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We present a new behavioural distance over the state space of a Markov
decision process, and demonstrate the use of this distance as an effective
means of shaping the learnt representations of deep reinforcement learning
agents. While existing notions of state similarity are typically difficult to
learn at scale due to high computational cost and lack of sample-based
algorithms, our newly-proposed distance addresses both of these issues. In
addition to providing detailed theoretical analysis, we provide empirical
evidence that learning this distance alongside the value function yields
structured and informative representations, including strong results on the
Arcade Learning Environment benchmark.
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Figure 1: Median human normalized scores across 60 Atari 2600 games, averaged
over 5 independent runs.

∗Equal contribution. Correspondence to Pablo Samuel Castro: psc@google.com.

1

ar
X

iv
:2

10
6.

08
22

9v
1 

 [
cs

.L
G

] 
 3

 J
un

 2
02

1



1 Introduction

The success of reinforcement learning (RL) algorithms in large-scale, complex
tasks depends on forming useful representations of the environment with which
the algorithms interact. Feature selection and feature learning has long been
an important subdomain of RL, and with the advent of deep reinforcement
learning there has been much recent interest in understanding and improving
the representations learnt by RL agents.

Much of the work in representation learning has taken place from the perspec-
tive of auxiliary tasks [Jaderberg et al., 2017, Bellemare et al., 2017, Fedus et al.,
2019]; in addition to the primary reinforcement learning task, the agent may
attempt to predict and control additional aspects of the environment. Auxiliary
tasks shape the agent’s representation of the environment implicitly, typically via
gradient descent on the additional learning objectives. As such, while auxiliary
tasks continue to play an important role in improving the performance of deep RL
algorithms, our understanding of the effects of auxiliary tasks on representations
in RL is still in its infancy.

In contrast to the implicit representation shaping of auxiliary tasks, a separate
line of work on behavioural metrics, such as bisimulation metrics [Desharnais et al.,
1999, 2004, Ferns et al., 2004, 2006], aims to capture structure in the environment
by learning a metric measuring behavioral similarity between states. Recent
works have successfully used behavioural metrics to shape the representations of
deep RL agents [Gelada et al., 2019, Zhang et al., 2021, Agarwal et al., 2021].
However, in practice behavioural metrics are difficult to estimate from both
statistical and computational perspectives, and these works either rely on specific
assumptions about transition dynamics to make the estimation tractable, and as
such can only be applied to limited classes of environments, or are applied to
more general classes of environments not covered by theoretical guarantees.

The principal objective of this work is to develop new measures of behavioral
similarity that avoid the statistical and computational difficulties described
above, and simultaneously capture richer information about the environment.
We introduce the MICo (Matching under Independent Couplings) distance, and
develop the theory around its computation and estimation, making comparisons
with existing metrics on the basis of computational and statistical efficiency.
We demonstrate the usefulness of the representations that MICo yields, both
through empirical evaluations in small problems (where we can compute them
exactly) as well as in the Arcade Learning Environment [Bellemare et al., 2013,
Machado et al., 2018], in which the performance of a wide variety of existing
value-based deep RL agents is improved by directly shaping representations via
the MICo distance (see Figure 7).

2 Background

Before describing the details of our contributions, we give a brief overview of the
required background in reinforcement learning and bisimulation.
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2.1 Reinforcement learning

Denoting by P(S) the set of probability distributions on a set S, we define a
Markov decision process (X ,A, γ, P, r) as:
• A finite state space X ;

• A finite action space A;

• A transition kernel P : X ×A →P(X );

• A reward function r : X ×A → R;

• A discount factor γ ∈ [0, 1).
For notational convenience we introduce the notation P ax ∈P(X ) for the next-
state distribution given state-action pair (x, a), and rax for the corresponding
immediate reward.

Policies are mappings from states to distributions over actions: π ∈P(A)X

and induce a value function V π : X → R defined via the recurrence:

V π(x) := Ea∼π(x)

[
rax + γEx′∼Pax [V π(x′)]

]
.

It can be shown that this recurrence uniquely defines V π through a contraction
mapping argument [Bertsekas and Tsitsiklis, 1996].

The control problem is concerned with finding the optimal policy

π∗ = arg max
π∈P(A)X

V π .

It can be shown that while the optimisation problem above appears to have
multiple objectives (one for each coordinate of V π, there is in fact a policy
π∗ ∈P(A)X that simultaneously maximises all coordinates of V π, and that this
policy can be taken to be deterministic; that is, for each x ∈ X , π(·|x) ∈P(A)
attributes probability 1 to a single action. In reinforcement learning in particular,
we are often interested in finding, or approximating, π∗ from direct interaction
with the MDP in question via sample trajectories, without knowledge of P or r
(and sometimes not even X ).

2.2 Metrics

A metric d on a set X is a function d : X ×X → [0,∞) respecting the following
axioms for any x, y, z ∈ X:
1. Identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y;

2. Symmetry: d(x, y) = d(y, x);

3. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).
A pseudometric is similar, but the ”identity of indiscernibles” axiom is

weakened:
1. x = y =⇒ d(x, y) = 0;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y).
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Note that the weakened first condition does allow one to have d(x, y) = 0 when
x 6= y.

A (pseudo)metric space (X, d) is defined as a setX together with a (pseudo)metric
d defined on X.

2.3 State similarity and bisimulation metrics

Bisimulation is a fundamental notion of behavioural equivalence introduced by
Park and Milner [Milner, 1989] in the early 1980s in the context of nondetermin-
istic transition systems. The probabilistic analogue was introduced by Larsen
and Skou [1991]. The notion of an equivalence relation is not suitable to capture
the extent to which quantitative systems may resemble each other in behaviour.
To provide a quantitative notion, bisimulation metrics were introduced by De-
sharnais et al. [1999, 2004] in the context of probabilistic transition systems
without rewards. In reinforcement learning the reward is an important ingredient,
accordingly the bisimulation metric for states of MDPs was introduced by Ferns
et al. [2004].

Various notions of similarity between states in MDPs have been considered
in the RL literature, with applications in policy transfer, state aggregation,
and representation learning. The bisimulation metric [Ferns et al., 2004] is of
particular relevance for this paper, and defines state similarity in an MDP by
declaring two states x, y ∈ X to be close if their immediate rewards are similar,
and the transition dynamics at each state leads to next states which are also
judged to be similar.

Central to the definition of the bisimulation metric is the operator Tk :
M(X ) → M(X ), defined over M(X ), the space of pseudometrics on X . We
now turn to the definition of the operator itself, given by

Tk(d)(x, y) = max
a∈A

[|rax − ray ] + γWd(P
a
x , P

a
y )] ,

for each d ∈ M(X ), and each x, y ∈ X . It can be verified that the function
TK(d) : X × X → R satisfies the properties of a pseudometric, so under this
definition TK does indeed map M(X ) into itself.

The other central mathematical concept underpinning the operator TK is the
Kantorovich distance Wd

1 using base metric d. Wd is formally a pseudometric
over the set of probability distributions P(X ), defined as the solution to an
optimisation problem. The problem specifically is formulated as finding an
optimal coupling between the two input probability distributions that minimises
a notion of transport cost associated with d. Mathematically, for two probability
distributions µ, µ′ ∈P(X ), we have

Wd(µ, µ
′) = min

(Z,Z′)
Z∼µ,Z′∼ν′

E[d(Z,Z ′)] .

1Commonly known as the Wasserstein distance.
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Note that the pair of random variables (Z,Z ′) attaining the minimum in the
above expression will in general not be independent. That the minimum is
actually attained in the above example in the case of a finite set X can be
seen by expressing the optimisation problem as a linear program. Minima are
obtained in much more general settings too; see Villani [2008].

The operator TK can be analysed in a similar way to standard operators in
dynamic programming for reinforcement learning. It can be shown that it is a
contraction mapping with respect to the L∞ metric overM(X ), and thatM(X )
is a complete metric space with respect to the same metric [Ferns et al., 2011].
Thus, by Banach’s fixed point theorem, TK has a unique fixed point in M(X ),
and repeated application of TK to any initial pseudometric will converge to this
fixed point.

Finally, Ferns et al. [2004] show that this metric bounds differences in the
optimal value function, hence its importance in RL:

|V ∗(x)− V ∗(y)| ≤ d∼(x, y) ∀x, y ∈ X . (1)

Representation learning in RL. In large-scale environments, it is infeasi-
ble to express value functions directly as vectors in RX×A. Instead, RL agents
must approximate value functions in a more concise manner, by forming a
representation of the environment, that is, a feature embedding φ : X → RM ,
and predicting state-action values linearly from these features. Representation
learning is the problem of finding a useful representation φ. Increasingly, deep
RL agents are equipped with additional losses to aid representation learning.
A common approach is to require the agent to make additional predictions
(so-called auxilliary tasks) with its representation, typically with the aid of extra
network parameters, with the intuition that an agent is more likely to learn
useful features if it is required to solve many related tasks. We refer to such
methods as implicit representation shaping, since improved representations are
a side-effect of learning to solve auxiliary tasks.

Since bisimulation metrics capture additional information about the MDP
in addition to that summarised in value functions, bisimulation metrics are a
natural candidate for auxiliary tasks in deep reinforcement learning. Gelada
et al. [2019], Agarwal et al. [2021], and Zhang et al. [2021] introduce auxiliary
tasks based on bisimulation metrics, but require additional assumptions on
the underlying MDP in order for the metric to be learnt correctly (Lipschitz
continuity, deterministic, and Gaussian transitions, respectively). The success of
these approaches provides motivation in this paper to introduce a notion of state
similarity applicable to arbitrary MDPs, without further restriction. Further,
we learn this state similarity explicitly: that is, without the aid of any additional
network parameters.
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Figure 2: An MDP illustrating that Equation (2) is not generally satisfied.
Here, d∼(x, y) = (1− γ)−1, but for the policy π(b|x) = 1, π(a|y) = 1, we have
|V π(x)− V π(y)| = k(1− γ)−1

3 Advantages and limitations of the bisimula-
tion metric

The bisimulation metric d∼ is a strong notion of distance on the state space
of an MDP; it is useful in policy transfer through its bound on optimal value
functions [Castro and Precup, 2010] and because it is so stringent, it gives good
guarantees for state aggregations [Ferns et al., 2004, Li et al., 2006]. However, it
has been difficult to use at scale and compute online, for a variety of reasons
that we summarize below.

(i) Computational complexity. The metric can be computed via fixed-
point iteration since the operator TK is a contraction mapping. The map TK
contracts at rate γ with respect to the L∞ norm on M, and therefore obtaining
an ε-approximation of d∼ under this norm requires O(log(1/ε)/ log(1/γ)) ap-
plications of TK to an initial pseudometric d0. The cost of each application of
TK is dominated by the computation of |X |2|A| Wd distances for distributions
over X , each costing Õ(|X |2.5) in theory [Lee and Sidford, 2014], and Õ(|X |3)
in practice [Pele and Werman, 2009, Guo et al., 2020, Peyré and Cuturi, 2019].
Thus, the overall practical cost is Õ(|X |5|A| log(ε)/ log(γ)).

(ii) Bias under sampled transitions. Computing TK requires access to
the transition probability distributions P ax for each (x, a) ∈ X × A which, as
mentioned in Section 2, are typically not available; instead, stochastic approxi-
mations to the operator of interest are employed. Whilst there has been work
in studying online, sample-based approximate computation of the bisimulation
metric [Ferns et al., 2006, Comanici et al., 2012], these methods are generally
biased, in contrast to sample-based estimation of standard RL operators.

(iii) Lack of connection to non-optimal policies. One of the principal
behavioural characterisations of the bisimulation metric d∼ is the upper bound
shown in Equation (1). However, in general we do not have

|V π(x)− V π(y)| ≤ d∼(x, y) (2)

for arbitrary policies π ∈ Π; a simple example is illustrated in Figure 2. More
generally, notions of state similarity that the bisimulation metric encodes may
not be closely related to behavioural similarity under the policy π. Thus, learning
about d∼ may not in itself be useful for large-scale reinforcement learning agents.

Property (i) expresses the intrinsic computational difficulty of computing
this metric. Property (ii) illustrates the problems associated with attempting to
move from operator-based computation to online, sampled-based computation of
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the metric (for example, when the environment dynamics are unknown). Finally,
property (iii) shows that even if the metric is computable exactly, the information
it yields about the MDP may not be practically useful. Although π-bisimulation
(introduced by Castro [2020] and extended by Zhang et al. [2021]) addresses
property (iii), their practical algorithms are limited to MDPs with deterministic
transitions [Castro, 2020] or MDPs with Gaussian transition kernels [Zhang
et al., 2021].

Taken together, these three properties motivate the search for a metric without
these shortcomings, which can be used in combination with deep reinforcement
learning.

4 The MICo distance

We now present a new notion of distance for state similarity, which we refer to
as MICo (Matching under Independent Couplings), designed to overcome the
drawbacks described above.

Motivated by the drawbacks described in Section 3, we make several mod-
ifications to the operator TK introduced above: (i) in order to deal with the
prohibitive cost of computing the Kantorovich distance, which optimizes over all
coupling of the distributions P ax and P ay , we use the independent coupling; (ii)
to deal with lack of connection to non-optimal policies, we consider an on-policy
variant of the metric, pertaining to a chosen policy π ∈P(A)X . This leads us
to the following definition.

Definition 4.1. Given a policy π ∈ P(A)X , the MICo update operator TπM :
RX×X → RX×X is defined by

(TπMU)(x, y) = |rπx − rπy |+ γEx′∼Pπx
y′∼Pπy

[U(x′, y′)] (3)

for all functions U : X × X → R, with rπx =
∑
a∈A π(a|x)rax and Pπx =∑

a∈A π(a|x)P ax (·) for all x ∈ X .

As with the bisimulation operator, this can be thought of as encoding desired
properties of a notion of similarity between states in a self-referential manner;
the similarity of two states x, y ∈ X should be determined by the similarity of
the rewards and the similarity of the states they lead to.

Proposition 4.2. The MICo operator TπM is a contraction mapping on RX×X
with respect to the L∞ norm.

Proof. Let U,U ′ ∈ RX×X . Then note that

|(TπU)(x, y)− (TπU ′)(x, y)|

=

∣∣∣∣∣∣γ
∑
x′,y′

π(a|x)π(b|y)P ax (x′)P by (y′)(U − U ′)(x′, y′)

∣∣∣∣∣∣
≤γ‖U − U ′‖∞ .
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for any x, y ∈ X , as required.

The following corollary now follows immediately from Banach’s fixed-point
theorem and the completeness of RX×X under the L∞ norm.

Corollary 4.3. The MICo operator TπM has a unique fixed point Uπ ∈ RX×X ,
and repeated application of TπM to any initial function U ∈ RX×X converges to
Uπ.

Having defined a new operator, and shown that it has a corresponding fixed-
point, there are two questions to address: Does this new notion of distance
overcome the drawbacks of the bisimulation metric described above; and what
does this new object tell us about the underlying MDP?

4.1 Addressing the drawbacks of the bisimulation metric

We introduced the MICo distance as a means of overcoming some of the short-
comings associated with the bisimulation metric, described in Section 3. In this
section, we provide a series of results that show that the newly-defined notion of
distance addressess each of these shortcomings. The proofs of these results rely
on the following lemma, connecting the MICo operator to a lifted MDP. This
result is crucial for much of the analysis that follows, so we describe the proof in
full detail.

Lemma 4.4 (Lifted MDP). The MICo operator TπM is the Bellman evaluation
operator for an auxiliary MDP.

Proof. Given the MDP specified by the tuple (X ,A, P,R), we construct an

auxiliary MDP (X̃ , Ã, P̃ , R̃), by taking the state space to be X̃ = X 2, the action

space to be Ã = A2, the transition dynamics to be given by P̃
(a,b)
(u,v)((x, y)) =

P au (x)P bv (y) for all (x, y), (u, v) ∈ X 2, a, b ∈ A, and the action-independent

rewards to be R̃(x,y) = |rπx−rπy | for all x, y ∈ X . The Bellman evaluation operator

T̃ π̃ for this auxiliary MDP at discount rate γ under the policy π̃(a, b|x, y) =
π(a|x)π(b|y) is given by:

(T̃ π̃U)(x, y)

=R̃(x,y)+γ
∑

(x′,y′)∈X 2̃

P
(a,b)
(x,y)((x

′, y′))π̃(a, b|x, y)U(x′, y′)

=|rπx − rπy |+ γ
∑

(x′,y′)∈X 2

Pπx (x′)Pπy (y′)U(x′, y′)

=(TπMU)(x, y) ,

for all U ∈ RX×X and (x, y) ∈ X × X , as required.

Remark 4.5. Ferns and Precup [2014] noted that the bisimulation metric
can be interpreted as the optimal value function in a related MDP, and that
the functional TK of TK can be interpreted as a Bellman optimality operator.
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However, their proof was non-constructive, the related MDP being characterised
via the solution of an optimal transport problem. In contrast, the connection
described above is constructive, and will be useful in understanding many of
the theoretical properties of MICo. Ferns and Precup [2014] also note that
the Wd distance in the definition of TK can be upper-bounded by taking a
restricted class of couplings of the transition distributions. The MICo metric can
be viewed as restricting the coupling class precisely to the singleton containing
the independent coupling.

With Lemma 4.4 established, we can now address each of the points (i), (ii),
and (iii) from Section 3.

(i) Computational complexity. The key result regarding the computa-
tional complexity of computing the MICo distance is as follows.

Proposition 4.6 (MICo computational complexity). The computational
complexity of computing an ε-approximation in L∞ to the MICo metric is
O(|X |4 log(ε)/ log(γ)).

Proof. Since, by Proposition 4.2, the operator TπM is a γ-contraction under
L∞, we require O(log(1/ε)/ log(1/γ)) applications of the operator to obtain an
ε-approximation in L∞. Each iteration of value iteration updates |X |2 table
entries, and the cost of each update is O(|X |2), leading to an overall cost of
O(|X |4 log(ε)/ log(γ)).

In contrast to the bisimulation metric, this represents a computational saving
of O(|X |), which arises from the lack of a need to solve optimal transport
problems over the state space in computing the MICo distance. There is a
further saving of O(|A|) that arises since MICo focuses on an individual policy
π, and so does not require the max over actions in the bisimulation operator
definition.

(ii) Online approximation. Due to the interpretation of the MICo
operator TπM as the Bellman evaluation operator in an auxiliary MDP, established
in Lemma 4.4, algorithms and associated proofs of correctness for computing
the MICo distance online can be straightforwardly derived from standard online
algorithms for policy evaluation. We describe a straightforward approach, based
on the TD(0) algorithm, and also note that the wide range of online policy
evaluation methods incorporating off-policy corrections and multi-step returns,
as well as techniques for applying such methods at scale, may also be used.

Given a current estimate Ut of the fixed point of TπM and a pair of observations
(x, a, r, x′), (y, b, r̃, y′) generated under π, we can define a new estimate Ut+1 via

Ut+1(x, y)← (1− εt(x, y))Ut(x, y) + εt(x, y)(|r − r̃|+ γUt(x
′, y′)) (4)

and Ut+1(x̃, ỹ) = Ut(x̃, ỹ) for all other state-pairs (x̃, ỹ) 6= (x, y), for some
sequence of stepsizes {εt(x, y) | t ≥ 0, (x, y) ∈ X 2}. Sufficient conditions for con-
vergence of this algorithm can be deduced straightforwardly from corresponding
conditions for TD(0). We state one such result below. An important caveat is
that the correctness of this particular algorithm depends on rewards depending
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only on state; one can switch to state-action metrics if this hypothesis is not
satisfied.

Proposition 4.7. Suppose rewards depend only on state, and consider the
sequence of estimates (Ut)t≥0, with U0 initialised arbitrarily, and Ut+1 updated
from Ut via a pair of transitions (xt, at, rt, x

′
t), (yt, bt, r̃t, y

′
t) as in Equation (4).

Suppose all state-pairs tuples are updated infinitely often, and stepsizes for these
updates satisfy the Robbins-Monro conditions. Then Ut → Uπ almost surely.

Proof. Under the assumptions of the proposition, the update described is exactly
a TD(0) update in the lifted MDP described in Lemma 4.4. We can therefore
appeal to Proposition 4.5 of Bertsekas and Tsitsiklis [1996] to obtain the result.

Thus, in contrast to the Kantorovich metric, convergence to the exact MICo
metric is possible with an online algorithm that uses sampled transitions.

(iii) Relationship to underlying policy. In contrast to the bisimulation
metric, we have the following on-policy guarantee for the MICo metric.

Proposition 4.8. For any policy π ∈ P(A)X and states x, y ∈ X , we have
|V π(x)− V π(y)| ≤ Uπ(x, y).

Proof. We apply a coinductive argument to show that if

|V π(x)− V π(y)| ≤ U(x, y) for all x, y ∈ X , (5)

for some U ∈ RX×X symmetric in its two arguments, then we also have

|V π(x)− V π(y)| ≤ (TπMU)(x, y) for all x, y ∈ X .

Since the hypothesis holds for the constant function U(x, y) = 2Rmax/(1− γ),
and TπM contracts around Uπ, the conclusion then follows. Therefore, suppose
Equation (5) holds. Then we have

V π(x)− V π(y)

= rπxx− rπy
+ γ

∑
x′∈X

Pπx (x′)V (x′)− γ
∑
y′∈X

Pπy (y′)V (y′)

≤ |rπx − rπy |

+ γ
∑

x′,y′∈X
Pπx (x′)Pπy (y′)(V π(x′)− V π(y′))

≤ |rπx − rπy |

+ γ
∑

x′,y′∈X
Pπx (x′)Pπy (y′)U(x′, y′)

= (TπMU)(x, y) .

By symmetry, V π(y)− V π(x) ≤ (TπMU)(x, y), as required.

10



4.2 Diffuse Metrics

To characterize the nature of the fixed point Uπ, we introduce a novel notion of
distance which we name diffuse metrics, which we define below.

Definition 4.9. Given a set X , a function d : X × X → R is a diffuse metric if
the following axioms hold:

1. d(x, y) ≥ 0 for any x, y ∈ X ,

2. d(x, y) = d(y, x) for any x, y ∈ X ,

3. d(x, y) ≤ d(x, z) + d(y, z) ∀x, y, z ∈ X .

These differ from the standard metric axioms in the first point: we no longer
require that a point has zero self-distance, and two distinct points may have
zero distance. Notions of this kind are increasingly common in machine learning
as researchers develop more computationally tractable versions of distances, as
with entropy-regularised optimal transport distances [Cuturi, 2013], which also
do not satisfy the axiom of zero self-distance.

An example of a diffuse metric is the  Lukaszyk–Karmowski distance [ Lukaszyk,
2004], which is used in the MICo metric as the operator between the next-state
distributions. Given a diffuse metric space (X , ρ), the  Lukaszyk–Karmowski
distance dρLK is a diffuse metric on probability measures on X given by

dρLK(µ, ν) = Ex∼µ,y∼ν [ρ(x, y)] .

This example demonstrates the origin of the name diffuse metrics; the non-zero
self distances arises from a point being spread across a probability distribution.

The notion of a distance function having non-zero self distance was first
introduced by Matthews [1994] who called it a partial metric. We define it below:

Definition 4.10. Given a set X , a function d : X ×X → R is a partial metric if

1. x = y ⇐⇒ d(x, x) = d(y, y) = d(x, y) for any x, y ∈ X ,

2. d(x, x) ≤ d(y, x) for any x, y ∈ X ,

3. d(x, y) = d(y, x) for any x, y ∈ X ,

4. d(x, y) ≤ d(x, z) + d(y, z)− d(z, z) ∀x, y, z ∈ X .

This definition was introduced to recover a proper metric from the distance
function: that is, given a partial metric d, one is guaranteed that d̃(x, y) =
d(x, y)− 1

2 (d(x, x) + d(y, y)) is a proper metric.
The above definition is still too stringent for the  Lukaszyk–Karmowski dis-

tance (and hence MICo distance), since it fails axiom 4 (the modified triangle
inequality) as shown in the following counterexample.
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Example 4.11. The  Lukaszyk–Karmowski distance does not satisfy the modi-
fied triangle inequality: let X be [0, 1], and ρ be the Euclidean distance | · |. Let
µ,ν be Dirac measures concentrated at 0 and 1, and let η be 1

2 (δ0 + δ1). Then
one can calculate that dLK(ρ)(µ, ν) = 1, while dLK(ρ)(µ, η) + dLK(ρ)(ν, η) −
dLK(ρ)(η, η) = 1/2, breaking the inequality.

In terms of the  Lukaszyk–Karmowski distance, the MICo distance can be
written as the fixed point

Uπ(x, y) = |rπx − rπy |+ dLK(Uπ)(Pπx , P
π
y ) .

This characterisation leads to the following result.

Proposition 4.12. The MICo distance is a diffuse metric.

Proof. Non-negativity and symmetry of Uπ are clear, so it remains to check the
triangle inequality. To do this, we define a sequence of iterates (Uk)k≥0 in RX×X
by U0(x, y) = 0 for all x, y ∈ X , and Uk+1 = TπMUk for each k ≥ 0. Recall that
by Corollary 4.3 that Uk → Uπ. We will show that each Uk satisfies the triangle
inequality by induction. By taking limits on either side of the inequality, we will
then recover that Uπ itself satisfies the triangle inequality.

The base case of the inductive argument is clear from the choice of U0. For
the inductive step, assume that for some k ≥ 0, Uk(x, y) ≤ Uk(x, z) + Uk(z, y)
for all x, y, z ∈ X . Now for any x, y, z ∈ X , we have

Uk+1(x, y) = |rπx − rπy |+ γEX′∼Pπx ,Y ′∼Pπy [Uk(X ′, Y ′)]

≤ |rπx − rπz |+ |rπz − rπy |+ γEX′∼Pπx ,Y ′∼Pπy ,Z′∼Pπz [Uk(X ′, Z ′) + Uk(Z ′, Y ′)]

= Uk+1(x, z) + Uk+1(z, y) ,

as required.

The counterpart of the role played by Dirac distributions in the  Lukaszyk–Karmowski
distance for the MICo metric is deterministic MDPs. In particular, a state x ∈ X
has zero self-distance iff the Markov chain induced by π initialised at x is deter-
ministic, and the magnitude of a state’s self-distance is indicative of the amount
of “dispersion” in the distribution. Hence, in general, we have Uπ(x, x) > 0, and
Uπ(x, x) 6= Uπ(y, y) for distinct states x, y ∈ X .

5 The MICo loss

The impetus of our work is the development of principled mechanisms for directly
shaping the representations used by RL agents so as to improve their learning. In
this section we present a novel loss based on the MICo update operator TπM given
in Equation (3) that can be incorporated into any value-based agent. Given the
fact that MICo is a diffuse metric that can admit non-zero self-distances, special
care needs to be taken in how these distances are learnt; indeed, traditional
mechanisms for measuring distances between representations (e.g. Euclidean
and cosine distances) are geometrically-based and enforce zero self-distances.
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Figure 3: Illustration of network architecture for learning MICo.

We assume a value-based agent learning an estimate Qξ,ω defined by the
composition of two function approximators ψ and φ with parameters ξ and ω,
respectively: Qξ,ω(x, ·) = ψξ(φω(x)). We will refer to φω(x) as the representation
of state x and aim to make distances between representations match the MICo
distance; we refer to ψξ as the value approximator. We define the parameterized
representation distance, Uω, as an approximant to Uπ:

Uπ(x, y) ≈ Uω(x, y) :=
‖φω(x)‖2 + ‖φω(y)‖2

2
+ βθ(φω(x), φω(y))

where θ(φω(x), φω(y)) is the angle between vectors φω(x) and φω(y) and β is a
scalar.

Based on Equation (3), our learning target is then

TUω̄ (rx, x
′, ry, y

′) = |rx − ry|+ γUω̄(x′, y′) ,

where ω̄ is a separate copy of the network parameters that are synchronised with
ω at infrequent intervals. This is a common practice that was introduced by
Mnih et al. [2015] (and in fact, we use the same update schedule they propose).
The loss for this learning target is

LMICo(ω) =E〈x,rx,x′〉,〈y,ry,y′〉

[(
TUω̄ (rx, x

′, ry, y
′)− Uω(x, y)

)2]
where 〈x, rx, x′〉 and 〈y, ry, y′〉 are pairs of transitions sampled from the agent’s
replay buffer. We can combine LMICo with the temporal-difference loss LTD of
any value-based agent as (1− α)LTD + αLMICo, where α ∈ (0, 1). Each sampled
mini-batch is used for both MICo and TD losses. Figure 3 (left) illustrates the
network architecture used for learning.

Although the loss LMICo is designed to learn the MICo diffuse metric Uπ,
the values of the metric itself are parametrised through Uω defined above, which

13



is constituted by several distinct terms. This appears to leave a question as
to how the representations φω(x) and φω(y), as Euclidean vectors, are related
to one another when the MICo loss is minimised. Careful inspection of the
form of Uω(x, y) shows that the (scaled) angular distance between φω(x) and
φω(y) can be recovered from Uω by subtracting the learnt approximations to the
self-distances Uπ(x, x) and Uπ(y, y) (see Figure 3, right). We therefore define
the reduced MICo distance ΠUπ, which encodes the distances enforced between
the representation vectors φω(x) and φω(y), by:

βθ(φω(x), φω(y)) ≈ ΠUπ(x, y) = Uπ(x, y)− 1

2
Uπ(x, x)− 1

2
Uπ(y, y) .

Figure 4: The projection of MICo distances onto representation space.

In the following section we investigate the following two questions: (1) How
informative of V π is ΠUπ?; and (2) How useful are the features encountered
by ΠUπ for policy evaluation? We conduct these investigations on tabular
environments where we can compute the metrics exactly, which helps clarify the
behaviour of our loss when combined with deep networks in Section 6.

5.1 Value bound gaps

Although Proposition 4.8 states that we have |V π(x)− V π(y)| ≤ Uπ(x, y), we
do not, in general, have the same upper bound for ΠUπ(x, y) as demonstrated
by the following result.

Lemma 5.1. There exists an MDP with two states x, y, and a policy π ∈ Π
where |V π(x)− V π(y)| > ΠUπ(x, y).

Proof. Consider a single-action MDP with two states (x and y) where y is
absorbing, x transitions with equal probability to x and y, and a reward of 1

14
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Figure 5: The gap between the difference in values and the various distances for
Garnet MDPs with varying numbers of actions (represented by the size of the
circles).

is received only upon taking an action from state x. There is only one policy
for this MDP which yields the value function V (x) ≈ 1.8 and V (y) = 0. The
MICo distance gives U(x, x) ≈ 1.06, U(x, y) ≈ 1.82, and U(y, y) = 0, while the
reduced MICo distance yields ΠU(x, x) = ΠU(y, y) = 0, and ΠU(x, y) ≈ 1.29 <
|V (x)− V (y)| = 1.8.

Despite this negative result, it is worth evaluating how often in practice this
inequality is violated and by how much, as this directly impacts the utility of
this distance for learning representations. To do so in an unbiased manner we
make use of Garnet MDPs, which are a class of randomly generated MDPs
[Archibald et al., 1995, Piot et al., 2014]. Given a specified number of states nX
and the number of actions nA, Garnet(nX , nA) is generated as follows: 1. The
branching factor bx,a of each transition P ax is sampled uniformly from [1 : nX ].
2. bx,a states are picked uniformly randomly from X and assigned a random
value in [0, 1]; these values are then normalized to produce a proper distribution
P ax . 3. Each rax is sampled uniformly in [0, 1].

For each Garnet(nX , nA) we sample 100 stochastic policies {πi} and compute
the average gap: 1

100|X |2
∑
i

∑
x,y d(x, y) − |V πi(x) − V πi(y)|, where d stands

for any of the considered metrics. Note we are measuring the signed difference,
as we are interested in the frequency with which the upper-bound is violated.
As seen in Figure 5, our metric does on average provide an upper bound on
the difference in values that is also tighter bound than those provided by Uπ

and π-bisimulation. This suggests that the resulting representations remain
informative of value similarities, despite the reduction Π.

5.2 State features

In order to investigate the usefuleness of the representations produced by ΠUπ, we
construct state features directly by using the computed distances to project the
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states into a lower-dimensional space with the UMAP dimensionality reduction
algorithm [McInnes et al., 2018]2. We then apply linear regression of the true
value function V π against the features to compute V̂ π and measure the average
error across the state space. As baselines we compare against random features
(RF), Proto Value Functions (PVF) [Mahadevan and Maggioni, 2007], and the
features produced by π-bisimulation [Castro, 2020]. We present our results on
three domains in Figure 6. Despite the independent couplings, ΠUπ performs on
par with π-bisimulation, which optimizes over all transition probability couplings,
suggesting that ΠUπ yields good representations.
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Figure 6: Average error when performing linear regression on varying numbers of
features, averaged over 10 runs; shaded areas represent 95% confidence intervals.
Left: four-rooms GridWorld [Sutton et al., 1999]; Center: The mirrored
rooms introduced by Castro [2020]; Right: The grid task introduced by Dayan
[1993].

6 Empirical evaluation

Having developed a greater understanding of the properties inherent to the
representations produced by the MICo loss, we evaluate it on the Arcade Learning
Environment [Bellemare et al., 2013].

The code necessary to run these experiments is available on GitHub:
https://github.com/google-research/google-research/tree/master/mico.

We will first describe the regular network and training setup for these agents
so as to facilitate the description of our loss.

6.1 Baseline network and loss description

The networks used by Dopamine for the ALE consist of 3 convolutional layers
followed by two fully-connected layers (the output of the networks depends
on the agent). We denote the output of the convolutional layers by φω with
parameters ω, and the remaining fully connected layers by ψξ with parameters ξ.
Thus, given an input state x (e.g. a stack of 4 Atari frames), the output of the
network is Qξ,ω(x, ·) = ψξ(φω(x)). Two copies of this network are maintained:
an online network and a target network; we will denote the parameters of the
target network by ξ̄ and ω̄. During learning, the parameters of the online network

2Note that since UMAP expects a metric, it is ill-defined with the diffuse metric Uπ .
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are updated every 4 environment steps, while the target network parameters are
synced with the online network parameters every 8000 environment steps. We
refer to the loss used by the various agents considered as LTD; for example, for
DQN this would be:

LTD(ξ, ω) := E(x,a,r,x′)∼D

[
ρ

(
r + γ max

a′∈A
Qξ̄,ω̄(x′, a′)−Qξ,ω(x, a)

)]
,

where D is a replay buffer with a capacity of 1M transitions, and ρ is the Huber
loss.

6.2 MICo loss description

We will be applying the MICo loss to φω(x). As described in Section 5, we
express the distance between two states as:

Uω(x, y) =
‖φω(x)‖2 + ‖φω̄(y)‖2

2
+ βθ(φω(x), φω̄(y)) ,

where θ(φω(x), φω̄(y)) is the angle between vectors φω(x) and φω̄(y) and β is
a scalar. Note that we are using the target network for the y representations;
this was done for learning stability. We used β = 0.1 for the results in the main
paper, but present some results with different values of β below.

In order to get a numerically stable operation, we implement the angular
distance between representations φω(x) and φω(y) according to the calculations

CS(φω(x), φω(y)) =
〈φω(x), φω(y)〉
‖φω(x)‖‖φω(y)‖

θ(φω(x), φω(y)) = arctan2
(√

1− CS(φω(x), φω(y))2,CS(φω(x), φω(y))
)
.

Based on Equation (3), our learning target is then (note the target network
is used for both representations here):

TUω̄ (rx, x
′, ry, y

′) = |rx − ry|+ γUω̄(x′, y′) ,

and the loss is

LMICo(ω) =E〈x,rx,x′〉
〈y,ry,y′〉

∼D

[(
TUω̄ (rx, x

′, ry, y
′)− Uω(x, y)

)2]
,

We found it important to use the Huber loss to minimize LMICo as this
emphasizes greater accuracy for smaller distances as oppoosed to larger distances.
We experimented using the MSE loss but found that larger distances tended to
overwhelm the optimization process, thereby degrading performance.

As mentioned in Section 5, we use the same mini-batch sampled for LTD

for computing LMICo. Specifically, we follow the method introduced by Castro
[2020] for constructing new matrices that allow us to compute the distances
between all pairs of sampled states (see code for details on matrix operations).

Our combined loss is then

Lα(ξ, ω) = (1− α)LTD(ξ, ω) + αLMICo(ω) .
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Figure 7: Mean (left) and median (right) human normalized scores across 60
Atari 2600 games, averaged over 5 independent runs.

6.3 Results

We added the MICo loss to all the JAX agents provided in the Dopamine library
[Castro et al., 2018]: DQN [Mnih et al., 2015], Rainbow [Hessel et al., 2018], QR-
DQN [Dabney et al., 2018b], and IQN [Dabney et al., 2018a], using mean squared
error loss to minimize LTD for DQN (as suggested by Obando-Ceron and Castro
[2021]). Given the state-of-the-art results demonstrated by the Munchausen-IQN
(M-IQN) agent [Vieillard et al., 2020], we also evaluated incorporating our loss
into M-IQN.3 For all experiments we used the hyperparameter settings provided
with Dopamine. We found that a value of α = 0.5 worked well with quantile-
based agents (QR-DQN, IQN, and M-IQN), while a value of α = 0.01 worked
well with DQN and Rainbow. We hypothesise that the difference in scale of the
quantile, categorical, and non-distributional loss functions concerned leads to
these distinct values of α performing well. We found it important to use the
Huber loss [Huber, 1964] to minimize LMICo as this emphasizes greater accuracy
for smaller distances as oppoosed to larger distances. We experimented using the
MSE loss but found that larger distances tended to overwhelm the optimization
process, thereby degrading performance.

We evaluated on all 60 Atari 2600 games over 5 seeds and report the results
in Figure 7 and Figure 8; as can be seen, our loss is able to provide good
improvements over the agents they are based on, suggesting that the MICo loss
can help learn better representations for control.

The learning curves for all agents and all games are provided in Appendix A.

7 Related Work

Bisimulation originated as a fundamental notion of behavioural equivalence in
concurrency theory [Milner, 1989, Larsen and Skou, 1991, van Breugel and Wor-

3Given that the authors of M-IQN had implemented their agent in TensorFlow (whereas
our agents are in JAX), we have reimplemented M-IQN in JAX and run 5 independent runs
(in contrast to the 3 run by Vieillard et al. [2020].
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rell, 2001a,b], and was later extended from a binary predicate to a quantitative
metric notion by Desharnais et al. [1999, 2004]. Bisimulation metrics were first
introduced for MDPs by Ferns et al. [2004], and this work has since been steadily
extended in a number of directions [Ferns et al., 2005, 2006, Taylor, 2008, Taylor
et al., 2009, Ferns et al., 2011, Comanici et al., 2012, Bacci et al., 2013a,b, Abate,
2013, Ferns and Precup, 2014, Castro, 2020], with applications including policy
transfer [Castro and Precup, 2010, Santara et al., 2019], representation learning
[Ruan et al., 2015, Comanici et al., 2015], and state aggregation [Li et al., 2006].

A range of other notions of state similarity in MDPs have also been considered,
such as action sequence equivalence [Givan et al., 2003], temporally extended
metrics [Amortila et al., 2019], MDP homomorphisms [Ravindran and Barto,
2003], utile distinction [McCallum, 1996], and policy irrelevance [Jong and Stone,
2005]. See Li et al. [2006] for a review of different notions of similarity applied
to state aggregation. Recently, Le Lan et al. [2021] performed an exhaustive
analysis of the continuity properties, relative to functions of interest in RL, of a
number of existing metrics in the literature.

Lastly, the notion of zero self-distance, central to the diffuse metrics defined
in this paper, is increasingly encountered in machine learning applications
involving approximation of losses. Of particular note is entropy-regularised
optimal transport [Cuturi, 2013] and related quantities [Genevay et al., 2018,
Fatras et al., 2020, Chizat et al., 2020, Fatras et al., 2021].

8 Conclusion

In this paper, we have introduced the MICo distance, a notion of state similarity
that can be learnt at scale and from samples. We have studied the theoretical
properties of MICo, and proposed a new loss to make the non-zero self-distances
of this diffuse metric compatible with function approximation, combining it with
a variety of deep RL agents to obtain strong performance on the Arcade Learning
Environment. In contrast to auxiliary losses that implicitly shape an agent’s
representation, MICo directly modifies the features learnt by a deep RL agent;
our results indicate that this helps improve performance. To the best of our
knowledge, this is the first time directly shaping the representation of RL agents
has been successfully applied at scale. We believe this represents an interesting
new approach to representation learning in RL; continuing to develop theory,
algorithms and implementations for direct representation shaping in deep RL is
an important and promising direction for future work.
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Figure 8: From top to bottom, percentage improvement in returns (averaged
over the last 5 iterations) when adding LMICo to DQN, Rainbow, QR-DQN,
IQN, and M-DQN. The results for are averaged over 5 independent runs.
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Appendices

A Complete learning curves

We provide complete results to complement the results presented in the main
paper in Figure 9, Figure 10, Figure 11, Figure 12, and Figure 13.

B Hyperparameter sweeps

In Figure 14 we demonstrate the performance of the MICo loss when added to
Rainbow over a number of different values of α and β. For each agent, we ran a
similar hyperparameter sweep over α and β on the same six games displayed in
Figure 14 to determine settings to be used in the full ALE experiments.

26



0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

Re
tu

rn

AirRaid

DQN
DQN + MICo

0 50 100 150 200

500

1000

1500

2000

2500

3000

3500

4000
Alien

0 50 100 150 200
0

200

400

600

800

1000

Amidar

0 50 100 150 200

500

1000

1500

2000

2500

Assault

0 50 100 150 200
0

2500

5000

7500

10000

12500

15000

17500

Asterix

0 50 100 150 200

700

800

900

1000

1100

1200

1300
Asteroids

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

1e6 Atlantis

0 50 100 150 200
0

100

200

300

400

500

600

700

BankHeist

0 50 100 150 200

5000

10000

15000

20000

25000

30000

BattleZone

0 50 100 150 200

1000

2000

3000

4000

5000

6000

BeamRider

DQN
DQN + MICo

0 50 100 150 200

200

300

400

500

600

700

800

900
Berzerk

0 50 100 150 200

20

25

30

35

40

45

Bowling

0 50 100 150 200

0

20

40

60

80

Re
tu

rn

Boxing

0 50 100 150 200
0

50

100

150

200

Breakout

0 50 100 150 200

1000

2000

3000

4000

5000

Carnival

0 50 100 150 200
1500

2000

2500

3000

3500

4000

4500

5000
Centipede

0 50 100 150 200

500

750

1000

1250

1500

1750

2000

2250
ChopperCommand

0 50 100 150 200

20000

40000

60000

80000

100000

120000
CrazyClimber

0 50 100 150 200
0

2000

4000

6000

8000

10000

Re
tu

rn

DemonAttack

0 50 100 150 200

20

15

10

5

0

5

10

DoubleDunk

0 50 100 150 200

0

10000

20000

30000

40000

50000

60000

70000
ElevatorAction

0 50 100 150 200

0

250

500

750

1000

1250

1500

1750

2000

Enduro

0 50 100 150 200

80

60

40

20

0

20

40
FishingDerby

0 50 100 150 200

0

5

10

15

20

25

30

35
Freeway

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

Re
tu

rn

Frostbite

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

16000
Gopher

0 50 100 150 200

200

400

600

800

1000
Gravitar

0 50 100 150 200
0

5000

10000

15000

20000

25000

Hero

0 50 100 150 200

16

14

12

10

8

6

4

2

IceHockey

0 50 100 150 200
0

250

500

750

1000

1250

1500

1750

Jamesbond

0 50 100 150 200
18000

16000

14000

12000

10000

8000

6000

4000

2000

Re
tu

rn

JourneyEscape

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000
Kangaroo

0 50 100 150 200

2000

3000

4000

5000

6000

7000

8000
Krull

0 50 100 150 200
0

5000

10000

15000

20000

25000
KungFuMaster

0 50 100 150 200

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
MontezumaRevenge

0 50 100 150 200

500

1000

1500

2000

2500

3000

3500

4000

MsPacman

0 50 100 150 200

2000

3000

4000

5000

6000

7000

8000

9000

10000

Re
tu

rn

NameThisGame

0 50 100 150 200
0

2500

5000

7500

10000

12500

15000

17500
Phoenix

0 50 100 150 200

400

350

300

250

200

150

100

50

0
Pitfall

0 50 100 150 200

20

15

10

5

0

5

10

15

20
Pong

DQN
DQN + MICo

0 50 100 150 200
500

1000

1500

2000

2500

3000

3500

4000

4500

Pooyan

0 50 100 150 200
250

0

250

500

750

1000

1250

1500

1750
PrivateEye

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

Re
tu

rn

Qbert

0 50 100 150 200

2000

4000

6000

8000

10000

12000

14000
Riverraid

0 50 100 150 200
0

10000

20000

30000

40000

50000
RoadRunner

0 50 100 150 200

10

20

30

40

50

60

70
Robotank

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

Seaquest

0 50 100 150 200
32000

30000

28000

26000

24000

22000

20000

18000

16000
Skiing

0 50 100 150 200

800

1000

1200

1400

1600

1800

2000

Re
tu

rn

Solaris

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000
SpaceInvaders

DQN
DQN + MICo

0 50 100 150 200
0

10000

20000

30000

40000

50000

60000

StarGunner

0 50 100 150 200

20

10

0

10

20

Tennis

0 50 100 150 200

2000

3000

4000

5000

6000

7000

8000

9000
TimePilot

0 50 100 150 200
25

50

75

100

125

150

175

200

225
Tutankham

0 50 100 150 200
Frames (x1M)

0

2000

4000

6000

8000

10000

12000

14000

Re
tu

rn

UpNDown

0 50 100 150 200
Frames (x1M)

0

200

400

600

800

1000

1200

1400
Venture

0 50 100 150 200
Frames (x1M)

0

100000

200000

300000

400000

VideoPinball

0 50 100 150 200
Frames (x1M)

0

2000

4000

6000

8000

WizardOfWor

0 50 100 150 200
Frames (x1M)

10000

20000

30000

40000

50000

60000

YarsRevenge

0 50 100 150 200
Frames (x1M)

0

2000

4000

6000

8000

10000

12000
Zaxxon

Figure 9: Training curves for DQN agents. The results for all games and agents
are over 5 independent runs, and shaded regions report 75% confidence intervals.
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Figure 10: Training curves for Rainbow agents. The results for all games and
agents are over 5 independent runs, and shaded regions report 75% confidence
intervals.
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Figure 11: Training curves for QR-DQN agents. The results for all games and
agents are over 5 independent runs, and shaded regions report 75% confidence
intervals.
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Figure 12: Training curves for IQN agents. The results for all games and agents
are over 5 independent runs, and shaded regions report 75% confidence intervals.

30



0 50 100 150 200
0

2500

5000

7500

10000

12500

15000

17500

20000

Re
tu

rn

AirRaid

M-IQN
M-IQN + MICo

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

Alien

0 50 100 150 200
0

250

500

750

1000

1250

1500

1750

2000

Amidar

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

Assault

0 50 100 150 200
0

10000

20000

30000

40000

Asterix

0 50 100 150 200

500

1000

1500

2000

2500
Asteroids

0 50 100 150 200
0

200000

400000

600000

800000

Re
tu

rn

Atlantis

0 50 100 150 200
0

200

400

600

800

1000

1200

1400
BankHeist

0 50 100 150 200

10000

20000

30000

40000

50000

BattleZone

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000
BeamRider

M-IQN
M-IQN + MICo

0 50 100 150 200
200

300

400

500

600

700

800

900
Berzerk

0 50 100 150 200

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5
Bowling

0 50 100 150 200

0

20

40

60

80

100

Re
tu

rn

Boxing

0 50 100 150 200
0

50

100

150

200

250

300

Breakout

0 50 100 150 200

1000

2000

3000

4000

5000

6000
Carnival

0 50 100 150 200

2000

2500

3000

3500

4000

4500

5000

5500

Centipede

0 50 100 150 200
0

2000

4000

6000

8000

10000

ChopperCommand

0 50 100 150 200

20000

40000

60000

80000

100000

120000

140000

CrazyClimber

0 50 100 150 200
0

10000

20000

30000

40000

50000

60000

70000

Re
tu

rn

DemonAttack

0 50 100 150 200

20

10

0

10

20

DoubleDunk

0 50 100 150 200

0

20000

40000

60000

80000

ElevatorAction

0 50 100 150 200

0

500

1000

1500

2000

Enduro

0 50 100 150 200

80

60

40

20

0

20

40

60
FishingDerby

0 50 100 150 200
0

5

10

15

20

25

30

35
Freeway

0 50 100 150 200
0

2000

4000

6000

8000

10000

Re
tu

rn

Frostbite

0 50 100 150 200
0

5000

10000

15000

20000

25000

Gopher

0 50 100 150 200
0

250

500

750

1000

1250

1500

1750

2000

Gravitar

0 50 100 150 200

5000

10000

15000

20000

25000

30000

Hero

0 50 100 150 200
15

10

5

0

5

IceHockey

0 50 100 150 200
0

250

500

750

1000

1250

1500

1750

2000
Jamesbond

0 50 100 150 200
14000

12000

10000

8000

6000

4000

2000

0

Re
tu

rn

JourneyEscape

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

Kangaroo

0 50 100 150 200
2000

3000

4000

5000

6000

7000

8000

9000

10000
Krull

0 50 100 150 200
0

10000

20000

30000

40000

KungFuMaster

0 50 100 150 200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MontezumaRevenge

0 50 100 150 200

1000

2000

3000

4000

5000

6000

MsPacman

0 50 100 150 200
2000

4000

6000

8000

10000

12000

14000

Re
tu

rn

NameThisGame

0 50 100 150 200
0

10000

20000

30000

40000

50000

60000

Phoenix

0 50 100 150 200
175

150

125

100

75

50

25

0
Pitfall

0 50 100 150 200

20

15

10

5

0

5

10

15

20
Pong

M-IQN
M-IQN + MICo

0 50 100 150 200

2000

4000

6000

8000

Pooyan

0 50 100 150 200

50

0

50

100

150

200

250

PrivateEye

0 50 100 150 200
0

2500

5000

7500

10000

12500

15000

17500

20000

Re
tu

rn

Qbert

0 50 100 150 200

2000

4000

6000

8000

10000

12000

14000

16000

Riverraid

0 50 100 150 200
0

10000

20000

30000

40000

50000

60000

70000
RoadRunner

0 50 100 150 200

10

20

30

40

50

60

70

Robotank

0 50 100 150 200
0

5000

10000

15000

20000

Seaquest

0 50 100 150 200
30000

25000

20000

15000

10000

Skiing

0 50 100 150 200

1000

2000

3000

4000

Re
tu

rn

Solaris

0 50 100 150 200
0

2500

5000

7500

10000

12500

15000

17500

SpaceInvaders
M-IQN
M-IQN + MICo

0 50 100 150 200
0

10000

20000

30000

40000

50000

60000

70000

StarGunner

0 50 100 150 200

20

15

10

5

0
Tennis

0 50 100 150 200
0

2500

5000

7500

10000

12500

15000

17500

20000

TimePilot

0 50 100 150 200
50

75

100

125

150

175

200

225

250

Tutankham

0 50 100 150 200
Frames (x1M)

0

50000

100000

150000

200000

250000

300000

Re
tu

rn

UpNDown

0 50 100 150 200
Frames (x1M)

0

200

400

600

800

Venture

0 50 100 150 200
Frames (x1M)

0

100000

200000

300000

400000

500000

600000

VideoPinball

0 50 100 150 200
Frames (x1M)

0

2000

4000

6000

8000

10000

12000

WizardOfWor

0 50 100 150 200
Frames (x1M)

0

20000

40000

60000

80000

100000

120000
YarsRevenge

0 50 100 150 200
Frames (x1M)

0

5000

10000

15000

20000

Zaxxon

Figure 13: Training curves for M-IQN agents. The results for all games and
agents are over 5 independent runs, and shaded regions report 75% confidence
intervals.
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Figure 14: Sweeping over various values of α and β when adding the MICo loss
to Rainbow. The grey line represents regular Rainbow.
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