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Some informal 
definitions

A stochastic process is the most general kind 
of probabilistic dynamical system.

A Markov process is a stochastic process 
where the dynamics is independent of the 
past history.

A Markov chain is a discrete space and time 
Markov process.

A continuous time Markov chain is a Markov 
chain with exponentially distributed delays.
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Conditional Probability

If probability theory is the “logic of science” 
then conditional probability is the 
counterpart of implication: the “engine” of 
deduction.

Intuitively, p(A|B) means the probability of A 
given that B has occurred.
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A simple puzzle

Suppose that you have three cards. One is green on

both sides, one is red on both sides and one is red on

one side and green on the other. There are no other

distinguishing marks.

A card is chosen at random and a side is chosen at
random. This is shown to you and it turns out to be
green.

What is the probability that the other side is also green?
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Imagine that there is a “random” process governed
by some probability distribution P . Let the space
of outcomes be {. . . ,ω, . . .}.

P (A) describes what the observer thinks is the
probability that the outcome belongs to the set A.

If the observer learns that the outcome is in B,
he revises his estimate of the probability to

P (A|B) =
P (A ∩B)

P (B)
.

If the fact that the outcome is in B conveys no
information about A, we say that the events A
and B are independent and we have

P (A|B) = P (A).
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Markov chains
Let S be a finite or countable set (the states).

An S-valued random variable X, is a function from some
probability space (Ξ, P ) to S.

We write P ({X = s}) for P (X−1({s}).

Let X0, X1, . . . , Xn, . . . be a sequence of S-valued
random variables.

This is a Markov chain if:

P (Xn+1 = s|X0 = s0, . . . , Xn = sn) = P (Xn+1 = s|Xn = sn)

for every n and every sequence s0, . . . , sn.
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We think of P (Xn+1 = sj |Xn = si) as
transition probabilities for the system to
move from state si to sj .
We write this as a matrix Tij .

Sometimes we allow the transition probabilities to depend on n. We call these
time-dependent Markov chains. It it still independent of which states the sys-
tems has been through.

Markov chains are just the sort of transition systems
to which computer scientists are accustomed.

7Thursday, June 10, 2010



Example
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A three-state system. At every step, the system jumps to one of the
other states with equal probability.

What is the probability that after n steps the system has returned to
its starting point?
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Paths and Classes

There is a path from state s to state t, s �→ t, if
there are states s = s0, s1, . . . , sn = t
with T (si, si+1) > 0 for all i; equivalently, when Tn[s, t] > 0.

We say s and t are connected, s↔ t, if s �→ t and t �→ t.

The relation ↔ is an equivalence relation. The equivalence
classes are called communication classes.

A class C is called closed if s ∈ C and s �→ t
implies that t ∈ C. If {s} is closed, s is an absorbing state.

A Markov chain consisting of a single class is said to be
irreducible.
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Recurrence and Transience
Recall Xn is a random variable that tells you the state
of the Markov chain at step n.

If Pr(Xn+m = s for infinitely many n|Xm = s) = 1
we say that s is recurrent.

Note, this is stronger than saying:
Pr(Xn+m = s|Xm = s) > 0 for infinitely many n.

If Pr(Xn+m = s for infinitely many n|Xm = s) = 0
we say that s is transient.

Note that these two concepts are not logical opposites.
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However:

Theorem Every state is either recurrent or transient.

Theorem All states in a class are recurrent or
all states in the class are transient.

Theorem If all states are recurrent the class is closed.

Theorem Every finite closed class is recurrent.
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Stationary distributions

If we have a Markov chain with state space S
and transition matrix T , we say µ is a
stationary or invariant distribution if Tµ = µ.

Theorem Suppose that for some s and all t,
limn→∞ Tn[s, t] = π(t)

then π is a stationary distribution.

Proof Clearly ∀n, s
�

t∈S Tn
[s, t] = 1.

Hence,
�

t π(t) =
�

t limn→∞ Tn
[s, t] = limn→∞ 1 = 1.

π(t) = lim
n→∞

Tn[s, t] = lim
n→∞

(T · Tn)[s, t] = (T · lim
n→∞

Tn)[s, t] =

T · π(t).
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Here the invariant distribution is uniform as expected.

lim
n→∞

1
3
[1− (−1

2
)n] =

1
3
.
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Aperiodic chains
If d is the largest number such that it divides every n with
Tn[s, s] > 0 we say that s has period d. Clearly in an
irreducible chain every state has the same period.

If the period is 1 we call the chain aperiodic.

1

1

1

This chain has period 3.
It has no stationary distribution.
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Theorem In an irreducible aperiodic Markov chain there are
three possibilities:
(a) All states are transient: ∀s, t lim

n→∞
Tn[s, t] = 0.

(b) The chain is recurrent but there is no
stationary distribution: ∀s, t lim

n→∞
Tn[s, t] = 0.

The convergence to zero is slow.

(c) There is a stationary distribution:∀s, t; Tn[s, t] = π(t) > 0.

In a finite chain (a) and (b) are impossible so:

A finite, irreducible, aperiodic Markov chain
has a stationary distribution.
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Continuous-time processes

A continuous-time random process is an I-indexed family
of random variables Xt : Ω→ S where I is an interval in R.

We want to compute things like P ({Xt1 = s1, Xt2 = s2}).

Perhaps we want to know P ({Xt = s for some t}).

We need to be careful, we cannot just use additivity
because we are now potentially dealing with uncountable sets.

Fix a finite or countable state space S as before.

Here (Ω, P ) is some probability space.
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P (Xt1 = s1, Xt2 = s2, . . . , Xtn = sn)

P (Xt = s for some t) =

1− lim
n→∞

�

s1,...,sn �=s

P (Xq1 = s1, . . . , Xqn = sn)

where qi is an enumeration of the rationals.

What exactly does “right continuous” mean?

We will restrict to right-continuous processes.
In this case, the probability of any event
is determined by the finite-dimensional distributions:
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We assume the Markov condition:
P (Xt = s|Xt1 = s1, . . . , Xtn = sn) = P (Xt = s|Xtn = sn),
where t1 < t2 < . . . < tn < t.

For any t, t� and s, s� we have “transition probabilities”:
Pt,t�(s, s�) def= P (Xt� = s�|Xt = s).

We assume temporal homogeneity: Pt,t�(s, s�) = P0,t�−t(s, s�),

therefore, we can just write Pt.

Finally, we assume that: Pt → I as t ↓ 0.

It follows that Pt1+t2 = Pt1Pt2 .
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The last property holds if and only if the Pt(s, s�) are
continuous functions of t for fixed s, s�.

The main point: There is a matrix Q given by

lim
∆t↓0

1
∆t

(P∆t − I) = Q.

Suppose that Xt = s, define T by T = inf{t� ≥ 0|Xt+t� �= s}.

T is how long the process waits in state s.

Theorem
T is exponentially distributed with parameter −Q[s, s].
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Xt(ω)

t

s1 s2 s3 s4

j1 j2 j3 j4

A typical history: there are infinitely many jumps but only finitely many in a
finite interval.

Another possibility is finitely many jumps. A third is infinitely many jumps in
a finite interval; this is ruled out by further technical conditions (cadlag).
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Q determines everything

The transition matrices Pt are given by exp(Qt).

The matrix exponential is given by the usual power series:

exp(Q) =
�

n

Qn

n!

which has an infinite radius of convergence.

Q gives transition rates: class structure, recurrence and
transience and invariant distributions can be defined in
a way analogous to the discrete case.
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Beware the matrix exponential
exp(Q1 + Q2) = exp(Q1) · exp(Q2)

but only if [Q1, Q2]
def= Q1Q2 −Q2Q1 = 0.

If [Q1, [Q1, Q2]] = [Q2, [Q1, Q2]] = 0 then
exp(Q1 + Q2) = exp(Q1) exp(Q2) exp(− 1

2 [Q1, Q2])
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BREAK!!
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