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Nonexpressibility of Fairness and Signaling 

DAVID MCALLESTER,* PRAKASH PANANGADEN,~ AND VASANT SHANBHOGUE* 

Computer Science Department, Cornell University, Ithaca, New York 14853 

In this paper we establish new expressiveness results for indeterminate dataflow primitives. 
We consider split primitives with three differing fairness assumptions and show that they are 
strictly inequivalent in expressive power. We also show that the ability to announce internal 
choices enhances the expressive power of two of the primitives. These results are proved using 
a very crude notion of observation and thus apply in any reasonable theory of process 
equivalence. 0 1993 Academic Press, Inc. 

1. INTRODUCTION 

Fairness is regarded as an important property of real systems and there is 
considerable interest in semantic theories and proof systems for reasoning about 
fairness [12]. In the present paper we examine the relative expressive power of a 
variety of fairness primitives and prove new inexpressibility results in the context of 
asynchronous systems. We prove that three different “split” primitives have different 
expressive power. We also consider the effect of adding signaling to each primitive. 
By “signaling,” we mean that a primitive has a mechanism for announcing its 
internal indeterminate decisions. Our investigation is carried out in the context of 
static dataflow networks, i.e., networks whose structure remains fixed throughout 
execution. 

Our interest in this work stemmed from earlier discoveries by Panangaden and 
Stark [25, 26, 281 that the fair merge primitive [ 181 is strictly “more powerful” 
than other primitives exhibiting unbounded indeterminacy or countable indeter- 
minacy. This showed that one could not classify indeterminate primitives on the 
degree of branching they embodied. All fair systems include primitives with coun- 
table indeterminacy [ll]. In the programming model studied by Chandra [4, 111, 
countable indeterminacy and fairness are equivalent. In the case of asynchronous 
dataflow networks [16], the analysis is complicated by the fact that a process may 
receive data from different autonomous processes in an asynchronous fashion. This 
means that fair merges need to avoid empty data channels as well as make fair 
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choices. Work by Apt and Plotkin [S] shows that the presence of countable 
indeterminacy in a programming language leads to failures of continuity. The work 
of Panangaden and Stark shows that there is a breakdown of a monotonicity 
property that occurs in the case of fair merge. 

Having identified monotonicity as a property that differentiates two kinds of 
countable indeterminacy, we are led to focus attention on monotone primitives. 
Since semantics of networks including fair merge are notoriously difficult, it is 
possible that one might develop simpler semantic theories for systems that do 
exhibit countable indeterminacy but are monotone. We discovered that there are 
provably inequivalent primitives here too. This paper discusses these primitives and 
establishes the difference in their expressive power. There appears to be a richer 
taxonomy of indeterminate primitives than had been suspected earlier. Recently 
there has been considerable interest in developing semantic theories to handle 
countable indeterminacy [2, 5, 6, 10, 19,291. Our work shows that there are 
several flavors of countable indeterminacy. 

In the rest of this introduction we describe the setting and state the results infor- 
mally. For our formal results, we will use the notion of traces of networks. Recent 
work by Jonsson [14] and Russell [31] shows that traces constitute a good 
abstraction of the detailed operational aspects of network behavior. An automata- 
theoretic formalism essentially due to Lynch and Tuttle [22] and Stark [34] is 
presented in Appendix A. We show how one can pass from these automata to traces 
of the networks, and then reason with traces exclusively after developing the 
machinery to reason about process equivalence and implementability. We use a 
very weak notion of process equivalence. The significance of this is that our non- 
implementability proofs will survive any passage to a more discerning semantic 
theory. Clearly our positive implementability results are then not of great 
significance but they do help to classify what can be distinguished at this level of 
observation. 

1.1. Kahn Networks 

We define an asynchronous dataflow network to be a finite set of autonomous 
computing agents, represented by the nodes of a directed graph, connected by 
directed arcs, called channels or ports. The directed arcs coming into a node are 
called input channels or input ports and those leaving a node are called output 
channels or output ports. The interconnection structure is fixed throughout execution. 
Nodes can only “listen” to a single channel at a time. One can think of each node 
as executing a sequential program. Communication between nodes is effected by the 
transmission of messages along the channels. The channels are unbounded queues 
where the sending of a message and the receipt of the message are distinct activities. 
There is no synchronization on message passing such as in CSP [13] or CCS [24]. 

We consider abstractions of different schedulers. This leads to three primitives 
that we call split processes. Each can be regarded as a dataflow primitive with an 
input port and two output ports. Tokens are consumed from the input port and are 
placed on one or other of the output ports. One can now distinguish between dif- 
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ferent split primitives based on the fairness properties that they satisfy with respect 
to choosing between the output channels. The inexpressiveness results here may be 
considered to be in the same spirit as Stark’s investigation into the expressive power 
of semaphore primitives [33] extended to the dataflow case. 

Another inexpressiveness phenomenon at work here arises from sequentiality. We 
consider augmenting the choice primitives with an additional output channel on 
which a value is output every time a choice is made. This allows other processes in 
the network to access the choices made. It turns out that this interacts quite 
delicately with the fairness properties. With a strong fairness assumption, we show 
that adding signaling does not add to the expressive power, whereas with a weaker 
fairness assumption, we prove that the primitives that cannot signal are strictly 
weaker. The proof methods hinge on using the fact that individual processes are 
sequential in an appropriate sense. One may also view this as an analysis of how 
information gets dispersed in a network. 

We now describe the split primitives that we study. The first primitive, which we 
call Unfair Split (US) splits its input sequence into two subsequences, and it is 
possible unfair in the sense that one output channel may receive no values even 
when the input sequence is infinite. 

The second primitive is called Weakly Fair Split (WS). This guarantees that each 
of the two output sequences will be non-empty when the input sequence is infinite, 
and it offers no guarantees otherwise. The third primitive is called Strongly Fair 
Split (SS). This guarantees that each of the two output sequences will be infinite 
when the input sequence is infinite, and it offers no guarantees otherwise. 

We notice that each split primitive breaks up its input sequence into two sub- 
sequences and outputs one subsequence at one output channel and the other sub- 
sequence at the other output channel. The primitive does not “tell” us how it did 
the breakup-which particular input values are output at the first output channel 
and which particular input values are output at the second output channel. We now 
consider split primitives that give us this information. These are the original split 
primitives above enhanced with an extra output channel, that we will refer to as the 
signal channel. The primitive output a sequence s of l’s and 2’s at the signal channel 
with the length of s being equal to the length of its input sequence and with the 
intent that the ith value in s is a 1, if the ith value of the input sequence was output 
at the first output channel, and the ith value in s is a 2, if the ith value of the input 
sequence was output at the second output channel. We will refer to these three 
primitives as Unfair Split with signal (USS), Weakly Fair Split with signal ( WSS), 
and Strongly Fair Split with signal (SSS). 

1.2. Results 

The expressiveness situation that we establish is depicted in Fig. 1. An arrow 
between two primitives indicates that there exists a finite network built from instan- 
ces of the first primitive and “ordinary” (essentially sequential and determinate) 
nodes that implements the input-output behavior of the second primitive. An arrow 
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FIG. 1. The relative expressiveness of splits. 

with a line through it indicates that we have proven that no such implementation 
is possible. 

Based on experience with semaphores [33], one might expect that US cannot 
implement WS. It is somewhat more surprising that WS, or even WSS, cannot be 
somehow “iterated” to implement SS. The second interesting result is that we 
cannot simulate signals except when we have strong fairness. This result is relate 
to sequentiality in the sense of Kahn and Plotkin [S, 171; but we do not have a 
theory of sequential indeterminate processes. 

2. TRACES OF DATAFLOW NETWORKS 

In this paper we work with traces of dataflow networks. These are abstractions 
of computation sequences of the networks. Operationally a dataflow process is 
described by an automaton equipped with a relation that describes when actions 
are concurrent. The concurrency structure is the basis of a detailed analysis of the 
structure of the computations of such networks. Using this, one can define the 
notion of “completed” or “fair” computation of a network. Furthermore, one can 
interpret the concurrency relation between actions as corresponding to the ability 
to permute events in a computation sequence. Finally, one can define what it means 
to link processes into networks and one can show that such networks are them- 
selves automata equipped with a concurrency relation and apply the theory that 
has been developed for such automata. We can define certain special types of 
processes, specifically the determinate processes and show that they compute 
functions. Precise definitions of automata, completed computation sequences, 
networks, determinacy, input-output relation and permutation of events can be 
found in Appendix A. It should not be necessary to read the appendix, however, in 
order to follow the proofs in the paper. Most of the proofs of the lemmas and 
theorems in this section can be found in Appendix B. 

A computation sequence describes the sequence of states and the sequence of 
events, including internal events, that cause the state transitions. We now abstract 
away from states and internal events and only consider sequences of events on the 
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input and output ports of a network. It turns out that this has exactly the right 
amount of information to encode observable equality in all network contexts [15]. 

2.1. Traces and Compositionality 

We now define abstractions of computation sequences and the relationship 
between the abstractions for a network and the abstractions for its components. 

DEFINITION 1. If y is a computation sequence, then we define tr(y) to be the 
subsequence of ev(r), consisting of all the input and output events in ev(y). 

DEFINITION 2. A trace of a network N of processes is a sequence t of input 
events and output events of N, such that t = tr(y) for some completed computation 
sequence y of N. We write Trset(N) for the set of traces of a network N. 

In an earlier discussion of network semantics, trace sets were called archives 
[ 191. Presented in this way, the traces appear as an abstraction of computation 
sequences that were defined using an operational formalism. The important point 
is that we can define composition rules directly on trace sets, and this allows us to 
build up trace sets of complex networksstructurally. If t is a sequence of events and 
P is a process or a network, II,(t) will represent the subsequence of t consisting of 
all the events on the input and output ports of P in t; t[i] will represent the ith 
event in t. 

The following theorem relates the trace set of a network with the trace sets of its 
individual processes. A more general version of this theorem, relating the trace set 
of a network with the trace sets of its subnetworks for any arbitrary decomposition 
of the network into subnetworks was proved in [32]. By a compatible set of 
automata we mean that the automata have disjoint sets of internal actions and their 
sets of communication actions are arranged so that input for one automaton can 
be the output of exactly one other automaton. 

THEOREM 1. If the network N is the composition of a compatible set of automata 
{ Ni} J%r i in some finite index set I, then t is a trace of N if and only if II,(t) is 
a trace of Ni for every i. 

It is possible to have processes with different sets of traces, but the same IO-rela- 
tion. Brock and Ackerman [9] have such an example, but their example uses a 
powerful primitive, fair merge. There are other examples using only finite indeter- 
minacy [31]. 

2.2. Sequential Processes 

In [ 163, Kahn gave a denotational semantics.for dataflow networks by modeling 
processes by continuous functions between finite products of domains of streams. 
Subsequently, Kahn and Plotkin [20, 171 introduced a general class of domains, 
called concrete domains, that generalized the stream domains originally used by 
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Kahn, and permitted a general definition of a sequential function. Since we are 
working with dataflow and domains of streams here, we use the specialization of 
this definition to stream domains. 

The main reason for our introducing sequential processes is that when we 
describe our implementability and non-implementability results, they have to be 
relative to a base class of processes; i.e., when we build networks, we are allowed 
to use copies of processes in this base class. We consider the class of sequential pro- 
cesses to constitute that base class of processes. The intuitive idea is to capture the 
notions of processes with “single threads of control” and no “internal parallelism.” 
Our notion of sequential process expresses this formally. It is possible to relate this 
notion here, given in terms of traces, to an automata theoretic condition on the 
transition relation [27]. 

DEFINITION 3. A process P is called sequential if it is determinate, and the func- 
tion f computed by it satisfies the following property: suppose f (x) = y, and o is an 
output port of P. If there exists an x’ ZI x such that ITo(f(x’)) extends 17,(y), then 
there is an input port i of P such that whenever x’ ZI x is such that Il,(f(x’)) 
extends n,(y), then also Z7,(x’) extends Lri(x). 

One can show that the sequential processes compute sequential functions in the 
sense of Kahn and Plotkin [20, 171. We given an example of non-sequentiality. 

EXAMPLE 1. Parallel OR. This process has two input ports and one output port. 
It computes the following function POR: 

POR( 1 “s, /i) = POR(/1,1 h~‘) = POR( 1 h~, 1 “s’) = 1 

and 

POR(0 “s, 0 /\s’) = 0 

for any sequences of values s, s’. /i represents the empty sequence here. Then we 
have 

POR(l, n)=POR(/I, l)=POR(l, l)= 1, POR(0, 0) = 0, 

and the output is n otherwise. If we think of 0 and 1 representing false and true, 
respectively, then the process outputs true if it gets a true on either of its input 
channels and it outputs false if it gets a false on both of its input channels. 
Intuitively, the computation of this automaton must proceed in a “parallel” fashion, 
because it has to produce an output when either of the input ports receives a 1. 

It is the sequential processes that constitute the base class of processes allowed 
in the building of networks. The notion of a determinate process is a very general 
one and encompasses many different kinds of computations-sequential and 
parallel. 



FAIRNESS AND SIGNALING 293 

2.3. Causality between Events 

We define a notion of causality for events in a trace of a determinate process. 

DEFINITION 4. If t is a trace of a sequential process, then the causal set of t is 
the set of all pairs (e,, e2) of event occurrences in t such that 

(i) e,, e2 are events at the same port and e, precedes e2 in t, or 
(ii) e, is an input event, e, is an output event, and e, precedes e2 in every 

trace with the same input as t. 

We then have the following lemma that tells us that the causal set captures all 
the dependencies between the events of a trace. 

LEMMA 1. If t is a trace of a sequential process P and t’ is any linearization of 
the events in t such that for every pair (e,, e,) in the causal set oft, e, precedes e2 
in t’, then t’ is a trace of P. 

The proof is in Appendix B. 

2.4. The Scheduled Trace Set 

In traces, if an event is “enabled” at some point in the trace, it need not occur 
in the trace within a bounded number of steps from that point. The failure of this 
property leads to problems with limit closure of sequences. In order to eliminate 
this, we define “scheduled” traces and work with scheduled trace sets of processes, 
instead of the trace sets. Roughly speaking, in the scheduled traces every compo- 
nent of a network is scheduled to process in a cyclic fashion if it has an enabled 
event. Using scheduled traces rather than the full trace set does not change the 
basic theory because, as we will show for the processes we consider, for any trace 
t, there is a scheduled trace with the same set of events as t-in particular, with the 
same input and output as t. In the rest of this section, by networks, we mean 
compositions of compatible sets of processes. 

An important closure property we use in subsequent sections is the following: 

DEFINITION 5. A set 2 of traces of a network N of processes is said to be prefix 
limit closed if for an arbitrary infinite sequence t, if every finite prefix of t is a prefix 
of some trace in Z, then t is a trace of N. 

We cannot expect the set of all traces of a process to be prefix limit closed, 
because even if we take a simple buffer process there are traces in which arbitrarily 
many values arrive at the input port before any value is output. So every prefix of 
an infinite sequence of input events can be extended to a trace, but the infinite 
sequence of input events is certainly not a trace. 

The problem is that asynchrony allows an arbitrary amount of input to arrive 
before output is produced. We therefore define the notion of a scheduled trace in 
which enabled output events happen within a fixed bounded number of steps. The 
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set of scheduled traces of sequential processes, unfair split processes, and unfair split 
with signal processes turn out to be prefix limit closed. 

DEFINITION 6. A scheduled trace t of a network N is a network trace such that 
for every process P in N, if t, is the projection of t onto P, and P has m ports, then 
for every i> 0, if tp[i] is an output event and tp[(i- m) ... (i- 1 )] does not 
contain any output events at the same port, then tp[l ... (i-m- l)]“t,[i]” 
tP[(i-m)..+(i- l)]^tp[(i+ l)... ] is not a trace of P. 

The idea here is that every enabled event that continues to remain enabled must 
happen in the trace within the next m events of the point where it is first enabled. 
So if an output event is enabled at some point in the trace, it could not have been 
enabled m events ago. The set of scheduled traces of a network will be called its 
scheduled trace set. The following is clear from the definition. 

LEMMA 2. The projection of a scheduled trace t of a network N onto a process P 
of the network is a scheduled trace of P. 

The point of the scheduling operation has been to ensure that, in our arguments, 
we can represent processes and networks by sets of traces that are prefix limit 
closed. The following lemma says that the scheduled trace set of the processes that 
we work with are indeed prefix limit closed. 

LEMMA 3. The scheduled trace set of a determinate process is prefix limit closed. 

The proof is in Appendix B. 

DEFINITION 7. An infinite chain /?, c p2 E ... of sequences is said to be even- 
tually increasing if it is non-decreasing and there is no i, such that Vj > i, pi = pi. 

We use this definition in Lemma 4 and in subsequent sections when we discuss 
the other split primitives. 

LEMMA 4. For any finite network N of sequential processes, unfair split processes 
and unfair split with signal processes, the scheduled trace set is prefix limit closed. 

The proof is in Appendix B. 
So far we have concentrated on the scheduled trace set and shown that it has a 

nice property, prefix limit closure, that will be important to us in the next section. 
We now need to ensure that for every trace with some particular sequences of input 
events and sequences of output events, there is a scheduled trace with the same 
input and output, so that we can use the scheduled trace set to represent the 
behaviors of a process or network. This is done by defining a scheduling operation 
on traces that uses the causal dependency between events. The details are in 
Appendix C. 
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3. INEXPRESSIBILITY RESULTS 

We have described our model of computation, and we now wish to understand 
the different “levels” of indeterminacy that arise in this model. These levels will 
be described in later sections using the split processes that were defined in the 
Introduction. 

3.1. Implementability 

In this subsection, we establish our notions of when one level is stronger than 
another and when one level is weaker than another. We describe the rules by which 
we can construct networks of processes in the appendices. We now establish the 
definitions for implementability and non-implementability. 

DEFINITION 8. A set S of processes can implement a relation 4 if there is a finite 
network N, built out of copies of processes in S, such that R is the input-output 
relation of N. 

DEFINITION 9. A set S of processes can weakly implement a process or a 
network M if there is a finite network N, built out of copies of processes in S, such 
that N and M have the same input-output relation. 

DEFINITION 10. A set S of processes can strongly implement a process or a 
network M if there is a finite network N, built out of copies of processes in S, such 
that N and M have the same trace set. 

We will be concerned with proving failure of weak implementability, since this is 
a stronger notion than failure of strong implementability. In all our implemen- 
tability and non-implementability proofs, we will always assume that we can use 
copies of processes from a specific base set of processes. These are the sequential 
processes described earlier. We emphasize that whenever we say that a process N, 
can or cannot strongly implement (weakly implement) another process Nz, then we 
really mean that the set of processes consisting of all sequential processes and N, 
cannot strongly implement (weakly implement) N2. 

DEFINITION 11. Processes N1 and N2 are said to be at the same expressiveness 
level if they can strongly implement each other. 

DEFINITION 12. A process N, is said to be more expressive than N, if N, can 
strongly implement N,, but NZ cannot strongly implement N,. 

We will also say that N, is less expressive than N, in the above definition. 

3.2. Oracles 

We now present some implementability results, and we use some special 
processes called oracles to present these results. 
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DEFINITION 13. An oracle is a process with no input ports and one output port 
p, such that the process can output any one of the sequences in some specific set 
SG V” of sequences at the output port p. 

One example of an oracle is a process with no input ports and one output port, 
at which the process can output any positive integer. Let us define the three oracles 
that we will be most concerned with and are intimately related to the split 
primitives. Each of these three oracles will be described by their sets of possible 
outputs, which will be sequences of l’s and 2’s. 

1. the set O,, of all infinite sequences of l’s and 2’s, 
2. the set O,,., of all infinite sequences of l’s and 2’s containing at least one 

1 and at least one 2, and 
3. the set O,, of all infinite sequences of l’s and 2’s containing infinitely many 

l’s and infinitely many 2’s. 

We will also refer to the oracle processes corresponding to these sets of outputs by 
O,,, O,,, and O,,, respectively. 

We can now strongly implement any one of the six split processes by using the 
appropriate oracle in the network shown in Fig. 2 and either suppressing or not 
suppressing the output at 0,. The process P reads a value u from its input port i. 
If there are no values to be read, it waits until there is a value to be read. It then 
reads a value u’ from the oracle output. If u’ = 1, then it outputs u at port 0,. If 
u’ = 2, then it outputs u at port oz. It also outputs V’ at o, and then repeats the 
above. When the oracle chosen is O,, then we strongly implement unfair split and 
unfair split with signal. When the oracle is chosen is O,.,, then we strongly imple- 
ment weakly fair split and weakly fair split with signal. When the oracle chosen is 
O,, then we strongly implement strongly fair split and strongly fair split with 
signal. 

It is also clear that unfair split with signal can strongly implement O,,, weakly 
fair split with signal can strongly implement O,.,, and strongly fair split with signal 
can implement O,,. This is because the signal output port of these split processes 
can be used to manufacture the oracle outputs at their signal output channels by 
making the input sequences of these split processes be any infinite sequence, say 1 03. 
Therefore the following theorem follows. 

oraclel,ii os , 

01 
1 1 

02 

FIG. 2. Split from an oracle. 
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TIGOREM 2. Unfair split with signal and 0, are at the same expressiveness level. 
Weakly fair split with signal and O,, are at the same expressiveness level. Strongly 
fair split with signal and 0, are at the same expressiveness level. 

3.3. Some Strong Implementability Results 

We will now describe the expressiveness picture in Fig. 1, in which an arrow from 
one process to another indicates that the first process can strongly implement the 
second. 

THEOREM 3. Strongly fair split can strongly implement strongly fair split with 
signal. 

Proof. Figure 3 illustrates how we can manufacture the oracle 0, from strongly 
fair split. The determinate process P receives an infinite increasing sequence of 
positive integers at port p such that the sequence has an infinite increasing comple- 
ment. P outputs an infinite sequence of l’s and 2’s at port o,, such that the ith 
value in the sequence is a 1 if and only if P reads the value i from port p. The oracle 
O,, can now be used to strongly implement strongly fair split with signal, as 
described earlier. 1 

This implies that strongly fair split, strongly fair split with signal, and O,, are all 
at the same expressiveness level. 

THEOREM 4. O,, can strongly implement weakly fair split with signal, and 
hence O,,. 

Proof: The same figure 2 illustrates how we can strongly implement weakly fair 
split with signal from 0,. The determinate process P is different: it first uses the 
sequence at port p to decide whether either of the output streams should be finite 
and, if a stream should be finite, to decide which elements of the input stream 
should comprise the finite output stream. If it decides that both streams are to be 
infinite, then it uses the sequence of l’s and 2’s at port p to decide which input 
values should be output at port or and which input values should be output at 
port oz. m 

THEOREM 5. Weakly fair split can strongly implement unfair split. 

Proof: Let C + be the infinite sequence l”2 A 3 h . . . of all positive integers. 
When this is the input to a weakly fair split, the first value on the first output 

1,2,3... 
* ss 

FIG. 3. SSS from SS. 
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channel could be any positive integer. A determinate process can obtain arbitrary 
positive integers from a finite number of weakly fair splits in this way. Then the 
determinate process can use these arbitrary integers to decide whether one of the 
output streams of the unfair split process being implemented should be empty, in 
which case the entire input stream should comprise the other output stream. 
Otherwise the process just uses a weakly fair split process to decide the distribution 
of input stream elements. 1 

THEOREM 6. O,, can strongly implement O,,. 

Proof A similar proof as the above. 1 

3.4. Inexpressibility of Fair Split 

Our main theorem here states that there is no network consisting of sequential 
processes and WSS process that weakly implements SS. We consider a network that 
supposedly weakly implements SS. We express the set of scheduled traces of the 
network as the union of a countable family of trace sets. We show that the traces 
in each member of the family is prefix-limit-closed. We build a tree representation 
of the traces in each family. We quotient the tree by contracting all edges that do 
not correspond to events at output ports. Each quotiented tree is finitely branching. 
Finally we diagonalize to exhibit a possible output sequence of strongly fair split 
that is not produced by any trace of the network. First we establish the required 
definitions and lemmas. 

DEFINITION 14. If S is a set of traces.of a network, then T(S) is the tree whose 
nodes are finite prefixes of traces in S and such that prefix s’ is a child of prefix s 
iff s’ = s “e for some event e. We assume that each edge is labeled with the last event 
of the prefix associated with the descendant node. 

We note that the set of sequences corresponding to the paths in the tree from the 
root is not necessarily equal to the set of traces S. All that can be said is that, for 
every sequence corresponding to a path in the tree from the root, every prefix of 
this sequence is a prefix of a trace in S. 

DEFINITION 15. A process P is said to be finitely branching if for any finite 
sequence of events t that is a prefix of a trace of P and not itself a trace, there are 
only finitely many output events e such that the is a prefix of a trace of P. 

Note that there are clearly infinitely many input events that can be the next event 
after the sequence of events t. The definition restricts the number of output events 
that can be the next event. We note that all sequential and split processes are 
finitely branching. 

LEMMA 5. If S is the trace set of a network N offinitely branching processes for 
a fixed input, then T(S) is finitely branching. 
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Proof: Suppose s is a prefix of a trace in S. Then the next event of the trace 
could be an input event on any of the finitely many input ports, or an output event 
for some process in the network. There are finitely many of these, too, because there 
are finitely many processes and each process is finitely branching. Therefore, s has 
only finitely many children .in T(S). So every vertex in the tree has finitely many 
children; i.e., the tree is finitely branching. 1 

The following theorem follows easily from Koenig’s lemma. 

THEOREM 7. No network of sequential processes and unfair split with signal 
processes can weakly implement weakly fair split. 

Proof. Suppose there is a finite network N of sequential processes and unfair 
split with signal processes that weakly implements WS. We fix the input stream to 
be 1 ̂ 2”3... . Then the first output port c of N, corresponding to the first output 
port of the WS process being implemented, is guaranteed to have at least one value 
output on it. This value can be any positive integer. 

Let S consist of the scheduled traces of N for the input 1”2”3... . Every trace has 
a scheduling with respect to any port order. Therefore, for every possible output 
sequence of the network onto port c, there is a scheduled trace in S that outputs 
that sequence on c. We consider the tree T(S). By Lemma 4, every path in the tree 
is a network trace, and so it has an output event on c. We prune every path at the 
first output event on that path on port c. Moreover, by Lemma 5, T(S) is finitely 
branching. Therefore the pruned tree is a finitely branching tree with no infinite 
paths. By Koenig’s lemma, the tree is finite. So there are finitely many leaves, i.e., 
finitely many possibilities for the first output event on port c. This means that the 
network does not weakly implement weakly fair split&contradiction. 1 

The next theorem shows that strongly fair split cannot be weakly implemented by 
a weakly fair split even with a signal. The proof requires a diagonalization 
argument-cardinality or Koenig’s lemma arguments by themselves do not seem 
sufficient. 

THEOREM 8. No network of sequential processes and WSS processes can weakly 
implement SS. 

In order to prove this theorem we need several definitions and lemmas. We make 
explicit the fact that WS embodies a countable choice. First we give a definition for 
events that lead up to this countable choice. 

DEFINITION 16. Let N be any network and let t be any sequence of events in 
that network; i is said to be a split initiation time for t if there is a WS or WSS 
process P in N and a non-signal output port c of P such that either 

1. t[i] is the first output event on c in t, or, 

571/47/2-5 



300 MCALLESTER, PANANGADEN, AND SHANBHOGUE 

2. t[i] is an input event of P and there is no output event on port c in 
t[l . ..i]. 

Such a t[i] is called an initiation event. 

DEFINITION 17. Let s be a finite sequence of events of a network N. An initia- 
tion-free extension of s is a sequence t such that s is a prefix of t and such that all 
initiation events in t occur in the prefix s. 

The next lemma follows from the definition of weakly fair split. 

LEMMA 6. For any trace t of a network, there exists some finite prefix s oft such 
that t is an initiation-free extension of s. 

Prooj We show that each WS or WSS process in the network has a last split 
initiation time. There are two cases. Let t’ be the projection of t onto the ports of 
a WS or WSS process. 

(i) there are output events on both the output ports (both the non-signal 
output ports in the case of a WSS process). In that case, if t[m] is the first output 
event on the first output port, and t[m’] is the first output event on the second 
output port, then the last split initiation time for this process is max(m, m’). 

(ii) there are no output events on one of the output channels. Then there 
must be only finitely many input events in t’. Let the last of these be t[m]. Also 
let the first output event on the other output channel be t[m’]. Then the last split 
initiation time for this process is max(m, m’). 

Since there are finitely many WS or WSS processes, if i is the maximum of their 
last split initiation times, then t is an initiation-free extension of t[ 1 . . . i]. i 

DEFINITION 18. Let N be a network and s a finite sequence. We define C, to be 
the set of all scheduled traces of the network that are initiation-free extensions of s. 

LEMMA 7. For any finite network N, there are countably many sets of the form 
C,, for s any finite sequence of events of the network. 

ProoJ: Each event is a pair, and there are countably many of these, assuming 
that there are countably many values that may be transmitted at a port. Therefore, 
there are countably many finite sequences of events, and so there are countably 
many sets of the form C,. 1 

Note that even though every member of C, is an initiation-free extension of s, it 
is not obvious that every path in T(C,) is a member of C,. So the following lemma 
is required. 

LEMMA 8. For any finite network N and any sequence of events s of the network, 
any path in T(C,) is an initiation-free extension of s. 
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Proof Let t be a path in T(C,). Since every trace in C, starts with the prefix s, 
t must also start with the prefix s. It follows from the definition of an initiation time 
that if i is an initiation time in t, and a trace t’ is identical to t up to and including 
the ith event, then the ith event is also an initiation event in the trace t’. Hence this 
ith event is in s. Since every prefix of t is a prefix of some trace t’ in C,, t cannot 
contain any initiation-events other than those in the prefix s. i 

LEMMA 9. For any network N of sequential processes, weakly fair split processes, 
and weakly fair split with signal processes, and for any finite sequence of events s, C, 
is prefix-limit-closed. 

Proof: Let t be a sequence such that every prefix of t is a prefix of some member 
of C,. By Lemma 8, t is an initiation-free extension of s. We must show that t is a 
network trace. 

Suppose t is not a network trace. Then the projection t, of t onto some process 
P of the network is not a trace of P. We will proceed as in Lemma 4. Let ti be the 
projection of t[ 1 . . i] onto process P. Then each ti is a prefix of a scheduled trace 
of P. 

Case 1. The tis form an eventually increasing sequence. If P is not a weak split 
or a weak signal split process, then, by prefix-limit-closure of the scheduled trace 
set of P, t, is a trace of P, contradicting the assumption. 

If P is a WS or WSS process, then t, must be an infinite sequence, containing 
infinitely many input events and infinitely many ouput events. Since this is not a 
trace of P, it must be the case that all the output events are on the same output 
port of P, contradicting the requirement that there be output events on both the 
ouput porst if the input is infinite. This means that the projection of t onto process 
P has infinitely many input events for P, and all of these are initiation events for 
t. This contradicts the fact that s is finite, and t is an initiation-free extension of s. 

Case 2. For some i, for all j > i, t, = ti = t,. Let t’ be a scheduled trace of the 
network, such that t [ 1 . . f (i + m)] is a prefix of t’. Therefore the projection t> of t’ 
onto P has tifm= ti as a prefix. Since ti is not a trace of P and tip is a trace of P, 
t> must contain an output event e such that tihe is a prefix of a trace of P, violating 
the definition of a scheduled trace for t’. 

Thus t is a network trace and so, C,7 is prefix-limit-closed. 1 

DEFINITION 19. The complement of an increasing infinite sequence s of positive 
integers is defined to be the increasing sequence of all those positive integers that 
are not in the sequence s. 

We now define a quotienting operation on trees that conceals events that are not 
output events at a fixed port. 

DEFINITION 20. Let T be a tree in which the edges are labeled with events from 
a network N. Let c be a port of N. We define the quotient of T with respect to c, 
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written T/c, to be the tree obtained by contracting every edge in T that is not an 
output event on c. 

Proof of Theorem 2. Suppose there is a network N of sequential processes and 
WSS processes that weakly implements strongly fair split. Let one of the output 
ports, corresponding to an output port of the SS process being implemented, 
be c. We fix the input stream to be 1 A 2 A 3 A . . . . Then, at c, N can output any 
increasing infinite sequence of positive integers, whose complement is also an 
increasing infinite sequence of positive integers. Since the scheduling operation can 
be applied to any trace to obtain a scheduled trace, every possible output sequence 
of N onto port c is output by some scheduled trace. 

Let S be the scheduled trace set of N for the fixed input. We divide S into sub- 
classes C,, as defined earlier. We then obtain a countable family of trees T(C,)/c. 
We claim that each tree T(C,)/c is finitely branching. Every path in T( C,) has 
infinitely many output events at port c, since every path in the tree is a network 
trace by Lemma 9. Consider any node n of the tree such that the prefix associated 
with that node ends in an output event on c. These are exactly the nodes that 
remain after the quotienting. We prune every path from n at the first output event 
on c on the path. Since the tree T(C,) is finitely branching the pruned tree below 
n is also finitely branching and has no infinite paths. By Koenig’s lemma, the tree 
is finite. So there are finitely many leaves. Thus in the quotiented tree, n has finitely 
many children corresponding to the finitely many leaves of the above pruned tree. 

We name the quotiented trees T(C,)/c by T,, T2, . . . Each path in any of these 
trees must correspond to an infinite increasing sequence of positive integers. To 
obtain a contradiction, we construct, by diagonalization, an infinite increasing 
sequence of positive integers with infinite complement, that will be in none of these 
trees. Since every tree, T,, is finitely branching, every level of each T, has finitely 
many nodes. Hence, there is a maximum positive integer that occurs at that level. 
Let this maximum positive integer for the jth level in the ith tree be called M,,,. 
We define s[l], the first element of the sequence being constructed, to be any 
positive integer greater than M,,, , say M,,, + 1. Having fixed the elements 
SC 11, $21, ..., s[i- 11, we define s[i] to be any positive integer greater than 
max { Mi,i, s[i - 1 ] + 1 }. This is certainly an infinite increasing sequence. Moreover, 
between any two consecutive elements s[i- l] and s[i] of the sequence, there is at 
least one positive integer not in the sequence, namely s[i- l] + 1. So the sequence 
has an infinite complement. But this sequence is not in any of the trees T,, T,, . . . 
This is because, for any i, the ith element of the sequence is greater than Mi,i, and 
this is the greatest integer at the ith level of Ti. 

This means that there is an infinite increasing sequence of positive integers with 
infinite complement, that is not a possible output sequence at c. Hence the network 
could not have weakly implemented strongly fair split. 1 

3.5. Inexpressibility of Signaling 
In this subsection we explore the nonexpressability arising from the sequentiality 

of the individual processes. Understanding sequentiality is a fundamental concern 
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in the semantics of modern programming languages [ZO, 301. Our results in this 
section may be viewed as a first step towards understanding how sequentiality 
interacts with indeterminacy. The main theorem states that one cannot obtain a 
split with a signal from an ordinary split. The point is that the signal port is 
guaranteed to have as many values output on it as there are inputs. Unfair split has 
no output ports on which a stipulated number of values are guaranteed to appear. 
The only processes for which one could guarantee that a certain number of values 
would be output at a particular output port is a sequential process. In this case, 
however, the output values are determined by the input values. We show that this 
argument extends to networks composed of split processes and sequential processes. 
It turns out that the theorem holds for weakly fair split as well but not for strongly 
fair split. Thus the result is quite delicate and depends on the level of fairness we 
consider. 

DEFINITION 2 1. Suppose c is a port of a network N. Let R be a subset of the 
trace set of N. We say that a pair (c, n) is guaranteed in R if it occurs in every trace 
in R. 

DEFINITION 22. Suppose c is a port of a network N. Let R be a subset of the 
traces of N. We say that a pair (c, n) is determined in R if 

Vt,, t,ER, (c,n) occurs at iin t, and at jin t2-tl[i]=tZ[j]. 

The following is the central lemma of this section. 

LEMMA 10. For any network N of sequential processes and unfair split processes, 
if R ii the set of all network traces with a particular input I, then every pair (c, n) 
that is guaranteed in R is determined in R. 

ProojI The proof proceeds by induction on the earliest occurrence of a guaran- 
teed pair. Suppose (c, n) occurs at time 1 in a trace t. Then clearly n = 1. Also c 
has to be either the output port of a sequential process or an input port of the 
network. In the first case it is clearly determined by determinacy of the sequential 
process, and in the second case, it is determined since we are considering a fixed 
input. 

Suppose the guaranteed pair (c, n) has an earliest occurrence time equal to k in 
R. Suppose that the lemma holds for all guaranteed pairs that have an earliest 
occurrence time less than k in R. Suppose that this pair is not determined in R. 
Then there are two traces g and h differing at the pair (c, n). Since they differ, c 
cannot be an input port of the network. Because the pair (c, n) is guaranteed, c 
cannot be an output port of an unfair split process. Thus c must be the output port 
of a sequential process A. Without loss of generality, we can assume g to be the 
trace in which (c, n ) occurs at time k. Let the sequence n, (g) be s and the 
sequence 17, (h) be s’. Let (c, n ) occur at times i and j in s and s’, respectively. Let 
ZZ: (s) be the guaranteed input in s. Since every event in n:(s) has an earliest 
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occurrence time less than k, they are all determined. Therefore, if 17:(s) can 
produce the output event (c, n), then it must be determined too, contradicting our 
assumption that the pair (c, n) is not determined. So ZZ~(S) cannot produce the 
output event (c, n). By sequentiality, there is an input port of A that must get 
extended for the output at c to get extended. This means that there is a guaranteed 
input event in s other than those in n:(s). But ZZy(s) contains all the guaranteed 
input events in s, giving us a contradiction. Therefore (c, n) must be deter- 
mined. 1 

THEOREM 9. No finite network of sequential processes and unfair split processes 
can weakly implement unfair split with signal. 

Proof Suppose there is a finite network N showing this implementation. Let c 
be the signal output port in this implementation. Let the input stream to the 
network be a single element, and suppose R is the set of network traces with this 
particular input. Then at least one event is guaranteed at port c in every trace in 
R. Moreover, it is the case that this first event at port c could be (c, 0) or (c, 1). 
This contradicts the earlier lemma. 1 

The following theorem is the extension to the case where we allow weakly fair 
split instead of unfair split. 

THEOREM 10. No finite network of sequential processes and weakly fair split 
processes can weakly implement unfair split with signal. 

In order to prove this theorem, we need several definitions and lemmas. 

DEFINITION 23. Let N be a finite network and s a finite sequence of events. We 
define Cl,, to be the set of all traces of the network for a particular input Z that are 
initiation-free extensions of s. 

LEMMA 11. For any network N of sequential processes and weakly fair split 
processes, every pair (c, n > that is guaranteed in CL,, is determined in C:.,. 

Proof The proof proceeds exactly as in Lemma 10, except for the following 
case. (c, n) has an earliest occurrence time equal to k in Cl,, and all pairs with 
earliest occurrence times less than k are guaranteed by the induction hypothesis. 
Suppose that this pair is not determined in Ct.,. Then there are two traces g and 
h differing at this pair. We consider the case where c is an output port of a weakly 
fair split process. In that case, n = 1, because only one event is guaranteed at an 
output port of a weakly fair split process. Therefore this is an initiation event, and 
so it must be in s. Hence g and h cannot disagree on (c, n) because both g and 
h have the same prefix s, and this contradicts the supposition that the pair is not 
determined. The rest of the cases are exactly as in Lemma 10. 1 

Proof of Theorem 10. Suppose there is a finite network that is supposed to 
implement WSS. Let c be the signal output port in N. Let the input stream to N 
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be some infinite stream I. This guarantees that the output stream on c is infinite for 
every network trace. Every network trace is in some class C:,,, as in Lemma 6. 
Moreover, every trace in C;,, has the same output at port c. This is because, since 
the input Z is infinite, there are infinitely many events guaranteed at port c, and by 
Lemma 11, they are all determined. 

As in Lemma 7, there are countably many such classes CL,,, and so for the input 
Z, there are at most countably many different outputs at port c. But, by the defini- 
tion of an unfair split process with signal, for an infinite input, there are uncoun- 
tably many output stream possibilities for the signal output port. This means that 
the network N does not weakly implement an unfair split process with signal. 1 

In the next section, we presented our main results proving the split primitives to 
be of differing expressive power. 

4. CONCLUSIONS 

We have examined the expressiveness situations that arise with a variety of 
fairness primitives in an asynchronous distributed computation setting. We used a 
particular model of asynchronous distributed computation, called the dataflow 
model. This model very naturally portrays the situation of autonomous computing 
agents communicating asynchronously with each other. The main contribution here 
has been to show that there is a surprising hierafihy of different notions of indeter- 
minacy. This cannot simply be described using degree of branching-bounded ver- 
sus unbounded. In fact we have shown that depending on what fairness guarantees 
we demand of our primitives, their behaviors will satisfy different properties, and we 
cannot always hope to simulate the effect of one primitive using another. We also 
saw how the expressive power of primitives varies when internal choices are made 
explicit. 

It is known, largely through work by Abramsky [3] that one can give an elegant 
fixed point semantics to networks containing strongly fair split or inlinite fair 
merge. The point is that such primitives can be thought of as being “oracle driven,” 
that is, the indeterminacy arises from an external source that resolves choices in a 
manner independent of the input. One can model such networks as sets of func- 
tions. Russell [ 311 has shown that such sets of functions are fully abstract if one 
enforces the proper closure conditions on such sets. The oracle view does not apply 
to networks containing, for example, fair merge. Our results in this paper say how 
the expressive power varies with the output of the oracle. 

Finally, we feel that the significance of the signaling phenomenon is that there are 
some subtle interactions between indeterminacy and sequentiality. We have not 
formulated a definition of what sequential or nonsequential might mean in the 
presence of indeterminacy. We hope that subsequent investigations will lead to a 
satisfactory definition. 
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APPENDIX A: OPERATIONAL SEMANTICS OF DATAFLOW PROCESSES 

In this appendix we describe the operational semantics of dataflow networks in 
terms of automata equipped with a notion of concurrent transition. The develop- 
ment here is essentially due to Lynch and Tuttle [21,22] and Stark [34, 351. We 
have included it in order to make the paper reasonably self-contained. The opera- 
tional semantics describes the execution of a program in terms of a sequence of 
transitions between states. We do not wish to get tied down to any particular 
machine, so we wish to define an abstract machine that is always in one of some 
fixed set of states. Command execution of the machine is represented by events that 
cause transitions between states. Since this machine should be general, it should 
also support parallel execution of commands, and then the notion of fairness comes 
in-if there are two infinite sequences of commands that the machine can execute 
in parallel, then we should make sure that both the infinite sequences of commands 
are executed by the machine. This leads us to the necessity of defining legal or fair 
computations. 

A.l. Port Automata 
We now formally describe processes or computing agents as automata, that can 

receive values at “input ports” and output values at “output ports.” We use the 
term “port” instead of “channel” to emphasize that this is where an automaton 
interfaces with its environment. The set of events of an automaton comes equipped 
with a concurrency relation, that describes which pairs of events are causally 
independent and can be permuted in execution sequences. 

DEFINITION 24. A concurrent alphabet is a set E, equipped with a symmetric, 
irreflexive binary relation 11 E, called the concurrency relation. 

This concept is used in trace theory [ 1,231 to obtain an algebraic theory of 
traces. We call events related by the concurrency relation concurrent. Let V be a set 
of data values called the value alphabet. Throughout this paper, we assume a fixed 
countable value alphabet. We refer to V” as the domain of streams. We use the 
term “stream” interchangeably with the term “value sequence.” 

We now describe the notion of an automaton that can execute events. The input 
and output events are described as (port, value) pairs. The rest of the events need 
not be of this form. 

DEFINITION 25. A monotone port automaton is a tuple 

M= (4 Q, A), 

where 

l E is a concurrent alphabet of events, and Znp and Out are disjoint subsets 
of E, called the sets of input events and output events, respectively. Inp = Pi” x V, and 
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Out = Pout x V, for some disjoint finite sets P’” and Pout. The elements of Pi” are 
called input ports, and the elements of Pout are called output ports. (p, or) and (p, u2) 
are not concurrent for any p, uI, u2. The elements of E\(Znpu Out) are called 
in ternal events. 

l Q is a set of states, and q’ E Q is a distinguished initial state. 

l A is a transition function that maps each pair of states q, r in Q to a subset 
A(q, r) of Eu {E}. E, a special event not in E, is called the identity event, 

satisfying the following conditions: 

Disambiguation. r # r’ implies A(q, r) n A(q, r’) = 0. 

Identity. eEA(q,r) iff q=r. 
Receptivity. For any state q and any input event a, there exists a state r such 

that a E A(q, r). 

Commutativity. For any states q, r, s and any events a, b if a 1) b, a E A(q, r) 
and b E A(q, s), then there exists a state p such that a E A(s, p) and b E A(r, p). 

Non-disabling inputs. If e is an input event at an input port, then e I( e’ for any 
event e’ that is not an input event at the same port. 

Output delay. For any states q, r, s and any events a, b, if a E A(q, r), 
b E A(r, s), a is an output event at an output port and b is not an output event at 
the same port, then there exists a state p such that b eA(q, p) and aEA(p, s). 

This definition is similar to the definitions of a port automaton and an input- 
output automaton due to Stark in [21,28] and is closely related to the input-output 
automata of Lynch and Tuttle [22]. Disambiguation states that, from a particular 
state, an event cannot take the automaton to two different states. 

A basic property of systems is that they cannot control what their inputs are. 
They may, of course, ignore their inputs but they cannot determine their inputs 
which are supplied by the external environment. To express this we would also like 
to have input events always “enabled.” We can make the notion of enabling precise 
by saying that event a is enabled at state q if a E A(q, r) for some state r. The intent 
of input events is to represent the arrival of data on input ports. The arrival of data 
on input ports should not be dependent on the state, and so, for any state and for 
any event corresponding to a value arriving on an input port, there is a new state 
corresponding to the value having arrived. This is captured by receptivity. Further, 
an input event should not be able to disable other events that were enabled before 
this input event. This is captured by the property of non-disabling inputs. 

If two events are concurrent, i.e., are related by the concurrency relation, and 
if both of them are enabled in a particular state, then the execution of any one 
of these two events does not disable the other, and moreover, the execution of 
these events in either order results in the same final state. This is captured by 
commutativity. 

The intent of output events is the detection of data at output ports by the 
environment. The property of output delay says that events following an output 
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event are, in general, not dependent in any way on the output event, and so they 
could even happen before the output event. This idea is similar to, but a restricted 
form of, an axiom in Bednarczyk’s asynchronous systems [7]. 

The transitions of an automaton are the triples (q, a, r) with a E A(q, r). We will 
denote the transition (q, a, r) by q 4 r. The transition q -% q is called an identity 
transition and is denoted by id,. 

One should note that there is a difference between the notions of euent and 
transition. A transition describes two states and an event such that when the 
event is executed in the first state, the second state is reached. An event may execute 
in different states. For example, an “x :=x + 1” event may be executed in a 
state in which x is 3, as well as in a state in which x is 4. But they will correspond 
to different transitions. 

DEFINITION 26. A computation sequence y is a finite or infinite sequence of 
transitions of the form 

4+--+ q2L . . . 

The domain dam(y) of y is the state q,. A computation sequence is said to be initial 
if dam(y) is the distinguished start state ql. Two computation sequences y and 6 are 
coinitiul if dam(y) = dam(6). 

We will now give an example of an automaton. We will use h as an infix 
operator for representing concatenation of sequences. 

EXAMPLE 2. Buffer. This automaton has one input port and one output port. It 
reads values and outputs them, guaranteeing to read and output of all values that 
arrive on the input port. 

Let the set of states Q be V*. A state here represents the contents of the input 
port. The initial state is A. Let the set of input events Znp be {i} x V and the set 
of output events Out be (o} x V. Then the set of events E is Znp u Out. 

We now define the transition relation, using u to represent a member of V. 
A(q,r)= ((i,u)} iff r=qh u. A(q, r) = ((0, u)} iff q = u”r. A(q, q) = (E}. 

Every event in Znp is concurrent with every event in Out, and E is concurrent with 
any other event. 

We end this subsection with some notation. We refer to events of the form (p, u) 
as p-events. Also, we denote the value component u of an event e = (p, u) by 
value(e). We also extend the definition of value to sequences-ualue((p, u,)(p, Us)...) 
1s UIU2... . For any computation sequence 

0 = q1 --L q* 02 . . . 

we define ev(a), the sequence of euents of cr to be a,~,... . We use the symbol 17 as 
a projection operator on sequences of events. Given any sequence t of events and 
a set S of ports, we will use n,(t) to represent the subsequence of t consisting of 
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the p-events in t for all ports p in S. If S is a singleton set (p}, then we will use 
the notation rip(t) instead of IIIpl(t). If t is the sequence of events of a computation 
sequence 0, then we also write n,(a) to mean the same thing as II,(t) and 17,(a) 
to mean the same thing as LIP(t). When we compare the projections of a sequence 
of events onto different ports, then we will follow the convention of implicitly 
applying oalue to the projections. We use the notation t[i] to represent the ith 
event in a sequence t of events and the notation y[i] to represent the ith transition 
in a computation sequence y. 

A.2. Completed Computation and the Input-Output Relation 

In this subsection, we describe which computation sequences of automata we 
view as “completed,” i.e., cannot be extended further. Once we establish this, we 
then show how we can abstract the input-output behavior of an automaton from 
its completed computation sequences. 

We now describe the computation sequences that we consider as “completed.” To 
do this, we extend the prefix ordering on computation sequences to include the con- 
currency information in the concurrency relation. A finite computation sequence y 
is a prefix of a computation sequence 6, and we write y $6, iff there exists a com- 
putation sequence 5 with y< = 6. We define permutation equivalence to be the least 
congruence w, respecting concatenation, on the set of finite computation sequences 
of an automaton such that whenever a 11 b, the computation sequences q 4 r-L p 
and q & s 4 p are N -related. We define the permutation preorder relation 5 on 
finite computation sequences of A as the transitive closure of < u N. Define 
N-C -- _ n 2. It is an easy lemma that for y, 6 finite, y 5 6 iff 35 such that yl N 6. 
One observation we can make is that if y L 6, then the multiset of events in y is 
contained in the multiset of events in 6. Another lemma is that for y, 6 finite, if 
y L 6 and the multiset of events in y is contained in the multiset of events in a 
prefix 6’ of 6, then y 5 6’. We can now extend the permutation preorder relation 
to infinite computation sequences by defining y 5 6 iff for every finite y’ $ y, there 
exists a finite 6’< 6, such that y’ 5 6’. We define 1: = 5 n 2 for infinite computa- 
tion sequences also. 

We would like a notion of “completed” computation sequence, in which all 
events that could happen at any state have .either happened or been disabled. We 
would like to say that a finite computation sequence y is not completed if there is 
a non-input event enabled at its end. We would like to say that an infinite computa- 
tion sequence y is not completed if there is a suffix of y and an event e such that e 
is enabled at every state in the suflix and commutes with every event in the suffix. 
Intuitively, the event e can happen at any point in the suflix but does not do so. 
Completedness turns out to be identical to s-maximality for a particular input 
[32]. SO we will take maximality to be the definition of completedness. Whenever 
we talk about F-maximality, we will actually mean maximality for a particular 
input. We could think of the preorder 5 as the prefix ordering in which 
concurrency information has been encoded. It is quite pleasant to be able to state 
completedness as a maximality property of computation sequences. 
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DEFINITION 27. A computation sequence y of an automaton is said to be 
completed if is 5 -maximal among all computation sequences with the same input 
as y. 

Let us now describe the notion of a history. Let P be the set of input ports and 
output ports of an automaton. A history over P is defined to be a function from P 
to I’“. Then for any computation sequence 0, we can define a history H, by letting 
H,(p) be value (n,(a)). Similarly, for any sequence t E (P x V)“, we can define a 
history H, by letting H,(p) be value(Z7,(t)). We denote the restriction of H, to the 
input ports by HF, and call it the input port history corresponding to (r. We denote 
the restriction of H, to the output ports by Hz”‘, and call it the output port history 
corresponding to O. 

Now we can describe the input-output relation of an automaton. This describes 
the input-output behavior-says which outputs are possible for which inputs. This 
is the most abstract that we can get because function semantics cannot be used for 
indeterminate networks. 

DEFINITION 28. The input-output relation of an automaton is the set of all pairs 
(H”, Hz”‘) with (T being a completed computation sequence of the automaton. 

We can also equivalently consider the input-output relation to be a set of pairs 
of tuples of streams, the first tuple of each pair consisting of streams at the input 
ports and the second tuple consisting of streams at the output ports. We will also 
refer to the input-output relation as the IO-relation. 

A.3. Moves of Computation Sequences 

We now formalize some of the implications of commutativity and permutation 
equivalence for computation sequences. 

DEFINITION 29. A move of a computation sequence y is a pair (i, i + 1) such that 
r[i] =q”-t r and y[i+ l] =rA p and there exists a states such that q-%s and 
,a, p. 

Recall that we defined 5 to be the transitive closure of the union of the prefix 
preorder < with the permutation equivalence relation -, and we defined 
w--c -- - n 2. It then follows from the definition of N that if y, 6 are finite com- 

putation sequences and y N 6, then there is a finite sequence of moves that can 
transform y to 6. 

DEFINITION 30. A move transformation of a computation sequence y is any 
sequence of moves that involves any particular event occurrence in y only finitely 
often. 

The proviso, about moving any particular event occurrence only finitely often, is 
present because we do not want to consider sequences of moves for which event 
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occurrences may get “lost.” For example, consider a computation sequence y 
consisting of an output transition followed by infinitely many input transitions. 
Every one of the infinitely many input transitions can be flipped with the output 
transition. The result of this infinite sequence of moves would not contain the 
output transition at all. 

LEMMA 12. If y is a computation sequence, n is a move transformation of y, and 
6 is the result of the move transformation on y, then 6 N y. 

Proof If 9 is finite, then it involves only a finite prefix 7~ of y, and if the result 
of applying q to rr is rc’, then 7c 2: z’, and therefore, y = rrt N rr’t = 6 for some (Y. 

If 4 is infinite, then let rr be a finite prefix of 6. Let q’ be the smallest finite prefix 
of q such that the rest of the moves in q do not involve the event occurrences in 
rc. Let every event occurrence in 7~ and every event occurrence involved by 9’ be in 
the prefix 5 of y. If x’ is the result of applying q’ to 5, then 5 N n’, and this must 
extend 7~. Therefore z < TC’ N 5, thus proving 6 5 y. 

To prove that y 5 6, let rr be a finite prefix of y. Let (? be the smallest prefix of 
6 containing all the event occurrences in 7~. There must be a smallest prefix q’ of 9 
such that the rest of the moves in 7 do not involve events in <. We claim that 
rc 5 l. Let z’ be the smallest prefix of y that extends n and is involved by 17’. Then 
7t’ N 5. Then n < n’ N 5. Therefore x 5 5, thus proving that y k 6. 1 

COROLLARY 1. Zf y is a maximal computation sequence and n is a move transfor- 
mation, then the result of applying n to y is also maximal. 

LEMMA 13. Zf y is a computation sequence of an automaton, then it can be 
k -extended to a completed computation sequence with the same input as in y. 

The proof uses Zorn’s lemma and is similar to the one in [28]. Briefly, we can 
show that every chain of computation sequences y1 5 y2 C, . . . . such that y 5 yi for 
every i and all the yi have the same input as y, has a lub. Hence, by Zorn’s lemma, 
the set of all computation sequences 6, such that y 5 6, has a lub and this is 
maximal. 

COROLLARY 2. Zf y is a finite computation sequence of an automaton A, then it 
can be extended to a completed computation sequence with the same input as in y. 

Proof Let 6 be a completed computation sequence such that y 5 6. Since y is 
finite, there is a finite prefix 6’ of 6, such that y 2 6’. Therefore y< = 6’ for some (. 
Hence there is a sequence of moves that transforms 6’ to y[, and therefore trans- 
forms 6 to a completed computation sequence extending y. u 

A.4 Determinate Automata 

Earlier, we defined the input-output relation for an automaton. If this relation 
turns out to be the graph of a function-i.e., for any input, there is a unique output 
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associated with it in the input-output relation-then the automaton is said to 
compute that function. The following definition is from [34]. 

DEFINITION 31. An automaton is determinate if it satisfies the following condi- 
tion: b]) b’ whenever b, b’ are distinct non-input events both enabled at some state. 

Intuitively, a determinate automaton does not exhibit “internal indeter- 
minacy”-the only possible indeterminate choice that the automaton makes occur 
between input event transitions. The following theorem and lemma were proved in 
c341. 

THEOREM 11. Determinate automata compute functions, Moreover, a function f is 
computed by a determinate automaton iff f is a continuous function. 

LEMMA 14. Suppose A is a determinate automaton. Then for each input x, there 
is a unique completed computation sequence, up to N -equivalence, having input x. 
Moreover, iSinput x’ extends x, then for any completed computation sequence y with 
input x and any completed computation sequence y’ with input xl, y 5 y’. 

AS. Networks of Automata 

We now describe how we can build networks of automata by collecting together 
individual automata and then linking ports together. 

DEFINITION 32. If I is a finite index set, then a set Y = {Mi: ie Z} of automata 
is said to be compatible if 

l for all i,jcZ such that i#j we have (E,\(Znp,u Outi)) n (Ej\(Znpju Our,)) 
= @; that is, the sets of internal events of any pair of automata are disjoint, and 

l for any port name, at most two automata may have that name in common, 
and in that case, it must be the name of an output port of one automaton and an 
input port of the other automaton, 

where M, = (Ei, Qi, Aj), and Zp, is the set of input events of Mi, and Out, is the 
set of output events of Mi. 

The shared port names represent ports that will get connected when the set of 
automata are composed together. We will then obtain a network automaton. The 
input ports of the network will be all the input ports of the Mis, excluding those 
that are shared. The output ports of the network will be all the output ports of 
the Mls. 

DEFINITION 33. The composition of a compatible set 9’ of automata is the 
automaton 17 Mi = (E, Q, A), where 

l E = U Ei, with a 1) b iff a 1) ib for all iE Z such that both a and b are in E,. 
l Out = ((J Out,), and Znp = (u Znpj)\(U Out,), 
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. eeA((qi: FEZ), (ri: FEZ) iff for all ill, either e$E,and ri=qi, or else eEEj 
and e E A,(q,, Yi). 

The definition of I( above implies that events of distinct automata, that do not 
share any ports, are concurrent, because they are not both in the event set of any 
single automaton. We now explicitly define output hiding. 

DEFINITION 34. If d is an automaton with input ports Pi” and output ports 
PO”‘, and S is a subset of Pout, then the output hiding of S in d results in the 
automaton with input ports Pi” and output ports P”“‘\S with exactly the same sets 
of events and states and the same transition relation as d. 

When we compose two automata with a shared port name p, p being an output 
port of one automaton and an input port of the other automaton, then the two 
automata connected in this manner may execute a single event in the composed 
automaton, but this might correspond to an output event of one of them and an 
input event of the other. For example, suppose A and B are the two automata 
sharing port name p; that is, p is an output port of A, but an input port of B. Then 
(p, u) is an output event for A, but an input event for B. For the composed 
automaton, this corresponds to the emission of value u by A at its ouput port p and 
the arrival of u at the input port p of B. By defining composition in this way, we 
do not have to worry about liveness conditions to ensure that values output by A 
at p will eventually arrive at the input port p of B. 

The difference between a network of automata and a single automaton is that we 
can recover the structure of the individual automata in the network by appropriate 
projections. A network can be thought of as an automaton, coming with a 
predefined decomposition. One may, of course, specify a large automaton without 
giving such a decomposition. 

With each component automaton Mj, we associate restriction functions pi from 
states of the network to states of Mi, and oli from events of the network to events 
of M,. pi is defined by pi((qi: ic I)) = qi and CQ is defined by a,(a) = a, if a E Ei, and 
cri(a)=s otherwise. Then we can define the restriction n,,(y) of a computation 
sequence y = q, al + q2 “2 . . . of the network to a component automaton M, 
by pi(q1) ~ p;(q*) ilr(oz) . . . with the identity transitions collapsed. 

We can define history, input port history, and output port history corresponding 
to computation sequences of networks, just as we did for computation sequences of 
single automata. Intuitively, we would call a computation sequence of a network 
completed, if its projection onto every individual automaton is completed. This 
turns out to be equivalent to maximality of the computation sequence, so we will 
again define completedness to be maximality. 

DEFINITION 35. A computation sequence y of a network is said to be completed 
if it is 5 -maximal among all computation sequences having the same input as y. 
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Just as we defined the input-output relation for a single automaton earlier, we 
can now define the following: 

DEFINITION 36. The input-output relation of a network of automata is the set of 
all pairs (H:, Hz”‘) with o being a completed computation sequence of the 
network. 

In this section, we have presented a view of processes and networks as automata, 
and a view of computations of processes as sequences of events of these automata. 
We will henceforth use the terms “process” and “automaton” interchangeably. In 
the next section, we will discuss how we can abstract the internal events away from 
this description. 

APPENDIX B: PROOFS ABOUT TRACES 

In this appendix we give in full some of the proofs that we omitted in the main 
text of Section 2. 

DEFINITION 1. If y is a computation sequence, then we define tr(y) to be the 
subsequence of ev(y), consisting of all the input and output events in ev(y). 

DEFINITION 2. A trace of a network N of processes is a sequence t of input 
events and output events of N, such that t = tr(y) for some completed computation 
sequence y of N. We write Trset(N) for the set of traces of a network N. 

THEOREM 1. If the network N is the composition of a compatible set of automata 
(Ni} for i in some finite index set I, then t is a trace of N if and only if II,(t) is 
a trace of Ni for every i. 

Proof: Let t be a sequence of events such that II,(t) is a trace of Ni for every 
i. We show that t is a trace of N. Let ti= II,(t). For each ti, there is a completed 
computation sequence yi of Ni, such that tj= tr(y,). Then we can dovetail among 
the computation sequences (yi: i E I} to obtain a computation sequence y, such that 
t is the subsequence of ev(y) consisting of all the input and output events of the Ni. 
Since each yi is completed, so is y, and so t is a trace of N. 

Let t be a trace of N corresponding to the completed computation sequence y of 
the network. The projection yi of y onto any automaton Ni is then a completed 
computation sequence of Ni. Therefore II,(t) = ev(nNt(y)) is a trace of Ni. 1 

We need a particular property of sequential processes, and the proof of Lemma 1 
depends on this property. 

LEMMA 15. If a sequential process P has an output history H”“’ for an input 
history Hi” with finitely many input events, and if y is a finite computation sequence 
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of P containing all the input events in Hi” and i output events at output port p, i being 
less than the length of H”“‘(p), then there is a computation sequence extending y in 
which the next non-internal event after the events in y is (p, H’“‘(p)[i+ 11). 

Proof If this event el (p, H”“‘(p)[i+ 11) is enabled at the end of y, then we 
are done. If not, then we know, by Corollary 2, that there is an extension 6 of y 
with the same input history Hi” and containing e. The only non-internal events 
not in y and preceding e in 6 must then be output events. Since output events of 
processes commute with all following events in a computation sequence by the 
property of output delay, there is a sequence of moves that move these output 
events forward past e. 1 

The following is the proof of Lemma 1. 

LEMMA 1. If t is a trace of a sequential process P, and t’ is any linearization of 
the events in t such that for every pair (e 1, e2) in the causal set oft, e, precedes e2 
in t’, then t’ is a trace of P. 

Proof Let y be a completed computation sequence of P such that tr(y) = t. We 
define a move transformation on y to obtain a completed computation sequence y’ 
by Lemma 12, such that tr(y’) = t’, hence proving our lemma. We wil? define finite 
sequences vi of moves such that the result of applying 7, “q2 h .. . “vi on y is a 
computation sequence yi such that tr(y,) has t’[ 1 . . . i] as prefix. 

We define yO to be y. We will define vi by induction. Suppose we have delined 
q 1 ? **.9 vi- 1 > and suppose tr(yi-i[l . ..r]) is t’[l . ..(i- l)], and yi-l[r+ l] is an 
input or output event. Suppose t’[i] is an input event, and let it be ~~-~[r’], 
r’ z r + 1. Then we define vi to be (r’ - 1, r’), . . . . (r + 1, r + 2). 

Suppose e = t’[i] is an output event. We would like to prove that the input in 
yi-l[l .” r] can cause the output of e. Suppose this is not the case. If there is a 
single input event e’ in yip I [r + 1 ... r’], then (e’, e) is not in the causal set of t. 
Therefore, there is some input Z c H’“(y) extending that in yip i[ 1 ... r], but not 
containing e’, that can produce the output event e. By the definition of sequen- 
tiality, Z must contain some event at the same port as e’ and hence must be the event 
e’ by the consistency of inputs. This is a contradiction. We can also achieve a 
contradiction when there are multiple input events in yi- I [(r + 1). . . r’] by using 
induction. 

Therefore, by Lemma 15, there is a computation sequence K = yi- i [ 1 * * * r] “5, 
extending yi _ i [ 1 1. * r], in which the next non-internal event is e, and < ends in 
this event. By Lemma 14, K can be extended to a completed computation sequence 
with the same input as in y, and therefore K 5 yiP1[l . . . r’]. Therefore 
5 5 Yi-l[:(r+l)--. r’]. Then 5r’ = yi- I[(r + 1) .. . r’], and there is a sequence of 
moves, which we take to be vi, on yi- I[(r + 1). . r’] that transforms it to (5’. 

The fact that vi “... is a move transformation follows from the fact that a non- 
internal event is clearly only moved finitely often, and an internal event gets moved 

51 L/47/2-6 
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only as long as all the non-internal events to its left in y have not stopped moving, 
which they do in finite time. 1 

The following is the basic lemma 3 about scheduled traces. 

LEMMA 3. The scheduled trace set of a determinate process is prefix limit closed. 

Proof Let A be a determinate process, and let t be an infinite sequence of input 
and output events of A, such that every finite prefix of t can be extended to a 
scheduled trace of A. We need to prove that t is then a trace of A. We will construct 
a completed computation sequence y of A such that tr(r) = t, and hence we 
conclude that t is a trace of A. We will construct y in stages. Having constructed 
the finite computation sequence yi at the end of the ith stage, we will describe how 
to properly extend yi to obtain a finite computation sequence yi+ 1 at the end of the 
(i+ 1)th stage. If tr(y,)= t[l . ..j] and t[j+ l] is an input event, then we define 
Yi+ 1 to be yi followed by the input event transition corresponding to ry+ 11. If 
t[j+ l] is an output event, then by the determinacy of A and by Corollary 2, there 
is an extension y,! of yi with the same input as yi and containing the event t[j+ l] 
following the events in yi. All output events, if any, preceding t[j+ l] and 
occurring after yi in y( can be moved forward past the event t[j+ I] by the 
property of output delay. We then choose yi+ 1 to be that prefix of the resulting 
computation sequence that ends in the event t[j+ 11. 

We now claim that the computation sequence y’ obtained in this way can be 
5 -extended to a completed computation sequence y without adding any output 
events. If not, then there is an output event that is enabled at every state of some 
suffix of y and commutes with all the events in that suffix. Suppose this output event 
is enabled at the end of y[ 1 . . k] and at every state thereafter. But since t has 
infinitely many events and every prefix of t is a scheduled trace, the output event 
must occur in y in finite time by the definition of a scheduled trace. We thus get a 
contradiction, proving our claim. 1 

The following.is the proof of Lemma 4. 

LEMMA 4. For any finite network N of sequential processes, unfair split processes, 
and unfair split with signal processes, the scheduled trace set is prefix limit closed. 

Proof Suppose N has m ports and t is an infinite sequence that is not a trace 
of N, but every prefix of t is a prefix of a scheduled trace of N. Then the projection 
t, of t onto some process P is not a trace of P. Let ti be the projection of t[ 1 . . . i] 
onto P. Then each ti is a prefix of a scheduled trace of P because ti is a prefix of 
the projection of some scheduled trace onto P. 

Case 1. The t,‘s form an eventually increasing sequence. Then, by prelix- 
limit-closure of the scheduled trace set of P, t, is a trace of P, contradicting the 
assumption. 

Case 2. For some i, for all j> i, tl= ti= t,. Let t’ be a scheduled trace of the 
network, such that t[ 1 . . . (i + m)] is a prefix of t’. Therefore the projection t> of t’ 
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onto P has ti+,,,= ti as a prefix. Since ti is not a trace of P and t> is a trace of P, 
t> must contain an output event e such that ti A e is a prefix of a trace of P, 
violating the definition of a scheduled trace for t’. 

Thus t is a network trace, and hence the scheduled trace set is prefix limit 
closed. 1 

APPENDIX C: THE SCHEDULING OPERATION 

In Section 2, we defined the scheduled trace set of a network. We now need to 
ensure that for every trace with some particular sequences of input events and 
sequences of output events, there is a scheduled trace with the same input and 
output, so that we can use the scheduled trace set to represent the behaviors of a 
process or network. For these purposes, we will define a “scheduling operation” on 
traces that yield scheduled traces. 

We will use (p, n) to refer to the nth event on port p in a trace. We will use the 
notation t[i] for the ith element of a sequence t, t[ 1 .. . m] for the prefix of t con- 
sisting of the first m events of t, and t[m . . . ] for the suffix of t starting from t[m]. 

DEFINITION 37. Suppose p is a port of a network N, and t is a trace of N. A pair 
(p; n ) is said to occur at time i in trace t if t[i] is the nth event on port p. 

We also say that (p, n) occurs in t if it occurs at some time in t. Note that a 
pair is not the same as an event. A pair represents an event in a trace, and the same 
pair may represent different events in different traces. 

We first describe a causality relation on events of a trace, that will represent the 
“causal” order between events in a trace, and that is well-founded, antisymmetric, 
and transitive. We then prove that every linearization of this relation is a trace, and 
we will then take some particular linearizations to be scheduled traces. We first 
define a relation <, and obtain the desired relation < as its reflexive and transitive 
closure. 

DEFINITION 38. For a trace t of a network N, let T be the set of all traces of N 
containing exactly the events in t. Then t[i] -i I t[j] if t[i] is an input event of a 
process P in N, t[j] is an output event of P, the events t[i], t[j] are represented 
by the pairs (p, n) and (p’, n’), respectively, and either 

(i) the event corresponding to the pair (p, n) precedes the event corre- 
sponding to the pair (p’, n’) in every trace in T, or 

(ii) t[i] is the mth input event in t of a US or USS process in N, and t[j] 
is the mth output event in t (including the events at both the non-signal output 
ports) of that process. 

DEFINITION 39. < = ( <,)*. 
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LEMMA 19. < is well founded, antisymmetric, and transitive. 

Proof: By the definition of <I, t[i] <1 t[j] implies that i < j. Now if 
t[il< t[jl, i.e., t[il = trill <It[i,] <1 ... <, t[iJ=t[j], then i=i,<i,< . . . < 
i, = j. Therefore id j. By the antisymmetry and well-foundedness of 6 on positive 
integers, it immediately follows that < is well founded and antisymmetric. 
Moreover, i is clearly transitive, as it is the transitive closure of <, . B 

We sometimes denote the < associated with trace t by <,. 

LEMMA 20. If t is a trace qf a sequential process P, then any linearization qf << 
is a trace of P. 

Proof: Let t’ be a linearization of <,. For every pair (e,, e2) in the causal set 
of t, e, precedes e2 in t’. Therefore, by Lemma 1, f’ is a trace of P. 1 

We now describe the trace set of unfair split again. Let the unfair split process 
have an input channel i and two output channels ol, oz. Then its trace set consists 
of all sequences ?E ((i, o,, 02} x V)a: such that n,(t) can be broken up into two 
subsequences sl, s2 such that 

(i) value(s,) = value(ZZ,,(t)) and value@,) = value(Z7,,(t)), 
(ii) for every prefix t’ of t, value(ZI,,(t’)) is a prefix of the value sequence in 

the prefix of s1 in t’ and value(ZI,,(t’)) is a prefix of the value sequence in the prefix 
of s2 in t’. 

LEMMA 21. Zf t is a trace of any split process, then any linearization of <, is a 
trace of P. 

Proof This is clear by the definition of the trace sets of split processes. 1 

LEMMA 22. If t is a trace of a finite network of sequential processes and split 
processes, then any linearization of xt is a trace of the network. 

Proof Let t’ be a linearization of <*. Let t, and t> be the projections of t and 
t’, respectively, onto a process P. Then, t, is a trace of P, because t is a network 
trace. tip has the same set of events as t,. We will now show that t> is a trace of 
P, and hence conclude, by Theorem 1, that t’ is a network trace. We first prove that 
t> is a linearization of -Ktp. If Tp is the set of all traces of the process P with the 
same set of input and output events as t,, and T is the set of all traces of the 
network with the same input and output events as t, then the projections of traces 
in T onto process P is a subset of Tp. Since T, determines <,,, a subset of T, 
determines a relation < ’ that contains .<+. Since <’ is the restriction of (I to 
the events of t,, and t> is a linearization of < ‘, flp is also a linearization of -Cr,, 
and hence is a trace of P by Lemmas 20 and 21. Therefore the projection of t’ onto 
every process in the network is a trace of the process, and therefore, t’ is a network 
trace. 1 
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To schedule a trace, we dovetail among the sequences of input events and output 
events at the various ports of the network, making sure at each step, that when an 
event is considered to be the next event in the new trace, then all its predecessors 
in the partial order have already been considered. 

DEFINITION 40. A port order of a finite network with m ports is defined to be a 
total ordering pO, p,, pz, . . . . pm-, of the m ports of the network. 

DEFINITION 41. For any finite network with m ports, and any port order 
o= PO, Pl, p2, ..-, Pm-l, the scheduling operation S, is defined as follows: Then 
S,(t) is a total ordering of the events of t, such that the following holds: S,(t)[ l] 
is an event on the first of the ports in o such that it has no predecessor in <l. The 
existence of such an event is guaranteed by well-foundedness of <,. If S,(t)[iJ is 
an event corresponding to port pk, then S,(t)[i+ l] is an event on the first of the 
ports pk + 1 mod,, . . . . pk such that each of its <,-predecessors. is in S,( t)[ 1 . . . i]. 

LEMMA 23. If t is a trace of a finite network N of sequential processes and split 
processes, then S,,(t), for any port order o, is a scheduled trace of N. 

Proof. Let t’ = S,(t). Then t’ is a linearization of -K(, and hence, by Lemma 22, 
it is a network trace. Suppose ttM is the projection of t’ onto a subnetwork A4 with 
m ports, and suppose th[i] is an output event of M. th[l ..*(i-m- l)]^th[i]” 
ta[(i-m).*.(i- l)]“th[(i+ I)... ] cannot be a trace of M, because otherwise 
the behavior of the scheduling operation would be violated. Hence t’ is a scheduled 
trace. 1 
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