and we assume that
(X0,Y0) is the optimal coupling: W1(P,Q) = E[‖X0 − Y0‖].
Now we define the coupling of the next estimates by forcing them
to sample the same transitions at each state: a ∼ π(·|s), rs ∼ ...
X1(s) = (1− α)X0(s) + α(rs + γX0(s′s))
Y1(s) = (1− α)Y0(s) + α(rs + γY0(s′s))

One can verify that this is a valid coupling of the updated
distributions; nobody claims that this is the optimal coupling.
However, simple inequality arguments shows that the upper bound
on W1 obtained with this coupling is enough to show contractivity.
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Reaping the rewards

The sequence of updates for TD(0) converges in W1 to a unique
stationary distribution.

The key point is finding the proper coupling.
This simple idea works with little effort for MC, TD(λ), SARSA,
Q-learning.
It does not work for optimistic policy iteration where deeper
techniques are needed.
In the paper we analyze the stationary distributions attained and
also discuss OPI with decreasing step size where we use
monotonicity arguments.
Deeper analysis of OPI is underway with Philip, Marc and Rosie
Zhao.
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Thanks!

Paper and supplement available from AISTATS 2020 website.
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