
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 47, 287-321 (1993)

Nonexpressibility of Fairness and Signaling

DAVID MCALLESTER,* PRAKASH PANANGADEN,~ AND VASANT SHANBHOGUE*

Computer Science Department, Cornell University, Ithaca, New York 14853

In this paper we establish new expressiveness results for indeterminate dataflow primitives.
We consider split primitives with three differing fairness assumptions and show that they are
strictly inequivalent in expressive power. We also show that the ability to announce internal
choices enhances the expressive power of two of the primitives. These results are proved using
a very crude notion of observation and thus apply in any reasonable theory of process
equivalence. 0 1993 Academic Press, Inc.

1. INTRODUCTION

Fairness is regarded as an important property of real systems and there is
considerable interest in semantic theories and proof systems for reasoning about
fairness [12]. In the present paper we examine the relative expressive power of a
variety of fairness primitives and prove new inexpressibility results in the context of
asynchronous systems. We prove that three different “split” primitives have different
expressive power. We also consider the effect of adding signaling to each primitive.
By “signaling,” we mean that a primitive has a mechanism for announcing its
internal indeterminate decisions. Our investigation is carried out in the context of
static dataflow networks, i.e., networks whose structure remains fixed throughout
execution.

Our interest in this work stemmed from earlier discoveries by Panangaden and
Stark [25, 26, 281 that the fair merge primitive [181 is strictly “more powerful”
than other primitives exhibiting unbounded indeterminacy or countable indeter-
minacy. This showed that one could not classify indeterminate primitives on the
degree of branching they embodied. All fair systems include primitives with coun-
table indeterminacy [ll]. In the programming model studied by Chandra [4, 111,
countable indeterminacy and fairness are equivalent. In the case of asynchronous
dataflow networks [16], the analysis is complicated by the fact that a process may
receive data from different autonomous processes in an asynchronous fashion. This
means that fair merges need to avoid empty data channels as well as make fair

* Currently at MIT.
+ Supported in part by NSF Grant DCR-8602072 and by NSERC. Currently at McGill University.
T Supported in part by NSF Grant DCR-8602072. Currently at Wichita State University.

287
0022~0000/93 $5.00

Copyright 0 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

288 MC ALLESTER, PANANGADEN, AND SHANBHOGUE

choices. Work by Apt and Plotkin [S] shows that the presence of countable
indeterminacy in a programming language leads to failures of continuity. The work
of Panangaden and Stark shows that there is a breakdown of a monotonicity
property that occurs in the case of fair merge.

Having identified monotonicity as a property that differentiates two kinds of
countable indeterminacy, we are led to focus attention on monotone primitives.
Since semantics of networks including fair merge are notoriously difficult, it is
possible that one might develop simpler semantic theories for systems that do
exhibit countable indeterminacy but are monotone. We discovered that there are
provably inequivalent primitives here too. This paper discusses these primitives and
establishes the difference in their expressive power. There appears to be a richer
taxonomy of indeterminate primitives than had been suspected earlier. Recently
there has been considerable interest in developing semantic theories to handle
countable indeterminacy [2, 5, 6, 10, 19,291. Our work shows that there are
several flavors of countable indeterminacy.

In the rest of this introduction we describe the setting and state the results infor-
mally. For our formal results, we will use the notion of traces of networks. Recent
work by Jonsson [14] and Russell [31] shows that traces constitute a good
abstraction of the detailed operational aspects of network behavior. An automata-
theoretic formalism essentially due to Lynch and Tuttle [22] and Stark [34] is
presented in Appendix A. We show how one can pass from these automata to traces
of the networks, and then reason with traces exclusively after developing the
machinery to reason about process equivalence and implementability. We use a
very weak notion of process equivalence. The significance of this is that our non-
implementability proofs will survive any passage to a more discerning semantic
theory. Clearly our positive implementability results are then not of great
significance but they do help to classify what can be distinguished at this level of
observation.

1.1. Kahn Networks

We define an asynchronous dataflow network to be a finite set of autonomous
computing agents, represented by the nodes of a directed graph, connected by
directed arcs, called channels or ports. The directed arcs coming into a node are
called input channels or input ports and those leaving a node are called output
channels or output ports. The interconnection structure is fixed throughout execution.
Nodes can only “listen” to a single channel at a time. One can think of each node
as executing a sequential program. Communication between nodes is effected by the
transmission of messages along the channels. The channels are unbounded queues
where the sending of a message and the receipt of the message are distinct activities.
There is no synchronization on message passing such as in CSP [13] or CCS [24].

We consider abstractions of different schedulers. This leads to three primitives
that we call split processes. Each can be regarded as a dataflow primitive with an
input port and two output ports. Tokens are consumed from the input port and are
placed on one or other of the output ports. One can now distinguish between dif-

FAIRNESS AND SIGNALING 289

ferent split primitives based on the fairness properties that they satisfy with respect
to choosing between the output channels. The inexpressiveness results here may be
considered to be in the same spirit as Stark’s investigation into the expressive power
of semaphore primitives [33] extended to the dataflow case.

Another inexpressiveness phenomenon at work here arises from sequentiality. We
consider augmenting the choice primitives with an additional output channel on
which a value is output every time a choice is made. This allows other processes in
the network to access the choices made. It turns out that this interacts quite
delicately with the fairness properties. With a strong fairness assumption, we show
that adding signaling does not add to the expressive power, whereas with a weaker
fairness assumption, we prove that the primitives that cannot signal are strictly
weaker. The proof methods hinge on using the fact that individual processes are
sequential in an appropriate sense. One may also view this as an analysis of how
information gets dispersed in a network.

We now describe the split primitives that we study. The first primitive, which we
call Unfair Split (US) splits its input sequence into two subsequences, and it is
possible unfair in the sense that one output channel may receive no values even
when the input sequence is infinite.

The second primitive is called Weakly Fair Split (WS). This guarantees that each
of the two output sequences will be non-empty when the input sequence is infinite,
and it offers no guarantees otherwise. The third primitive is called Strongly Fair
Split (SS). This guarantees that each of the two output sequences will be infinite
when the input sequence is infinite, and it offers no guarantees otherwise.

We notice that each split primitive breaks up its input sequence into two sub-
sequences and outputs one subsequence at one output channel and the other sub-
sequence at the other output channel. The primitive does not “tell” us how it did
the breakup-which particular input values are output at the first output channel
and which particular input values are output at the second output channel. We now
consider split primitives that give us this information. These are the original split
primitives above enhanced with an extra output channel, that we will refer to as the
signal channel. The primitive output a sequence s of l’s and 2’s at the signal channel
with the length of s being equal to the length of its input sequence and with the
intent that the ith value in s is a 1, if the ith value of the input sequence was output
at the first output channel, and the ith value in s is a 2, if the ith value of the input
sequence was output at the second output channel. We will refer to these three
primitives as Unfair Split with signal (USS), Weakly Fair Split with signal (WSS),
and Strongly Fair Split with signal (SSS).

1.2. Results

The expressiveness situation that we establish is depicted in Fig. 1. An arrow
between two primitives indicates that there exists a finite network built from instan-
ces of the first primitive and “ordinary” (essentially sequential and determinate)
nodes that implements the input-output behavior of the second primitive. An arrow

290 MCALLESTER, PANANGADEN, AND SHANBHOGUE

FIG. 1. The relative expressiveness of splits.

with a line through it indicates that we have proven that no such implementation
is possible.

Based on experience with semaphores [33], one might expect that US cannot
implement WS. It is somewhat more surprising that WS, or even WSS, cannot be
somehow “iterated” to implement SS. The second interesting result is that we
cannot simulate signals except when we have strong fairness. This result is relate
to sequentiality in the sense of Kahn and Plotkin [S, 171; but we do not have a
theory of sequential indeterminate processes.

2. TRACES OF DATAFLOW NETWORKS

In this paper we work with traces of dataflow networks. These are abstractions
of computation sequences of the networks. Operationally a dataflow process is
described by an automaton equipped with a relation that describes when actions
are concurrent. The concurrency structure is the basis of a detailed analysis of the
structure of the computations of such networks. Using this, one can define the
notion of “completed” or “fair” computation of a network. Furthermore, one can
interpret the concurrency relation between actions as corresponding to the ability
to permute events in a computation sequence. Finally, one can define what it means
to link processes into networks and one can show that such networks are them-
selves automata equipped with a concurrency relation and apply the theory that
has been developed for such automata. We can define certain special types of
processes, specifically the determinate processes and show that they compute
functions. Precise definitions of automata, completed computation sequences,
networks, determinacy, input-output relation and permutation of events can be
found in Appendix A. It should not be necessary to read the appendix, however, in
order to follow the proofs in the paper. Most of the proofs of the lemmas and
theorems in this section can be found in Appendix B.

A computation sequence describes the sequence of states and the sequence of
events, including internal events, that cause the state transitions. We now abstract
away from states and internal events and only consider sequences of events on the

FAIRNESS AND SIGNALING 291

input and output ports of a network. It turns out that this has exactly the right
amount of information to encode observable equality in all network contexts [15].

2.1. Traces and Compositionality

We now define abstractions of computation sequences and the relationship
between the abstractions for a network and the abstractions for its components.

DEFINITION 1. If y is a computation sequence, then we define tr(y) to be the
subsequence of ev(r), consisting of all the input and output events in ev(y).

DEFINITION 2. A trace of a network N of processes is a sequence t of input
events and output events of N, such that t = tr(y) for some completed computation
sequence y of N. We write Trset(N) for the set of traces of a network N.

In an earlier discussion of network semantics, trace sets were called archives
[191. Presented in this way, the traces appear as an abstraction of computation
sequences that were defined using an operational formalism. The important point
is that we can define composition rules directly on trace sets, and this allows us to
build up trace sets of complex networksstructurally. If t is a sequence of events and
P is a process or a network, II,(t) will represent the subsequence of t consisting of
all the events on the input and output ports of P in t; t[i] will represent the ith
event in t.

The following theorem relates the trace set of a network with the trace sets of its
individual processes. A more general version of this theorem, relating the trace set
of a network with the trace sets of its subnetworks for any arbitrary decomposition
of the network into subnetworks was proved in [32]. By a compatible set of
automata we mean that the automata have disjoint sets of internal actions and their
sets of communication actions are arranged so that input for one automaton can
be the output of exactly one other automaton.

THEOREM 1. If the network N is the composition of a compatible set of automata
{ Ni} J%r i in some finite index set I, then t is a trace of N if and only if II,(t) is
a trace of Ni for every i.

It is possible to have processes with different sets of traces, but the same IO-rela-
tion. Brock and Ackerman [9] have such an example, but their example uses a
powerful primitive, fair merge. There are other examples using only finite indeter-
minacy [31].

2.2. Sequential Processes

In [163, Kahn gave a denotational semantics.for dataflow networks by modeling
processes by continuous functions between finite products of domains of streams.
Subsequently, Kahn and Plotkin [20, 171 introduced a general class of domains,
called concrete domains, that generalized the stream domains originally used by

292 MCALLESTER, PANANGADEN, AND SHANBHOGUE

Kahn, and permitted a general definition of a sequential function. Since we are
working with dataflow and domains of streams here, we use the specialization of
this definition to stream domains.

The main reason for our introducing sequential processes is that when we
describe our implementability and non-implementability results, they have to be
relative to a base class of processes; i.e., when we build networks, we are allowed
to use copies of processes in this base class. We consider the class of sequential pro-
cesses to constitute that base class of processes. The intuitive idea is to capture the
notions of processes with “single threads of control” and no “internal parallelism.”
Our notion of sequential process expresses this formally. It is possible to relate this
notion here, given in terms of traces, to an automata theoretic condition on the
transition relation [27].

DEFINITION 3. A process P is called sequential if it is determinate, and the func-
tion f computed by it satisfies the following property: suppose f (x) = y, and o is an
output port of P. If there exists an x’ ZI x such that ITo(f(x’)) extends 17,(y), then
there is an input port i of P such that whenever x’ ZI x is such that Il,(f(x’))
extends n,(y), then also Z7,(x’) extends Lri(x).

One can show that the sequential processes compute sequential functions in the
sense of Kahn and Plotkin [20, 171. We given an example of non-sequentiality.

EXAMPLE 1. Parallel OR. This process has two input ports and one output port.
It computes the following function POR:

POR(1 “s, /i) = POR(/1,1 h~‘) = POR(1 h~, 1 “s’) = 1

and

POR(0 “s, 0 /\s’) = 0

for any sequences of values s, s’. /i represents the empty sequence here. Then we
have

POR(l, n)=POR(/I, l)=POR(l, l)= 1, POR(0, 0) = 0,

and the output is n otherwise. If we think of 0 and 1 representing false and true,
respectively, then the process outputs true if it gets a true on either of its input
channels and it outputs false if it gets a false on both of its input channels.
Intuitively, the computation of this automaton must proceed in a “parallel” fashion,
because it has to produce an output when either of the input ports receives a 1.

It is the sequential processes that constitute the base class of processes allowed
in the building of networks. The notion of a determinate process is a very general
one and encompasses many different kinds of computations-sequential and
parallel.

FAIRNESS AND SIGNALING 293

2.3. Causality between Events

We define a notion of causality for events in a trace of a determinate process.

DEFINITION 4. If t is a trace of a sequential process, then the causal set of t is
the set of all pairs (e,, e2) of event occurrences in t such that

(i) e,, e2 are events at the same port and e, precedes e2 in t, or
(ii) e, is an input event, e, is an output event, and e, precedes e2 in every

trace with the same input as t.

We then have the following lemma that tells us that the causal set captures all
the dependencies between the events of a trace.

LEMMA 1. If t is a trace of a sequential process P and t’ is any linearization of
the events in t such that for every pair (e,, e,) in the causal set oft, e, precedes e2
in t’, then t’ is a trace of P.

The proof is in Appendix B.

2.4. The Scheduled Trace Set

In traces, if an event is “enabled” at some point in the trace, it need not occur
in the trace within a bounded number of steps from that point. The failure of this
property leads to problems with limit closure of sequences. In order to eliminate
this, we define “scheduled” traces and work with scheduled trace sets of processes,
instead of the trace sets. Roughly speaking, in the scheduled traces every compo-
nent of a network is scheduled to process in a cyclic fashion if it has an enabled
event. Using scheduled traces rather than the full trace set does not change the
basic theory because, as we will show for the processes we consider, for any trace
t, there is a scheduled trace with the same set of events as t-in particular, with the
same input and output as t. In the rest of this section, by networks, we mean
compositions of compatible sets of processes.

An important closure property we use in subsequent sections is the following:

DEFINITION 5. A set 2 of traces of a network N of processes is said to be prefix
limit closed if for an arbitrary infinite sequence t, if every finite prefix of t is a prefix
of some trace in Z, then t is a trace of N.

We cannot expect the set of all traces of a process to be prefix limit closed,
because even if we take a simple buffer process there are traces in which arbitrarily
many values arrive at the input port before any value is output. So every prefix of
an infinite sequence of input events can be extended to a trace, but the infinite
sequence of input events is certainly not a trace.

The problem is that asynchrony allows an arbitrary amount of input to arrive
before output is produced. We therefore define the notion of a scheduled trace in
which enabled output events happen within a fixed bounded number of steps. The

294 MCALLESTER, PANANGADEN, AND SHANBHOGUE

set of scheduled traces of sequential processes, unfair split processes, and unfair split
with signal processes turn out to be prefix limit closed.

DEFINITION 6. A scheduled trace t of a network N is a network trace such that
for every process P in N, if t, is the projection of t onto P, and P has m ports, then
for every i> 0, if tp[i] is an output event and tp[(i- m) ... (i- 1)] does not
contain any output events at the same port, then tp[l ... (i-m- l)]“t,[i]”
tP[(i-m)..+(i- l)]^tp[(i+ l)...] is not a trace of P.

The idea here is that every enabled event that continues to remain enabled must
happen in the trace within the next m events of the point where it is first enabled.
So if an output event is enabled at some point in the trace, it could not have been
enabled m events ago. The set of scheduled traces of a network will be called its
scheduled trace set. The following is clear from the definition.

LEMMA 2. The projection of a scheduled trace t of a network N onto a process P
of the network is a scheduled trace of P.

The point of the scheduling operation has been to ensure that, in our arguments,
we can represent processes and networks by sets of traces that are prefix limit
closed. The following lemma says that the scheduled trace set of the processes that
we work with are indeed prefix limit closed.

LEMMA 3. The scheduled trace set of a determinate process is prefix limit closed.

The proof is in Appendix B.

DEFINITION 7. An infinite chain /?, c p2 E ... of sequences is said to be even-
tually increasing if it is non-decreasing and there is no i, such that Vj > i, pi = pi.

We use this definition in Lemma 4 and in subsequent sections when we discuss
the other split primitives.

LEMMA 4. For any finite network N of sequential processes, unfair split processes
and unfair split with signal processes, the scheduled trace set is prefix limit closed.

The proof is in Appendix B.
So far we have concentrated on the scheduled trace set and shown that it has a

nice property, prefix limit closure, that will be important to us in the next section.
We now need to ensure that for every trace with some particular sequences of input
events and sequences of output events, there is a scheduled trace with the same
input and output, so that we can use the scheduled trace set to represent the
behaviors of a process or network. This is done by defining a scheduling operation
on traces that uses the causal dependency between events. The details are in
Appendix C.

FAIRNESS AND SIGNALING 295

3. INEXPRESSIBILITY RESULTS

We have described our model of computation, and we now wish to understand
the different “levels” of indeterminacy that arise in this model. These levels will
be described in later sections using the split processes that were defined in the
Introduction.

3.1. Implementability

In this subsection, we establish our notions of when one level is stronger than
another and when one level is weaker than another. We describe the rules by which
we can construct networks of processes in the appendices. We now establish the
definitions for implementability and non-implementability.

DEFINITION 8. A set S of processes can implement a relation 4 if there is a finite
network N, built out of copies of processes in S, such that R is the input-output
relation of N.

DEFINITION 9. A set S of processes can weakly implement a process or a
network M if there is a finite network N, built out of copies of processes in S, such
that N and M have the same input-output relation.

DEFINITION 10. A set S of processes can strongly implement a process or a
network M if there is a finite network N, built out of copies of processes in S, such
that N and M have the same trace set.

We will be concerned with proving failure of weak implementability, since this is
a stronger notion than failure of strong implementability. In all our implemen-
tability and non-implementability proofs, we will always assume that we can use
copies of processes from a specific base set of processes. These are the sequential
processes described earlier. We emphasize that whenever we say that a process N,
can or cannot strongly implement (weakly implement) another process Nz, then we
really mean that the set of processes consisting of all sequential processes and N,
cannot strongly implement (weakly implement) N2.

DEFINITION 11. Processes N1 and N2 are said to be at the same expressiveness
level if they can strongly implement each other.

DEFINITION 12. A process N, is said to be more expressive than N, if N, can
strongly implement N,, but NZ cannot strongly implement N,.

We will also say that N, is less expressive than N, in the above definition.

3.2. Oracles

We now present some implementability results, and we use some special
processes called oracles to present these results.

296 MC ALLESTER, PANANGADEN, AND SHANBHOGUE

DEFINITION 13. An oracle is a process with no input ports and one output port
p, such that the process can output any one of the sequences in some specific set
SG V” of sequences at the output port p.

One example of an oracle is a process with no input ports and one output port,
at which the process can output any positive integer. Let us define the three oracles
that we will be most concerned with and are intimately related to the split
primitives. Each of these three oracles will be described by their sets of possible
outputs, which will be sequences of l’s and 2’s.

1. the set O,, of all infinite sequences of l’s and 2’s,
2. the set O,,., of all infinite sequences of l’s and 2’s containing at least one

1 and at least one 2, and
3. the set O,, of all infinite sequences of l’s and 2’s containing infinitely many

l’s and infinitely many 2’s.

We will also refer to the oracle processes corresponding to these sets of outputs by
O,,, O,,, and O,,, respectively.

We can now strongly implement any one of the six split processes by using the
appropriate oracle in the network shown in Fig. 2 and either suppressing or not
suppressing the output at 0,. The process P reads a value u from its input port i.
If there are no values to be read, it waits until there is a value to be read. It then
reads a value u’ from the oracle output. If u’ = 1, then it outputs u at port 0,. If
u’ = 2, then it outputs u at port oz. It also outputs V’ at o, and then repeats the
above. When the oracle chosen is O,, then we strongly implement unfair split and
unfair split with signal. When the oracle is chosen is O,.,, then we strongly imple-
ment weakly fair split and weakly fair split with signal. When the oracle chosen is
O,, then we strongly implement strongly fair split and strongly fair split with
signal.

It is also clear that unfair split with signal can strongly implement O,,, weakly
fair split with signal can strongly implement O,.,, and strongly fair split with signal
can implement O,,. This is because the signal output port of these split processes
can be used to manufacture the oracle outputs at their signal output channels by
making the input sequences of these split processes be any infinite sequence, say 1 03.
Therefore the following theorem follows.

oraclel,ii os ,

01
1 1

02

FIG. 2. Split from an oracle.

FAIRNESS AND SIGNALING 297

TIGOREM 2. Unfair split with signal and 0, are at the same expressiveness level.
Weakly fair split with signal and O,, are at the same expressiveness level. Strongly
fair split with signal and 0, are at the same expressiveness level.

3.3. Some Strong Implementability Results

We will now describe the expressiveness picture in Fig. 1, in which an arrow from
one process to another indicates that the first process can strongly implement the
second.

THEOREM 3. Strongly fair split can strongly implement strongly fair split with
signal.

Proof. Figure 3 illustrates how we can manufacture the oracle 0, from strongly
fair split. The determinate process P receives an infinite increasing sequence of
positive integers at port p such that the sequence has an infinite increasing comple-
ment. P outputs an infinite sequence of l’s and 2’s at port o,, such that the ith
value in the sequence is a 1 if and only if P reads the value i from port p. The oracle
O,, can now be used to strongly implement strongly fair split with signal, as
described earlier. 1

This implies that strongly fair split, strongly fair split with signal, and O,, are all
at the same expressiveness level.

THEOREM 4. O,, can strongly implement weakly fair split with signal, and
hence O,,.

Proof: The same figure 2 illustrates how we can strongly implement weakly fair
split with signal from 0,. The determinate process P is different: it first uses the
sequence at port p to decide whether either of the output streams should be finite
and, if a stream should be finite, to decide which elements of the input stream
should comprise the finite output stream. If it decides that both streams are to be
infinite, then it uses the sequence of l’s and 2’s at port p to decide which input
values should be output at port or and which input values should be output at
port oz. m

THEOREM 5. Weakly fair split can strongly implement unfair split.

Proof: Let C + be the infinite sequence l”2 A 3 h . . . of all positive integers.
When this is the input to a weakly fair split, the first value on the first output

1,2,3...
* ss

FIG. 3. SSS from SS.

298 MCALLESTER, PANANGADEN, AND SHANBHOGUE

channel could be any positive integer. A determinate process can obtain arbitrary
positive integers from a finite number of weakly fair splits in this way. Then the
determinate process can use these arbitrary integers to decide whether one of the
output streams of the unfair split process being implemented should be empty, in
which case the entire input stream should comprise the other output stream.
Otherwise the process just uses a weakly fair split process to decide the distribution
of input stream elements. 1

THEOREM 6. O,, can strongly implement O,,.

Proof A similar proof as the above. 1

3.4. Inexpressibility of Fair Split

Our main theorem here states that there is no network consisting of sequential
processes and WSS process that weakly implements SS. We consider a network that
supposedly weakly implements SS. We express the set of scheduled traces of the
network as the union of a countable family of trace sets. We show that the traces
in each member of the family is prefix-limit-closed. We build a tree representation
of the traces in each family. We quotient the tree by contracting all edges that do
not correspond to events at output ports. Each quotiented tree is finitely branching.
Finally we diagonalize to exhibit a possible output sequence of strongly fair split
that is not produced by any trace of the network. First we establish the required
definitions and lemmas.

DEFINITION 14. If S is a set of traces.of a network, then T(S) is the tree whose
nodes are finite prefixes of traces in S and such that prefix s’ is a child of prefix s
iff s’ = s “e for some event e. We assume that each edge is labeled with the last event
of the prefix associated with the descendant node.

We note that the set of sequences corresponding to the paths in the tree from the
root is not necessarily equal to the set of traces S. All that can be said is that, for
every sequence corresponding to a path in the tree from the root, every prefix of
this sequence is a prefix of a trace in S.

DEFINITION 15. A process P is said to be finitely branching if for any finite
sequence of events t that is a prefix of a trace of P and not itself a trace, there are
only finitely many output events e such that the is a prefix of a trace of P.

Note that there are clearly infinitely many input events that can be the next event
after the sequence of events t. The definition restricts the number of output events
that can be the next event. We note that all sequential and split processes are
finitely branching.

LEMMA 5. If S is the trace set of a network N offinitely branching processes for
a fixed input, then T(S) is finitely branching.

FAIRNESS AND SIGNALING 299

Proof: Suppose s is a prefix of a trace in S. Then the next event of the trace
could be an input event on any of the finitely many input ports, or an output event
for some process in the network. There are finitely many of these, too, because there
are finitely many processes and each process is finitely branching. Therefore, s has
only finitely many children .in T(S). So every vertex in the tree has finitely many
children; i.e., the tree is finitely branching. 1

The following theorem follows easily from Koenig’s lemma.

THEOREM 7. No network of sequential processes and unfair split with signal
processes can weakly implement weakly fair split.

Proof. Suppose there is a finite network N of sequential processes and unfair
split with signal processes that weakly implements WS. We fix the input stream to
be 1 ̂ 2”3... . Then the first output port c of N, corresponding to the first output
port of the WS process being implemented, is guaranteed to have at least one value
output on it. This value can be any positive integer.

Let S consist of the scheduled traces of N for the input 1”2”3... . Every trace has
a scheduling with respect to any port order. Therefore, for every possible output
sequence of the network onto port c, there is a scheduled trace in S that outputs
that sequence on c. We consider the tree T(S). By Lemma 4, every path in the tree
is a network trace, and so it has an output event on c. We prune every path at the
first output event on that path on port c. Moreover, by Lemma 5, T(S) is finitely
branching. Therefore the pruned tree is a finitely branching tree with no infinite
paths. By Koenig’s lemma, the tree is finite. So there are finitely many leaves, i.e.,
finitely many possibilities for the first output event on port c. This means that the
network does not weakly implement weakly fair split&contradiction. 1

The next theorem shows that strongly fair split cannot be weakly implemented by
a weakly fair split even with a signal. The proof requires a diagonalization
argument-cardinality or Koenig’s lemma arguments by themselves do not seem
sufficient.

THEOREM 8. No network of sequential processes and WSS processes can weakly
implement SS.

In order to prove this theorem we need several definitions and lemmas. We make
explicit the fact that WS embodies a countable choice. First we give a definition for
events that lead up to this countable choice.

DEFINITION 16. Let N be any network and let t be any sequence of events in
that network; i is said to be a split initiation time for t if there is a WS or WSS
process P in N and a non-signal output port c of P such that either

1. t[i] is the first output event on c in t, or,

571/47/2-5

300 MCALLESTER, PANANGADEN, AND SHANBHOGUE

2. t[i] is an input event of P and there is no output event on port c in
t[l . ..i].

Such a t[i] is called an initiation event.

DEFINITION 17. Let s be a finite sequence of events of a network N. An initia-
tion-free extension of s is a sequence t such that s is a prefix of t and such that all
initiation events in t occur in the prefix s.

The next lemma follows from the definition of weakly fair split.

LEMMA 6. For any trace t of a network, there exists some finite prefix s oft such
that t is an initiation-free extension of s.

Prooj We show that each WS or WSS process in the network has a last split
initiation time. There are two cases. Let t’ be the projection of t onto the ports of
a WS or WSS process.

(i) there are output events on both the output ports (both the non-signal
output ports in the case of a WSS process). In that case, if t[m] is the first output
event on the first output port, and t[m’] is the first output event on the second
output port, then the last split initiation time for this process is max(m, m’).

(ii) there are no output events on one of the output channels. Then there
must be only finitely many input events in t’. Let the last of these be t[m]. Also
let the first output event on the other output channel be t[m’]. Then the last split
initiation time for this process is max(m, m’).

Since there are finitely many WS or WSS processes, if i is the maximum of their
last split initiation times, then t is an initiation-free extension of t[1 . . . i]. i

DEFINITION 18. Let N be a network and s a finite sequence. We define C, to be
the set of all scheduled traces of the network that are initiation-free extensions of s.

LEMMA 7. For any finite network N, there are countably many sets of the form
C,, for s any finite sequence of events of the network.

ProoJ: Each event is a pair, and there are countably many of these, assuming
that there are countably many values that may be transmitted at a port. Therefore,
there are countably many finite sequences of events, and so there are countably
many sets of the form C,. 1

Note that even though every member of C, is an initiation-free extension of s, it
is not obvious that every path in T(C,) is a member of C,. So the following lemma
is required.

LEMMA 8. For any finite network N and any sequence of events s of the network,
any path in T(C,) is an initiation-free extension of s.

FAIRNESS AND SIGNALING 301

Proof Let t be a path in T(C,). Since every trace in C, starts with the prefix s,
t must also start with the prefix s. It follows from the definition of an initiation time
that if i is an initiation time in t, and a trace t’ is identical to t up to and including
the ith event, then the ith event is also an initiation event in the trace t’. Hence this
ith event is in s. Since every prefix of t is a prefix of some trace t’ in C,, t cannot
contain any initiation-events other than those in the prefix s. i

LEMMA 9. For any network N of sequential processes, weakly fair split processes,
and weakly fair split with signal processes, and for any finite sequence of events s, C,
is prefix-limit-closed.

Proof: Let t be a sequence such that every prefix of t is a prefix of some member
of C,. By Lemma 8, t is an initiation-free extension of s. We must show that t is a
network trace.

Suppose t is not a network trace. Then the projection t, of t onto some process
P of the network is not a trace of P. We will proceed as in Lemma 4. Let ti be the
projection of t[1 . . i] onto process P. Then each ti is a prefix of a scheduled trace
of P.

Case 1. The tis form an eventually increasing sequence. If P is not a weak split
or a weak signal split process, then, by prefix-limit-closure of the scheduled trace
set of P, t, is a trace of P, contradicting the assumption.

If P is a WS or WSS process, then t, must be an infinite sequence, containing
infinitely many input events and infinitely many ouput events. Since this is not a
trace of P, it must be the case that all the output events are on the same output
port of P, contradicting the requirement that there be output events on both the
ouput porst if the input is infinite. This means that the projection of t onto process
P has infinitely many input events for P, and all of these are initiation events for
t. This contradicts the fact that s is finite, and t is an initiation-free extension of s.

Case 2. For some i, for all j > i, t, = ti = t,. Let t’ be a scheduled trace of the
network, such that t [1 . . f (i + m)] is a prefix of t’. Therefore the projection t> of t’
onto P has tifm= ti as a prefix. Since ti is not a trace of P and tip is a trace of P,
t> must contain an output event e such that tihe is a prefix of a trace of P, violating
the definition of a scheduled trace for t’.

Thus t is a network trace and so, C,7 is prefix-limit-closed. 1

DEFINITION 19. The complement of an increasing infinite sequence s of positive
integers is defined to be the increasing sequence of all those positive integers that
are not in the sequence s.

We now define a quotienting operation on trees that conceals events that are not
output events at a fixed port.

DEFINITION 20. Let T be a tree in which the edges are labeled with events from
a network N. Let c be a port of N. We define the quotient of T with respect to c,

302 MC ALLESTER, PANANGADEN, AND SHANBHOGUE

written T/c, to be the tree obtained by contracting every edge in T that is not an
output event on c.

Proof of Theorem 2. Suppose there is a network N of sequential processes and
WSS processes that weakly implements strongly fair split. Let one of the output
ports, corresponding to an output port of the SS process being implemented,
be c. We fix the input stream to be 1 A 2 A 3 A Then, at c, N can output any
increasing infinite sequence of positive integers, whose complement is also an
increasing infinite sequence of positive integers. Since the scheduling operation can
be applied to any trace to obtain a scheduled trace, every possible output sequence
of N onto port c is output by some scheduled trace.

Let S be the scheduled trace set of N for the fixed input. We divide S into sub-
classes C,, as defined earlier. We then obtain a countable family of trees T(C,)/c.
We claim that each tree T(C,)/c is finitely branching. Every path in T(C,) has
infinitely many output events at port c, since every path in the tree is a network
trace by Lemma 9. Consider any node n of the tree such that the prefix associated
with that node ends in an output event on c. These are exactly the nodes that
remain after the quotienting. We prune every path from n at the first output event
on c on the path. Since the tree T(C,) is finitely branching the pruned tree below
n is also finitely branching and has no infinite paths. By Koenig’s lemma, the tree
is finite. So there are finitely many leaves. Thus in the quotiented tree, n has finitely
many children corresponding to the finitely many leaves of the above pruned tree.

We name the quotiented trees T(C,)/c by T,, T2, . . . Each path in any of these
trees must correspond to an infinite increasing sequence of positive integers. To
obtain a contradiction, we construct, by diagonalization, an infinite increasing
sequence of positive integers with infinite complement, that will be in none of these
trees. Since every tree, T,, is finitely branching, every level of each T, has finitely
many nodes. Hence, there is a maximum positive integer that occurs at that level.
Let this maximum positive integer for the jth level in the ith tree be called M,,,.
We define s[l], the first element of the sequence being constructed, to be any
positive integer greater than M,,, , say M,,, + 1. Having fixed the elements
SC 11, $21, ..., s[i- 11, we define s[i] to be any positive integer greater than
max { Mi,i, s[i - 1] + 1 }. This is certainly an infinite increasing sequence. Moreover,
between any two consecutive elements s[i- l] and s[i] of the sequence, there is at
least one positive integer not in the sequence, namely s[i- l] + 1. So the sequence
has an infinite complement. But this sequence is not in any of the trees T,, T,, . . .
This is because, for any i, the ith element of the sequence is greater than Mi,i, and
this is the greatest integer at the ith level of Ti.

This means that there is an infinite increasing sequence of positive integers with
infinite complement, that is not a possible output sequence at c. Hence the network
could not have weakly implemented strongly fair split. 1

3.5. Inexpressibility of Signaling
In this subsection we explore the nonexpressability arising from the sequentiality

of the individual processes. Understanding sequentiality is a fundamental concern

FAIRNESS AND SIGNALING 303

in the semantics of modern programming languages [ZO, 301. Our results in this
section may be viewed as a first step towards understanding how sequentiality
interacts with indeterminacy. The main theorem states that one cannot obtain a
split with a signal from an ordinary split. The point is that the signal port is
guaranteed to have as many values output on it as there are inputs. Unfair split has
no output ports on which a stipulated number of values are guaranteed to appear.
The only processes for which one could guarantee that a certain number of values
would be output at a particular output port is a sequential process. In this case,
however, the output values are determined by the input values. We show that this
argument extends to networks composed of split processes and sequential processes.
It turns out that the theorem holds for weakly fair split as well but not for strongly
fair split. Thus the result is quite delicate and depends on the level of fairness we
consider.

DEFINITION 2 1. Suppose c is a port of a network N. Let R be a subset of the
trace set of N. We say that a pair (c, n) is guaranteed in R if it occurs in every trace
in R.

DEFINITION 22. Suppose c is a port of a network N. Let R be a subset of the
traces of N. We say that a pair (c, n) is determined in R if

Vt,, t,ER, (c,n) occurs at iin t, and at jin t2-tl[i]=tZ[j].

The following is the central lemma of this section.

LEMMA 10. For any network N of sequential processes and unfair split processes,
if R ii the set of all network traces with a particular input I, then every pair (c, n)
that is guaranteed in R is determined in R.

ProojI The proof proceeds by induction on the earliest occurrence of a guaran-
teed pair. Suppose (c, n) occurs at time 1 in a trace t. Then clearly n = 1. Also c
has to be either the output port of a sequential process or an input port of the
network. In the first case it is clearly determined by determinacy of the sequential
process, and in the second case, it is determined since we are considering a fixed
input.

Suppose the guaranteed pair (c, n) has an earliest occurrence time equal to k in
R. Suppose that the lemma holds for all guaranteed pairs that have an earliest
occurrence time less than k in R. Suppose that this pair is not determined in R.
Then there are two traces g and h differing at the pair (c, n). Since they differ, c
cannot be an input port of the network. Because the pair (c, n) is guaranteed, c
cannot be an output port of an unfair split process. Thus c must be the output port
of a sequential process A. Without loss of generality, we can assume g to be the
trace in which (c, n) occurs at time k. Let the sequence n, (g) be s and the
sequence 17, (h) be s’. Let (c, n) occur at times i and j in s and s’, respectively. Let
ZZ: (s) be the guaranteed input in s. Since every event in n:(s) has an earliest

304 MCALLESTER, PANANGADEN, AND SHANBHOGUE

occurrence time less than k, they are all determined. Therefore, if 17:(s) can
produce the output event (c, n), then it must be determined too, contradicting our
assumption that the pair (c, n) is not determined. So ZZ~(S) cannot produce the
output event (c, n). By sequentiality, there is an input port of A that must get
extended for the output at c to get extended. This means that there is a guaranteed
input event in s other than those in n:(s). But ZZy(s) contains all the guaranteed
input events in s, giving us a contradiction. Therefore (c, n) must be deter-
mined. 1

THEOREM 9. No finite network of sequential processes and unfair split processes
can weakly implement unfair split with signal.

Proof Suppose there is a finite network N showing this implementation. Let c
be the signal output port in this implementation. Let the input stream to the
network be a single element, and suppose R is the set of network traces with this
particular input. Then at least one event is guaranteed at port c in every trace in
R. Moreover, it is the case that this first event at port c could be (c, 0) or (c, 1).
This contradicts the earlier lemma. 1

The following theorem is the extension to the case where we allow weakly fair
split instead of unfair split.

THEOREM 10. No finite network of sequential processes and weakly fair split
processes can weakly implement unfair split with signal.

In order to prove this theorem, we need several definitions and lemmas.

DEFINITION 23. Let N be a finite network and s a finite sequence of events. We
define Cl,, to be the set of all traces of the network for a particular input Z that are
initiation-free extensions of s.

LEMMA 11. For any network N of sequential processes and weakly fair split
processes, every pair (c, n > that is guaranteed in CL,, is determined in C:.,.

Proof The proof proceeds exactly as in Lemma 10, except for the following
case. (c, n) has an earliest occurrence time equal to k in Cl,, and all pairs with
earliest occurrence times less than k are guaranteed by the induction hypothesis.
Suppose that this pair is not determined in Ct.,. Then there are two traces g and
h differing at this pair. We consider the case where c is an output port of a weakly
fair split process. In that case, n = 1, because only one event is guaranteed at an
output port of a weakly fair split process. Therefore this is an initiation event, and
so it must be in s. Hence g and h cannot disagree on (c, n) because both g and
h have the same prefix s, and this contradicts the supposition that the pair is not
determined. The rest of the cases are exactly as in Lemma 10. 1

Proof of Theorem 10. Suppose there is a finite network that is supposed to
implement WSS. Let c be the signal output port in N. Let the input stream to N

FAIRNESS AND SIGNALING 305

be some infinite stream I. This guarantees that the output stream on c is infinite for
every network trace. Every network trace is in some class C:,,, as in Lemma 6.
Moreover, every trace in C;,, has the same output at port c. This is because, since
the input Z is infinite, there are infinitely many events guaranteed at port c, and by
Lemma 11, they are all determined.

As in Lemma 7, there are countably many such classes CL,,, and so for the input
Z, there are at most countably many different outputs at port c. But, by the defini-
tion of an unfair split process with signal, for an infinite input, there are uncoun-
tably many output stream possibilities for the signal output port. This means that
the network N does not weakly implement an unfair split process with signal. 1

In the next section, we presented our main results proving the split primitives to
be of differing expressive power.

4. CONCLUSIONS

We have examined the expressiveness situations that arise with a variety of
fairness primitives in an asynchronous distributed computation setting. We used a
particular model of asynchronous distributed computation, called the dataflow
model. This model very naturally portrays the situation of autonomous computing
agents communicating asynchronously with each other. The main contribution here
has been to show that there is a surprising hierafihy of different notions of indeter-
minacy. This cannot simply be described using degree of branching-bounded ver-
sus unbounded. In fact we have shown that depending on what fairness guarantees
we demand of our primitives, their behaviors will satisfy different properties, and we
cannot always hope to simulate the effect of one primitive using another. We also
saw how the expressive power of primitives varies when internal choices are made
explicit.

It is known, largely through work by Abramsky [3] that one can give an elegant
fixed point semantics to networks containing strongly fair split or inlinite fair
merge. The point is that such primitives can be thought of as being “oracle driven,”
that is, the indeterminacy arises from an external source that resolves choices in a
manner independent of the input. One can model such networks as sets of func-
tions. Russell [311 has shown that such sets of functions are fully abstract if one
enforces the proper closure conditions on such sets. The oracle view does not apply
to networks containing, for example, fair merge. Our results in this paper say how
the expressive power varies with the output of the oracle.

Finally, we feel that the significance of the signaling phenomenon is that there are
some subtle interactions between indeterminacy and sequentiality. We have not
formulated a definition of what sequential or nonsequential might mean in the
presence of indeterminacy. We hope that subsequent investigations will lead to a
satisfactory definition.

306 MC ALLESTER, PANANGADEN, AND SHANBHOGUE

APPENDIX A: OPERATIONAL SEMANTICS OF DATAFLOW PROCESSES

In this appendix we describe the operational semantics of dataflow networks in
terms of automata equipped with a notion of concurrent transition. The develop-
ment here is essentially due to Lynch and Tuttle [21,22] and Stark [34, 351. We
have included it in order to make the paper reasonably self-contained. The opera-
tional semantics describes the execution of a program in terms of a sequence of
transitions between states. We do not wish to get tied down to any particular
machine, so we wish to define an abstract machine that is always in one of some
fixed set of states. Command execution of the machine is represented by events that
cause transitions between states. Since this machine should be general, it should
also support parallel execution of commands, and then the notion of fairness comes
in-if there are two infinite sequences of commands that the machine can execute
in parallel, then we should make sure that both the infinite sequences of commands
are executed by the machine. This leads us to the necessity of defining legal or fair
computations.

A.l. Port Automata
We now formally describe processes or computing agents as automata, that can

receive values at “input ports” and output values at “output ports.” We use the
term “port” instead of “channel” to emphasize that this is where an automaton
interfaces with its environment. The set of events of an automaton comes equipped
with a concurrency relation, that describes which pairs of events are causally
independent and can be permuted in execution sequences.

DEFINITION 24. A concurrent alphabet is a set E, equipped with a symmetric,
irreflexive binary relation 11 E, called the concurrency relation.

This concept is used in trace theory [1,231 to obtain an algebraic theory of
traces. We call events related by the concurrency relation concurrent. Let V be a set
of data values called the value alphabet. Throughout this paper, we assume a fixed
countable value alphabet. We refer to V” as the domain of streams. We use the
term “stream” interchangeably with the term “value sequence.”

We now describe the notion of an automaton that can execute events. The input
and output events are described as (port, value) pairs. The rest of the events need
not be of this form.

DEFINITION 25. A monotone port automaton is a tuple

M= (4 Q, A),

where

l E is a concurrent alphabet of events, and Znp and Out are disjoint subsets
of E, called the sets of input events and output events, respectively. Inp = Pi” x V, and

FAIRNESS AND SIGNALING 307

Out = Pout x V, for some disjoint finite sets P’” and Pout. The elements of Pi” are
called input ports, and the elements of Pout are called output ports. (p, or) and (p, u2)
are not concurrent for any p, uI, u2. The elements of E\(Znpu Out) are called
in ternal events.

l Q is a set of states, and q’ E Q is a distinguished initial state.

l A is a transition function that maps each pair of states q, r in Q to a subset
A(q, r) of Eu {E}. E, a special event not in E, is called the identity event,

satisfying the following conditions:

Disambiguation. r # r’ implies A(q, r) n A(q, r’) = 0.

Identity. eEA(q,r) iff q=r.
Receptivity. For any state q and any input event a, there exists a state r such

that a E A(q, r).

Commutativity. For any states q, r, s and any events a, b if a 1) b, a E A(q, r)
and b E A(q, s), then there exists a state p such that a E A(s, p) and b E A(r, p).

Non-disabling inputs. If e is an input event at an input port, then e I(e’ for any
event e’ that is not an input event at the same port.

Output delay. For any states q, r, s and any events a, b, if a E A(q, r),
b E A(r, s), a is an output event at an output port and b is not an output event at
the same port, then there exists a state p such that b eA(q, p) and aEA(p, s).

This definition is similar to the definitions of a port automaton and an input-
output automaton due to Stark in [21,28] and is closely related to the input-output
automata of Lynch and Tuttle [22]. Disambiguation states that, from a particular
state, an event cannot take the automaton to two different states.

A basic property of systems is that they cannot control what their inputs are.
They may, of course, ignore their inputs but they cannot determine their inputs
which are supplied by the external environment. To express this we would also like
to have input events always “enabled.” We can make the notion of enabling precise
by saying that event a is enabled at state q if a E A(q, r) for some state r. The intent
of input events is to represent the arrival of data on input ports. The arrival of data
on input ports should not be dependent on the state, and so, for any state and for
any event corresponding to a value arriving on an input port, there is a new state
corresponding to the value having arrived. This is captured by receptivity. Further,
an input event should not be able to disable other events that were enabled before
this input event. This is captured by the property of non-disabling inputs.

If two events are concurrent, i.e., are related by the concurrency relation, and
if both of them are enabled in a particular state, then the execution of any one
of these two events does not disable the other, and moreover, the execution of
these events in either order results in the same final state. This is captured by
commutativity.

The intent of output events is the detection of data at output ports by the
environment. The property of output delay says that events following an output

308 MC ALLESTER, PANANGADEN, AND SHANBHOGUE

event are, in general, not dependent in any way on the output event, and so they
could even happen before the output event. This idea is similar to, but a restricted
form of, an axiom in Bednarczyk’s asynchronous systems [7].

The transitions of an automaton are the triples (q, a, r) with a E A(q, r). We will
denote the transition (q, a, r) by q 4 r. The transition q -% q is called an identity
transition and is denoted by id,.

One should note that there is a difference between the notions of euent and
transition. A transition describes two states and an event such that when the
event is executed in the first state, the second state is reached. An event may execute
in different states. For example, an “x :=x + 1” event may be executed in a
state in which x is 3, as well as in a state in which x is 4. But they will correspond
to different transitions.

DEFINITION 26. A computation sequence y is a finite or infinite sequence of
transitions of the form

4+--+ q2L . . .

The domain dam(y) of y is the state q,. A computation sequence is said to be initial
if dam(y) is the distinguished start state ql. Two computation sequences y and 6 are
coinitiul if dam(y) = dam(6).

We will now give an example of an automaton. We will use h as an infix
operator for representing concatenation of sequences.

EXAMPLE 2. Buffer. This automaton has one input port and one output port. It
reads values and outputs them, guaranteeing to read and output of all values that
arrive on the input port.

Let the set of states Q be V*. A state here represents the contents of the input
port. The initial state is A. Let the set of input events Znp be {i} x V and the set
of output events Out be (o} x V. Then the set of events E is Znp u Out.

We now define the transition relation, using u to represent a member of V.
A(q,r)= ((i,u)} iff r=qh u. A(q, r) = ((0, u)} iff q = u”r. A(q, q) = (E}.

Every event in Znp is concurrent with every event in Out, and E is concurrent with
any other event.

We end this subsection with some notation. We refer to events of the form (p, u)
as p-events. Also, we denote the value component u of an event e = (p, u) by
value(e). We also extend the definition of value to sequences-ualue((p, u,)(p, Us)...)
1s UIU2... . For any computation sequence

0 = q1 --L q* 02 . . .

we define ev(a), the sequence of euents of cr to be a,~,... . We use the symbol 17 as
a projection operator on sequences of events. Given any sequence t of events and
a set S of ports, we will use n,(t) to represent the subsequence of t consisting of

FAIRNESS AND SIGNALING 309

the p-events in t for all ports p in S. If S is a singleton set (p}, then we will use
the notation rip(t) instead of IIIpl(t). If t is the sequence of events of a computation
sequence 0, then we also write n,(a) to mean the same thing as II,(t) and 17,(a)
to mean the same thing as LIP(t). When we compare the projections of a sequence
of events onto different ports, then we will follow the convention of implicitly
applying oalue to the projections. We use the notation t[i] to represent the ith
event in a sequence t of events and the notation y[i] to represent the ith transition
in a computation sequence y.

A.2. Completed Computation and the Input-Output Relation

In this subsection, we describe which computation sequences of automata we
view as “completed,” i.e., cannot be extended further. Once we establish this, we
then show how we can abstract the input-output behavior of an automaton from
its completed computation sequences.

We now describe the computation sequences that we consider as “completed.” To
do this, we extend the prefix ordering on computation sequences to include the con-
currency information in the concurrency relation. A finite computation sequence y
is a prefix of a computation sequence 6, and we write y $6, iff there exists a com-
putation sequence 5 with y< = 6. We define permutation equivalence to be the least
congruence w, respecting concatenation, on the set of finite computation sequences
of an automaton such that whenever a 11 b, the computation sequences q 4 r-L p
and q & s 4 p are N -related. We define the permutation preorder relation 5 on
finite computation sequences of A as the transitive closure of < u N. Define
N-C -- _ n 2. It is an easy lemma that for y, 6 finite, y 5 6 iff 35 such that yl N 6.
One observation we can make is that if y L 6, then the multiset of events in y is
contained in the multiset of events in 6. Another lemma is that for y, 6 finite, if
y L 6 and the multiset of events in y is contained in the multiset of events in a
prefix 6’ of 6, then y 5 6’. We can now extend the permutation preorder relation
to infinite computation sequences by defining y 5 6 iff for every finite y’ $ y, there
exists a finite 6’< 6, such that y’ 5 6’. We define 1: = 5 n 2 for infinite computa-
tion sequences also.

We would like a notion of “completed” computation sequence, in which all
events that could happen at any state have .either happened or been disabled. We
would like to say that a finite computation sequence y is not completed if there is
a non-input event enabled at its end. We would like to say that an infinite computa-
tion sequence y is not completed if there is a suffix of y and an event e such that e
is enabled at every state in the suflix and commutes with every event in the suffix.
Intuitively, the event e can happen at any point in the suflix but does not do so.
Completedness turns out to be identical to s-maximality for a particular input
[32]. SO we will take maximality to be the definition of completedness. Whenever
we talk about F-maximality, we will actually mean maximality for a particular
input. We could think of the preorder 5 as the prefix ordering in which
concurrency information has been encoded. It is quite pleasant to be able to state
completedness as a maximality property of computation sequences.

310 MC ALLESTER, PANANGADEN, AND SHANBHOGUE

DEFINITION 27. A computation sequence y of an automaton is said to be
completed if is 5 -maximal among all computation sequences with the same input
as y.

Let us now describe the notion of a history. Let P be the set of input ports and
output ports of an automaton. A history over P is defined to be a function from P
to I’“. Then for any computation sequence 0, we can define a history H, by letting
H,(p) be value (n,(a)). Similarly, for any sequence t E (P x V)“, we can define a
history H, by letting H,(p) be value(Z7,(t)). We denote the restriction of H, to the
input ports by HF, and call it the input port history corresponding to (r. We denote
the restriction of H, to the output ports by Hz”‘, and call it the output port history
corresponding to O.

Now we can describe the input-output relation of an automaton. This describes
the input-output behavior-says which outputs are possible for which inputs. This
is the most abstract that we can get because function semantics cannot be used for
indeterminate networks.

DEFINITION 28. The input-output relation of an automaton is the set of all pairs
(H”, Hz”‘) with (T being a completed computation sequence of the automaton.

We can also equivalently consider the input-output relation to be a set of pairs
of tuples of streams, the first tuple of each pair consisting of streams at the input
ports and the second tuple consisting of streams at the output ports. We will also
refer to the input-output relation as the IO-relation.

A.3. Moves of Computation Sequences

We now formalize some of the implications of commutativity and permutation
equivalence for computation sequences.

DEFINITION 29. A move of a computation sequence y is a pair (i, i + 1) such that
r[i] =q”-t r and y[i+ l] =rA p and there exists a states such that q-%s and
,a, p.

Recall that we defined 5 to be the transitive closure of the union of the prefix
preorder < with the permutation equivalence relation -, and we defined
w--c -- - n 2. It then follows from the definition of N that if y, 6 are finite com-

putation sequences and y N 6, then there is a finite sequence of moves that can
transform y to 6.

DEFINITION 30. A move transformation of a computation sequence y is any
sequence of moves that involves any particular event occurrence in y only finitely
often.

The proviso, about moving any particular event occurrence only finitely often, is
present because we do not want to consider sequences of moves for which event

FAIRNESS AND SIGNALING 311

occurrences may get “lost.” For example, consider a computation sequence y
consisting of an output transition followed by infinitely many input transitions.
Every one of the infinitely many input transitions can be flipped with the output
transition. The result of this infinite sequence of moves would not contain the
output transition at all.

LEMMA 12. If y is a computation sequence, n is a move transformation of y, and
6 is the result of the move transformation on y, then 6 N y.

Proof If 9 is finite, then it involves only a finite prefix 7~ of y, and if the result
of applying q to rr is rc’, then 7c 2: z’, and therefore, y = rrt N rr’t = 6 for some (Y.

If 4 is infinite, then let rr be a finite prefix of 6. Let q’ be the smallest finite prefix
of q such that the rest of the moves in q do not involve the event occurrences in
rc. Let every event occurrence in 7~ and every event occurrence involved by 9’ be in
the prefix 5 of y. If x’ is the result of applying q’ to 5, then 5 N n’, and this must
extend 7~. Therefore z < TC’ N 5, thus proving 6 5 y.

To prove that y 5 6, let rr be a finite prefix of y. Let (? be the smallest prefix of
6 containing all the event occurrences in 7~. There must be a smallest prefix q’ of 9
such that the rest of the moves in 7 do not involve events in <. We claim that
rc 5 l. Let z’ be the smallest prefix of y that extends n and is involved by 17’. Then
7t’ N 5. Then n < n’ N 5. Therefore x 5 5, thus proving that y k 6. 1

COROLLARY 1. Zf y is a maximal computation sequence and n is a move transfor-
mation, then the result of applying n to y is also maximal.

LEMMA 13. Zf y is a computation sequence of an automaton, then it can be
k -extended to a completed computation sequence with the same input as in y.

The proof uses Zorn’s lemma and is similar to the one in [28]. Briefly, we can
show that every chain of computation sequences y1 5 y2 C, such that y 5 yi for
every i and all the yi have the same input as y, has a lub. Hence, by Zorn’s lemma,
the set of all computation sequences 6, such that y 5 6, has a lub and this is
maximal.

COROLLARY 2. Zf y is a finite computation sequence of an automaton A, then it
can be extended to a completed computation sequence with the same input as in y.

Proof Let 6 be a completed computation sequence such that y 5 6. Since y is
finite, there is a finite prefix 6’ of 6, such that y 2 6’. Therefore y< = 6’ for some (.
Hence there is a sequence of moves that transforms 6’ to y[, and therefore trans-
forms 6 to a completed computation sequence extending y. u

A.4 Determinate Automata

Earlier, we defined the input-output relation for an automaton. If this relation
turns out to be the graph of a function-i.e., for any input, there is a unique output

312 MCALLESTER, PANANGADEN, AND SHANBHOGUE

associated with it in the input-output relation-then the automaton is said to
compute that function. The following definition is from [34].

DEFINITION 31. An automaton is determinate if it satisfies the following condi-
tion: b]) b’ whenever b, b’ are distinct non-input events both enabled at some state.

Intuitively, a determinate automaton does not exhibit “internal indeter-
minacy”-the only possible indeterminate choice that the automaton makes occur
between input event transitions. The following theorem and lemma were proved in
c341.

THEOREM 11. Determinate automata compute functions, Moreover, a function f is
computed by a determinate automaton iff f is a continuous function.

LEMMA 14. Suppose A is a determinate automaton. Then for each input x, there
is a unique completed computation sequence, up to N -equivalence, having input x.
Moreover, iSinput x’ extends x, then for any completed computation sequence y with
input x and any completed computation sequence y’ with input xl, y 5 y’.

AS. Networks of Automata

We now describe how we can build networks of automata by collecting together
individual automata and then linking ports together.

DEFINITION 32. If I is a finite index set, then a set Y = {Mi: ie Z} of automata
is said to be compatible if

l for all i,jcZ such that i#j we have (E,\(Znp,u Outi)) n (Ej\(Znpju Our,))
= @; that is, the sets of internal events of any pair of automata are disjoint, and

l for any port name, at most two automata may have that name in common,
and in that case, it must be the name of an output port of one automaton and an
input port of the other automaton,

where M, = (Ei, Qi, Aj), and Zp, is the set of input events of Mi, and Out, is the
set of output events of Mi.

The shared port names represent ports that will get connected when the set of
automata are composed together. We will then obtain a network automaton. The
input ports of the network will be all the input ports of the Mis, excluding those
that are shared. The output ports of the network will be all the output ports of
the Mls.

DEFINITION 33. The composition of a compatible set 9’ of automata is the
automaton 17 Mi = (E, Q, A), where

l E = U Ei, with a 1) b iff a 1) ib for all iE Z such that both a and b are in E,.
l Out = ((J Out,), and Znp = (u Znpj)\(U Out,),

FAIRNESS AND SIGNALING 313

. eeA((qi: FEZ), (ri: FEZ) iff for all ill, either e$E,and ri=qi, or else eEEj
and e E A,(q,, Yi).

The definition of I(above implies that events of distinct automata, that do not
share any ports, are concurrent, because they are not both in the event set of any
single automaton. We now explicitly define output hiding.

DEFINITION 34. If d is an automaton with input ports Pi” and output ports
PO”‘, and S is a subset of Pout, then the output hiding of S in d results in the
automaton with input ports Pi” and output ports P”“‘\S with exactly the same sets
of events and states and the same transition relation as d.

When we compose two automata with a shared port name p, p being an output
port of one automaton and an input port of the other automaton, then the two
automata connected in this manner may execute a single event in the composed
automaton, but this might correspond to an output event of one of them and an
input event of the other. For example, suppose A and B are the two automata
sharing port name p; that is, p is an output port of A, but an input port of B. Then
(p, u) is an output event for A, but an input event for B. For the composed
automaton, this corresponds to the emission of value u by A at its ouput port p and
the arrival of u at the input port p of B. By defining composition in this way, we
do not have to worry about liveness conditions to ensure that values output by A
at p will eventually arrive at the input port p of B.

The difference between a network of automata and a single automaton is that we
can recover the structure of the individual automata in the network by appropriate
projections. A network can be thought of as an automaton, coming with a
predefined decomposition. One may, of course, specify a large automaton without
giving such a decomposition.

With each component automaton Mj, we associate restriction functions pi from
states of the network to states of Mi, and oli from events of the network to events
of M,. pi is defined by pi((qi: ic I)) = qi and CQ is defined by a,(a) = a, if a E Ei, and
cri(a)=s otherwise. Then we can define the restriction n,,(y) of a computation
sequence y = q, al + q2 “2 . . . of the network to a component automaton M,
by pi(q1) ~ p;(q*) ilr(oz) . . . with the identity transitions collapsed.

We can define history, input port history, and output port history corresponding
to computation sequences of networks, just as we did for computation sequences of
single automata. Intuitively, we would call a computation sequence of a network
completed, if its projection onto every individual automaton is completed. This
turns out to be equivalent to maximality of the computation sequence, so we will
again define completedness to be maximality.

DEFINITION 35. A computation sequence y of a network is said to be completed
if it is 5 -maximal among all computation sequences having the same input as y.

314 MCALLESTER, PANANGADEN, AND SHANBHOGUE

Just as we defined the input-output relation for a single automaton earlier, we
can now define the following:

DEFINITION 36. The input-output relation of a network of automata is the set of
all pairs (H:, Hz”‘) with o being a completed computation sequence of the
network.

In this section, we have presented a view of processes and networks as automata,
and a view of computations of processes as sequences of events of these automata.
We will henceforth use the terms “process” and “automaton” interchangeably. In
the next section, we will discuss how we can abstract the internal events away from
this description.

APPENDIX B: PROOFS ABOUT TRACES

In this appendix we give in full some of the proofs that we omitted in the main
text of Section 2.

DEFINITION 1. If y is a computation sequence, then we define tr(y) to be the
subsequence of ev(y), consisting of all the input and output events in ev(y).

DEFINITION 2. A trace of a network N of processes is a sequence t of input
events and output events of N, such that t = tr(y) for some completed computation
sequence y of N. We write Trset(N) for the set of traces of a network N.

THEOREM 1. If the network N is the composition of a compatible set of automata
(Ni} for i in some finite index set I, then t is a trace of N if and only if II,(t) is
a trace of Ni for every i.

Proof: Let t be a sequence of events such that II,(t) is a trace of Ni for every
i. We show that t is a trace of N. Let ti= II,(t). For each ti, there is a completed
computation sequence yi of Ni, such that tj= tr(y,). Then we can dovetail among
the computation sequences (yi: i E I} to obtain a computation sequence y, such that
t is the subsequence of ev(y) consisting of all the input and output events of the Ni.
Since each yi is completed, so is y, and so t is a trace of N.

Let t be a trace of N corresponding to the completed computation sequence y of
the network. The projection yi of y onto any automaton Ni is then a completed
computation sequence of Ni. Therefore II,(t) = ev(nNt(y)) is a trace of Ni. 1

We need a particular property of sequential processes, and the proof of Lemma 1
depends on this property.

LEMMA 15. If a sequential process P has an output history H”“’ for an input
history Hi” with finitely many input events, and if y is a finite computation sequence

FAIRNESS AND SIGNALING 315

of P containing all the input events in Hi” and i output events at output port p, i being
less than the length of H”“‘(p), then there is a computation sequence extending y in
which the next non-internal event after the events in y is (p, H’“‘(p)[i+ 11).

Proof If this event el (p, H”“‘(p)[i+ 11) is enabled at the end of y, then we
are done. If not, then we know, by Corollary 2, that there is an extension 6 of y
with the same input history Hi” and containing e. The only non-internal events
not in y and preceding e in 6 must then be output events. Since output events of
processes commute with all following events in a computation sequence by the
property of output delay, there is a sequence of moves that move these output
events forward past e. 1

The following is the proof of Lemma 1.

LEMMA 1. If t is a trace of a sequential process P, and t’ is any linearization of
the events in t such that for every pair (e 1, e2) in the causal set oft, e, precedes e2
in t’, then t’ is a trace of P.

Proof Let y be a completed computation sequence of P such that tr(y) = t. We
define a move transformation on y to obtain a completed computation sequence y’
by Lemma 12, such that tr(y’) = t’, hence proving our lemma. We wil? define finite
sequences vi of moves such that the result of applying 7, “q2 h .. . “vi on y is a
computation sequence yi such that tr(y,) has t’[1 . . . i] as prefix.

We define yO to be y. We will define vi by induction. Suppose we have delined
q 1 ? **.9 vi- 1 > and suppose tr(yi-i[l . ..r]) is t’[l . ..(i- l)], and yi-l[r+ l] is an
input or output event. Suppose t’[i] is an input event, and let it be ~~-~[r’],
r’ z r + 1. Then we define vi to be (r’ - 1, r’), (r + 1, r + 2).

Suppose e = t’[i] is an output event. We would like to prove that the input in
yi-l[l .” r] can cause the output of e. Suppose this is not the case. If there is a
single input event e’ in yip I [r + 1 ... r’], then (e’, e) is not in the causal set of t.
Therefore, there is some input Z c H’“(y) extending that in yip i[1 ... r], but not
containing e’, that can produce the output event e. By the definition of sequen-
tiality, Z must contain some event at the same port as e’ and hence must be the event
e’ by the consistency of inputs. This is a contradiction. We can also achieve a
contradiction when there are multiple input events in yi- I [(r + 1). . . r’] by using
induction.

Therefore, by Lemma 15, there is a computation sequence K = yi- i [1 * * * r] “5,
extending yi _ i [1 1. * r], in which the next non-internal event is e, and < ends in
this event. By Lemma 14, K can be extended to a completed computation sequence
with the same input as in y, and therefore K 5 yiP1[l . . . r’]. Therefore
5 5 Yi-l[:(r+l)--. r’]. Then 5r’ = yi- I[(r + 1) .. . r’], and there is a sequence of
moves, which we take to be vi, on yi- I[(r + 1). . r’] that transforms it to (5’.

The fact that vi “... is a move transformation follows from the fact that a non-
internal event is clearly only moved finitely often, and an internal event gets moved

51 L/47/2-6

316 MC ALLESTER, PANANGADEN, AND SHANBHOGUE

only as long as all the non-internal events to its left in y have not stopped moving,
which they do in finite time. 1

The following is the basic lemma 3 about scheduled traces.

LEMMA 3. The scheduled trace set of a determinate process is prefix limit closed.

Proof Let A be a determinate process, and let t be an infinite sequence of input
and output events of A, such that every finite prefix of t can be extended to a
scheduled trace of A. We need to prove that t is then a trace of A. We will construct
a completed computation sequence y of A such that tr(r) = t, and hence we
conclude that t is a trace of A. We will construct y in stages. Having constructed
the finite computation sequence yi at the end of the ith stage, we will describe how
to properly extend yi to obtain a finite computation sequence yi+ 1 at the end of the
(i+ 1)th stage. If tr(y,)= t[l . ..j] and t[j+ l] is an input event, then we define
Yi+ 1 to be yi followed by the input event transition corresponding to ry+ 11. If
t[j+ l] is an output event, then by the determinacy of A and by Corollary 2, there
is an extension y,! of yi with the same input as yi and containing the event t[j+ l]
following the events in yi. All output events, if any, preceding t[j+ l] and
occurring after yi in y(can be moved forward past the event t[j+ I] by the
property of output delay. We then choose yi+ 1 to be that prefix of the resulting
computation sequence that ends in the event t[j+ 11.

We now claim that the computation sequence y’ obtained in this way can be
5 -extended to a completed computation sequence y without adding any output
events. If not, then there is an output event that is enabled at every state of some
suffix of y and commutes with all the events in that suffix. Suppose this output event
is enabled at the end of y[1 . . k] and at every state thereafter. But since t has
infinitely many events and every prefix of t is a scheduled trace, the output event
must occur in y in finite time by the definition of a scheduled trace. We thus get a
contradiction, proving our claim. 1

The following.is the proof of Lemma 4.

LEMMA 4. For any finite network N of sequential processes, unfair split processes,
and unfair split with signal processes, the scheduled trace set is prefix limit closed.

Proof Suppose N has m ports and t is an infinite sequence that is not a trace
of N, but every prefix of t is a prefix of a scheduled trace of N. Then the projection
t, of t onto some process P is not a trace of P. Let ti be the projection of t[1 . . . i]
onto P. Then each ti is a prefix of a scheduled trace of P because ti is a prefix of
the projection of some scheduled trace onto P.

Case 1. The t,‘s form an eventually increasing sequence. Then, by prelix-
limit-closure of the scheduled trace set of P, t, is a trace of P, contradicting the
assumption.

Case 2. For some i, for all j> i, tl= ti= t,. Let t’ be a scheduled trace of the
network, such that t[1 . . . (i + m)] is a prefix of t’. Therefore the projection t> of t’

FAIRNESS AND SIGNALING 317

onto P has ti+,,,= ti as a prefix. Since ti is not a trace of P and t> is a trace of P,
t> must contain an output event e such that ti A e is a prefix of a trace of P,
violating the definition of a scheduled trace for t’.

Thus t is a network trace, and hence the scheduled trace set is prefix limit
closed. 1

APPENDIX C: THE SCHEDULING OPERATION

In Section 2, we defined the scheduled trace set of a network. We now need to
ensure that for every trace with some particular sequences of input events and
sequences of output events, there is a scheduled trace with the same input and
output, so that we can use the scheduled trace set to represent the behaviors of a
process or network. For these purposes, we will define a “scheduling operation” on
traces that yield scheduled traces.

We will use (p, n) to refer to the nth event on port p in a trace. We will use the
notation t[i] for the ith element of a sequence t, t[1 .. . m] for the prefix of t con-
sisting of the first m events of t, and t[m . . .] for the suffix of t starting from t[m].

DEFINITION 37. Suppose p is a port of a network N, and t is a trace of N. A pair
(p; n) is said to occur at time i in trace t if t[i] is the nth event on port p.

We also say that (p, n) occurs in t if it occurs at some time in t. Note that a
pair is not the same as an event. A pair represents an event in a trace, and the same
pair may represent different events in different traces.

We first describe a causality relation on events of a trace, that will represent the
“causal” order between events in a trace, and that is well-founded, antisymmetric,
and transitive. We then prove that every linearization of this relation is a trace, and
we will then take some particular linearizations to be scheduled traces. We first
define a relation <, and obtain the desired relation < as its reflexive and transitive
closure.

DEFINITION 38. For a trace t of a network N, let T be the set of all traces of N
containing exactly the events in t. Then t[i] -i I t[j] if t[i] is an input event of a
process P in N, t[j] is an output event of P, the events t[i], t[j] are represented
by the pairs (p, n) and (p’, n’), respectively, and either

(i) the event corresponding to the pair (p, n) precedes the event corre-
sponding to the pair (p’, n’) in every trace in T, or

(ii) t[i] is the mth input event in t of a US or USS process in N, and t[j]
is the mth output event in t (including the events at both the non-signal output
ports) of that process.

DEFINITION 39. < = (<,)*.

318 MCALLESTER,PANANGADEN, AND SHANBHOGUE

LEMMA 19. < is well founded, antisymmetric, and transitive.

Proof: By the definition of <I, t[i] <1 t[j] implies that i < j. Now if
t[il< t[jl, i.e., t[il = trill <It[i,] <1 ... <, t[iJ=t[j], then i=i,<i,< . . . <
i, = j. Therefore id j. By the antisymmetry and well-foundedness of 6 on positive
integers, it immediately follows that < is well founded and antisymmetric.
Moreover, i is clearly transitive, as it is the transitive closure of <, . B

We sometimes denote the < associated with trace t by <,.

LEMMA 20. If t is a trace qf a sequential process P, then any linearization qf <<
is a trace of P.

Proof: Let t’ be a linearization of <,. For every pair (e,, e2) in the causal set
of t, e, precedes e2 in t’. Therefore, by Lemma 1, f’ is a trace of P. 1

We now describe the trace set of unfair split again. Let the unfair split process
have an input channel i and two output channels ol, oz. Then its trace set consists
of all sequences ?E ((i, o,, 02} x V)a: such that n,(t) can be broken up into two
subsequences sl, s2 such that

(i) value(s,) = value(ZZ,,(t)) and value@,) = value(Z7,,(t)),
(ii) for every prefix t’ of t, value(ZI,,(t’)) is a prefix of the value sequence in

the prefix of s1 in t’ and value(ZI,,(t’)) is a prefix of the value sequence in the prefix
of s2 in t’.

LEMMA 21. Zf t is a trace of any split process, then any linearization of <, is a
trace of P.

Proof This is clear by the definition of the trace sets of split processes. 1

LEMMA 22. If t is a trace of a finite network of sequential processes and split
processes, then any linearization of xt is a trace of the network.

Proof Let t’ be a linearization of <*. Let t, and t> be the projections of t and
t’, respectively, onto a process P. Then, t, is a trace of P, because t is a network
trace. tip has the same set of events as t,. We will now show that t> is a trace of
P, and hence conclude, by Theorem 1, that t’ is a network trace. We first prove that
t> is a linearization of -Ktp. If Tp is the set of all traces of the process P with the
same set of input and output events as t,, and T is the set of all traces of the
network with the same input and output events as t, then the projections of traces
in T onto process P is a subset of Tp. Since T, determines <,,, a subset of T,
determines a relation < ’ that contains .<+. Since <’ is the restriction of (I to
the events of t,, and t> is a linearization of < ‘, flp is also a linearization of -Cr,,
and hence is a trace of P by Lemmas 20 and 21. Therefore the projection of t’ onto
every process in the network is a trace of the process, and therefore, t’ is a network
trace. 1

FAIRNESS AND SIGNALING 319

To schedule a trace, we dovetail among the sequences of input events and output
events at the various ports of the network, making sure at each step, that when an
event is considered to be the next event in the new trace, then all its predecessors
in the partial order have already been considered.

DEFINITION 40. A port order of a finite network with m ports is defined to be a
total ordering pO, p,, pz, pm-, of the m ports of the network.

DEFINITION 41. For any finite network with m ports, and any port order
o= PO, Pl, p2, ..-, Pm-l, the scheduling operation S, is defined as follows: Then
S,(t) is a total ordering of the events of t, such that the following holds: S,(t)[l]
is an event on the first of the ports in o such that it has no predecessor in <l. The
existence of such an event is guaranteed by well-foundedness of <,. If S,(t)[iJ is
an event corresponding to port pk, then S,(t)[i+ l] is an event on the first of the
ports pk + 1 mod,, pk such that each of its <,-predecessors. is in S,(t)[1 . . . i].

LEMMA 23. If t is a trace of a finite network N of sequential processes and split
processes, then S,,(t), for any port order o, is a scheduled trace of N.

Proof. Let t’ = S,(t). Then t’ is a linearization of -K(, and hence, by Lemma 22,
it is a network trace. Suppose ttM is the projection of t’ onto a subnetwork A4 with
m ports, and suppose th[i] is an output event of M. th[l ..*(i-m- l)]^th[i]”
ta[(i-m).*.(i- l)]“th[(i+ I)...] cannot be a trace of M, because otherwise
the behavior of the scheduling operation would be violated. Hence t’ is a scheduled
trace. 1

ACKNOWLEDGMENTS

We thank Dexter Kozen for active encouragement and Keshav Pingali for useful discussions. The
research reported here was supported by NSF Grant CCR-8817909 to Cornell University and an
NSERC grant to McGill University.

REFERENCES

1. I. J. AALBERSBERC AND G. ROZENBERG, Theory of traces, Theoret. Comput. Sci. 60, No. 1 (1988)
l-82.

2. S. ABRAMSKY, On semantic foundations for applicative multiprogramming, in “Proceedings, Tenth
International Conference on Automata, Languages and Programming,” (J. Diaz, Ed.), pp. 1-14,
Springer-Verlag, New York, 1983.

3. S. ABRAMSKY, A generalized Kahn’s principle, in “Proceedings, Fifth Workshop on Mathematical
Foundations of Programming Semantics” (M. Mislove, Ed.), Lecture Notes in Computer Science,
Springer-Verlag, New York, 1990.

4. K. R. APT AND E. R. OLDEROG, Proof rules and transformations dealing with fairness, Sci. Comput.
Programming 3 (1983), 65-100.

5. K. R. APT AND G. D. Prorrcr~, Countable nondeterminism and random assignment, J. Assoc.
Comput. Mach. 33, No. 4 (1986), 724-767.

320 MCALLESTER, PANANGADEN, AND SHANBHOGUE

6. R. J. BACK, A continuous semantics for unbounded non-determinism. T&ore/. Cornput. SC?. 23,
No. 2 (1983). 187-210.

7. M. BEDNARCZYK. “Categories of Asynchronous Systems,” Ph.D. thesis, University of Sussex,
October 1987.

8. G. BERRY, P. L. CURIEN, AND J. J. LEVY, Full abstraction for sequential languages; the state of the
art, in “Algebraic Methods in Semantics” (M. Nivat and J. Reynolds, Ed.), Chap, 3, pp. 89-132,
Cambridge Univ. Press, Cambridge, UK, 1985.

9. J. D. BRICK AND W. B. ACKERMAN, Scenarios: A model of non-determinate computation, in “Inter-
national Colloquium on Formalization of Programming Concepts” (J. Diaz and I. Ramos, Eds.),
pp. 252-259, Lect. Notes in Comput. Sci., Vol. 107, Springer-Verlag. New York, 1981.

10. M. BROY, Fixed point theory for communication and concurrency, in “Formal Description of
Programming Concepts II,” p. 125-148, North-Holland, Amsterdam, 1983.

11. A. CHANDRA, Computable non-deterministic functions, in “Proceedings, 19th Annual Symposium of
Foundations of Computer Science,” pp. 127-131, IEEE, New York, 1978.

12. N. FRANCEZ, “Fairness,” Springer-Verlag, New York/Berlin, 1986.
13. C. A. R. HOARE, “Communicating Sequential Processes,” Series in Computer Science, Prentice-Hall

International, London, 1985.
14. B. JONSSON, ‘Compositional Verification of Distributed Systems,” Ph.D. thesis, Uppsala University,

1987.
15. B. JONSSON, Fully abstract trace semantics for dataflow networks, in “Proceedings, Sixteenth Annual

ACM Symposium on Principles of Programming Languages, 1989.”
16. G. KAHN, The semantics of a simple language for parallel programming, in “Information Processing

74,” p. 993-998. North-Holland, Amsterdam, 1977.
17. G. KAHN AND G. PLOTKIN, “Domaines concrets,” Rapport IRIA-LABORIA 336, 1978.
18. R. M. KELLER, Denotational models for parallel programs with indeterminate operators, in “Formal

Description of Programming Concepts” (E. Neufeld, Ed.), pp. 337-366, North-Holland, Amsterdam,
1978.

19. R. M. KELLER AND P. PANANGADEN, Semantics of digital networks containing indeterminate
operators, Disrrib. Comput. 1, No. 4 (1986). 235-245.

20. P. L. CURIEN, “Categorical Combinators, Sequential Algorithms and Functional Programming,”
Research Notes in Theoretical Computer Science, Wiley, New York, 1986.

21. N. A. LYNCH AND E. W. STARK, A proof of the Kahn principle for input/output automata, Inform.
und Cornput. 82, No. 1 (1989). 81-92.

22. N. A. LYNCH AND M. TUTTLE, “Hierarchical Correctness Proofs for Distributed Algorithms.”
Technical Report MIT/LCS/TR-387, MIT Laboratory for Computer Science, April 1987.

23. A. MAZURKIEWICZ, Advanced course in Petri nets, in “Lecture Notes in Computer Science,”
Vol. 255, pp. 2799324, Springer-Verlag, New York/Berlin, 1986.

24. R. MILNER, “A Calculus for Communicating Systems,” Lecture Notes in Computer Science. Vol. 92,
Springer-Verlag, New York/Berlin, 1980.

25. P. PANANGADEN AND V. SHANBHOGUE, “On the Expressive Power of Indeterminate Primitives,”
Technical Report 87-891, Computer Science Department, Cornell University, November 1987:
Inform. and Cornput., to appear.

26. P. PANANGADEN AND V. SHANBHOGUE, McCarthy’s amb cannot implement fair merge, in
“Proceedings, Eighth FSTTSC Conference,” Lecture Notes in Comput. Sci., Vol. 338, pp. 348-363,
Springer-Verlag, New York/Berlin, 1988.

27. P. PANANGADEN. V. SHANBHOGIJE, AND E. W. STARK, Stability and sequentiality in dataflow
networks, in “Proceedings, Seventeenth International Colloquium On Automata Languages and
Programming” (M. S. Paterson, Ed,), pp. 308-321, Lecture Notes in Computer Science, Vol. 443,
Springer-Verlag, New York/Berlin, 1990.

28. P. PANANGADEN AND E. W. STARK, Computations, residuals and the power of indeterminacy,
in “Proceedings, Fifteenth International Colloquium on Automata Languages and Programming”
(T. Lepisto and A. Salomaa, Eds.), pp. 348-363, Lecture Notes in Computer Science, Vol. 317,
Springer-Verlag. New York/Berlin, 1988.

FAIRNESS AND SIGNALING 321

29. D. PARK, The “fairness problem” and non-deterministic computing networks, in “Proceedings,
Fourth Advanced Course on Foundations of Computer Science-Distributed Systems” (J. de Bakker
and L. van Leeuwen, Eds.), pp. 133-161, Mathematisch Centrum, Amsterdam, 1982.

30. G. D. PLOTKIN, Lcf considered a programming language, Theoret. Cornput. Sci. 5, No. 3 (1977),
223-256.

31. J. R. RUSSELL, On oracleizable networks and Kahn’s principle, in “Proceedings of the Seventeenth
Annual ACM Symposium on Principles of Programming Languages, 1990.”

32. V. SHANBHOOUE, “The Expressiveness of Indeterminate Dataflow Primitives,” Ph.D. thesis, Cornell
University, 1990.

33. E. W. STARK, Semaphore primitives and starvation-free mutual exclusion, J. Assoc. Comput. Mach.
29, No. 4 (1982), 1049-1072.

34. E. W. STARK, Concurrent transition system semantics of process networks, in “Proceedings, Four-
teenth Annual ACM Symposium on Principles of Programming Languages,” 1987, pp. 199-210.

35. E. W. STARK, Concurrent transition systems, Theoret. Cornput. Sci. 64 (1989). 221-269.

