
Distrib Comput (1992) 6:73 93

�9 Springer-Verlag 1992

Concurrent common knowledge:
defining agreement for asynchronous systems*
Prakash Panangaden** and Kim Taylor***

Cornell University, Ithaca, New York

Received May 1989 / Accepted April 1992

Prakash Panangaden was born
in Pune, India in 1954. He attended
Calcutta Boys' School and subse-
quently attended the Indian Insti-
tute of Technology, Kanpur where
he received an M.Sc. in Physics in
1975. He went to graduate school
at the University of Chicago where
he studied relativity. He moved to
the University of Wisconsin-Mil-
waukee to study with Leonard
Parker to work on quantum field
theory on curved space times. After
a post-doe at the University of
Utah, he decided that it was time
for something completely different.

He began a Masters with Robert Keller on the semantics of indeter-
minate dataflow networks. He became an Assistant professor at
Cornel1 University in 1985 and an Associate Professor at McGill
University in 1990. He has also made extended visits to the Com-
puter Laboratory, University of Cambridge and to the C.W.I. Am-
sterdam.

Kim Taylor has been an assistant
professor at the University of Cali-
fornia at Santa Cruz since July
1990. Her research interests are in
the design and analysis of algo-
rithms for distributed systems. She
received the BS degree in Electrical
Engineering and Computer Science
from Rice University in May 1985,
and the PhD in Computer Science
from Cornell University in August
1990.

* An earlier version of this work appears in Proceedings of the
Seventh Annual ACM Symposium on Principles of Distributed
Computing, August 1988
** Supported in part by NSF grants DCR-8602072 and CCR-
8818979. Current address: School of Computer Science, McGill
University, Montreal, Quebec, Canada H3A2A7
*** Supported in part by an AT&T Ph.D. Scholarship. Current
address: Department of Computer and Information Sciences, Uni-
versity of California at Santa Cruz, Santa Cruz, California 95064

Correspondence to: P. Panangaden

Summary. In this paper we present a new, knowledge-
theoretic definition of agreement designed for asynchro-
nous systems. In ana logy with c o m m o n knowledge, it
is called concurrent common knowledge. Unlike c o m m o n
knowledge, it is a form of agreement that is at tainable
asynchronously . In defining concurrent c o m m o n knowl-
edge, we give a logic with new modal operators and
a formal semantics, bo th of which are based on causali ty
and consequent ly capture only the relevant structure of
purely asynchronous systems. We give general condi-
t ions by which protocols at tain concurrent c o m m o n
knowledge and prove that two simple a n d efficient pro-
tocols do so. We also present several applications of
our logic. We show that concurrent c o m m o n knowledge
is a necessary and sufficient condi t ion for the concurrent
performance of distr ibuted actions. We also demonst ra te
the role of knowledge in taking snapshots for stable
proper ty detection and asynchronous broadcasts . In gen-
eral, applications that involve all processes reaching
agreement about some porper ty of a consistent global
state can be unders tood in terms of concurrent c o m m o n
knowledge.

Key words: Distr ibuted systems - Asynchronous com-
munica t ion - Agreement protocols Moda l logic -
Knowledge

1 Introduction

Knowledge has become an impor tan t tool for reasoning
about communica t ion and coopera t ion in distributed
systems [-11, 8, 17, 10]. In this approach, one reasons
about what processes " ' know" about the states of other
processes. Coope ra t ion on a distributed task is charac-
terized by its requirement of some form o f " g roup knowl-
edge," and communica t ion is viewed as a means of trans-
ferring knowledge. In [11], common knowledge is pro-
posed as a definition for agreement in distributed sys-
tems. C o m m o n knowledge of a fact ~ implies that
"everyone knows q5 and everyone knows that everyone

74

knows ~b and everyone knows that everyone knows that
everyone knows q~" and so on. Common knowledge,
however, requires simultaneous action for its achieve-
ment and is consequently unattainable in asynchronous
systems [11, 17].

In this paper we discuss a new, knowledge-theoretic
definition of agreement appropriate for asynchronous
systems. This definition has two important features: first,
it uses the causality relation between events in its defini-
tion [16] rather than physical time and, second, this
form of knowledge is actually attainable in an asynchro-
nous system. In analogy with common knowledge, we
call it concurrent common knowledge. The idea behind
concurrent common knowledge is quite natural. Given
that ordinary common knowledge must be attained si-
multaneously by all processes, it seems clear that a viable
alternative for asynchronous systems could use causality
rather than real time.

The idea that causal structure is fundamental to the
analysis of asynchronous systems was brought into com-
puter science by Lamport [16]. The appropriate causal
analogue of a real-time global state, i.e. a global state
corresponding to the system at an instant of real time,
is a possible global state or, as it is now widely called,
a consistent cut. It is the appropriate analogue because

in asynchronous systems - no process can distinguish
whether or not a consistent cut is, in f a c t , a real-time
global state. Intuitively, we define everyone concurrently
knows to be true at a consistent cut if all processes know
that q~ is true of some "indistinguishable" consistent cut.
Concurrent common knowledge of a fact ~b then implies
all formulas of the form "everyone concurrently knows
~b and everyone concurrently knows that everyone con-
currently knows q~," and so on.

In order to define concurrent common knowledge,
we present a logic with new modal operators. Truth
values are assigned to the formulas of this logic via a
new asynchronous-runs semantics in contrast to the com-
monly-used timed-runs semantics of Halpern and Moses
[11, 10]. We find this new semantics more natural for
expressing our formulas as it contains only the causal
structure relevant to asynchronous systems and not real
time, which is unobservable in such systems. We give
a translation of our semantics to the timed-runs seman-
tics; this allows us to compare rigorously concurrent
common knowledge to knowlege formulas defined in the
timed-runs semantics.

We prove a general condition under which protocols
achieve concurrent common knowledge and give two
simple and efficient protocols that do so. Several applica-
tions of our new logic are given. We show that concur-
rent common knowledge is a necessary and sufficient
condition for performing concurrent actions in asynchro-
nous distributed systems, analogously to simultaneous
actions and common knowledge [17] in synchronous
systems. It is shown that the snapshot algorithm of [3]
achieves two forms of concurrent common knowledge.
In general, applications that involve all processes reach-
ing agreement about some property of a consistent glob-
al state can be understood in terms of concurrent com-
mon knowledge, thus we have isolated the form of

knowledge underlying many existing protocols. We also
give results pertaining to broadcast message ordering
and replicated data updates.

The paper is organized as follows. Section 2 contains
our system model. In Sect. 3 we define our logic and
its formal semantics. Section 4 contains our Attainment
Theorem, followed by two protocols which satisfy condi-
tions of that theorem and hence attain concurrent com-
mon knowledge. In Sect. 5 several applications of our
logic are presented. In Sect. 6 we give a translation of
our semantics into the standard timed-runs semantics
[11], and formally compare concurrent common knowl-
edge to common knowledge and other variants of com-
mon knowledge. Section 7 contains concluding remarks.

2 System model

The definitions that we give in this section describe asyn-
chronous, distributed systems. By the term distributed,
we mean that the system is composed of a set of processes
that can communicate only by sending messages along
a fixed set of channels. The network is not necessarily
completely connected. By asynchronous, we mean that
there is no global clock in the system, the relative speeds
of processes are independent, and the delivery time of
messages is finite but unbounded.

It is our intention to give a definition of the model
that uses the structures that are relevant to such systems.
Thus we do not use timed runs to describe these systems
[11, 10]. The resulting definitions turn out to be more
natural than if we had detailed timing information in
the model description. Of course, the timed runs model
is more generally applicable than ours. In Sect. 6.1 we
give a precise translation of our formalism in the timed
runs formalism. Our model turns out to be similar to
that of Chandy and Misra [4].

The description of distributed systems is based on
the behaviors of the individual components or processes
in the system. We take the notion of a local state of
a process to be primitive. Actions, as in [15, 10], are
state transformers.

Definition 1. An action is a function from local states
to local states. There are three types of actions: send
actions denoted send(m) where m is a message (described
later), receive actions denoted receive(m), and internal ac-
tions.

We use local states and actions to compose local his-
tories as in [15, 10].

Definition 2. A local history, h~, of process i, is a (possibly
infinite) sequence of alternating local states - beginning
with a distinguished initial state and actions. We write
such a sequence as follows

h,=s o <, st 4, 4, st...
We use s{ (c~]) to refer to the jth state (action) in process
i's local history.

An event corresponds to a state transition.

Definition 3. An event is a tuple <s, ~, s ') consisting of
a state, an action, and a state.

75

T h e f h event in process i's history, (s{- 1, cci, si), is denot-
ed el.

The state of a process can be obtained from its initial
state and the sequence of actions or events that have
occurred up to the current state. Hence the local history
may be equivalently described as either of the following:

hi= sO, cr , 2 3 O~ i , O~i . . .

hi = s ~ 1 2 e i , e i , e~ . . .

If it is additionally assumed that the local state includes
a description of all past actions in the local history (cor-
responding to the complete history interpretation of [11,
10]), then

hi__ sO, s], z a Si , Si . . .

is also an equivalent discription of the history. We will
assume such an interpretation; note that this interpreta-
tion results in a maximum amount of information being
available to a process based on its local state. We often
omit the subscript or superscript on states, events, and
actions when it is obvious or irrelevant.

An asynchronous system consists of the following
sets.
1. A set Proc={1, ..., N} of process identifiers, where

N is the total number of processes in the system.
2. A set C~_ {(i,j)li, jeProc} of channels. The occurrence

of (i,j) in C indicates that process i can send messages
to process j.

3. A set H i of possible local histories for each process
i in Proc.

4. A set A of asynchronous runs. Each asynchronous run
is a vector of local histories, one per process, indexed
by process identifiers. Thus we use the notation

a = @1, h2, h3, ... hN).

Constraints on the set A are described throughout
this section.

5. A set M of messages. A message is a triple (i,j, B)
where i~Proc is the sender of the message, j~Proc
is the message recipient, and B is the body of the mes-
sage. B can be either a special value (e.g. a tag to
denote a special-purpose message), or some proposi-
tion about the run (e.g. "i has reset variable X to
zero"), or both�9 We assume, for ease of exposition only,
that messages are unique.

Since we assume uniquences of messages, we will typi-
cally refer to an event by its action, e.g. send(m).

The set of channels C and our assumptions about
their behavior induce two constraints on the runs in
A. The first constraint corresponds to our intuitive no-
tion of channels: i cannot send a message to j unless
(i,j) is a channel. The second constraints says that, if
the reception of a message m is in the run, then the
sending of m must also be in that run; this implies that
the network cannot introduce spurious messages or alter
messages.

Constraint (1). If send ((i, j, t~)) ~ h i then (i, j) a C.

Constraint (2). If receive((i,j, (9)) @ h j then send((i,j, d?))
sh~.

In addition, we introduce two optional channel con-
straints: reliability and FIFO. Reliability says that if a
message is sent then it is received, i.e. no message loss
occurs. F IFO indicates that channels exhibit first-in-first-
out behavior. These properties are not necessary for our
definitions, but we will want to address systems that
satisfy them when we address the attainability of concur-
rent common knowledge. Unless otherwise stated, they
will not be assumed in the model.

Reliability Constraint: If send((i,j ,O))Ehi then re-
ceive((i,j, d?))~hj.

F IF O Constraint: If cr = send((i, j, 01)), ~ =
send((i , j ,~2)), w < x , and there exist actions c~Y=
receive((i,j, ~bl}) and cr = receive((i,j, q~2}), then y < z.

Our model of an asynchronous system does not men-
tion time. There is, however, an ordering of events in
the system due to the fact that certain events are known
to precede other events. We can define this order using
potential causality as done by Lamport [-16-1. Intuitively,
two events exhibit potential causality if it is possible
for one to have an effect on the other. In an asynchro-
nous system, potential causality results only from se-
quential execution on single processes and from message
passing between separate processes. It is described using
the happens-immediately-before relatiow->and the hap-
pens-before relation ~ .

Definition 4. Event e~ happens-immediately-before event
e~, denoted e~'~ e~, if and only if (1) e~ and e~ are different
events in the history of some process i and e~' occurs
earlier in the sequence, i.e. i= j and x < y , or (2) e x is
the sending of a message and e y is the reception of that
message; i.e. there exists m such that e~=send(m) and
e~=receive(m).

Definition 5. The happens-before relation, denoted ~ ,
is the transitive closure of happens-immediately-before.

Thus if ef ~ e~, then either x y e i ~ ey o r there exists an event
ekz such that e~---> e~ and ek~--~e i ~ Y.

Our final requirement is that--* be anti-symmetric,
which is necessary if the system is to model actual execu-
tions.

Constraint (3). For no two events e~ and e 2 does el -~ e2
and e2 ~ el.

Our requirements on asynchronous runs are equivalent
to those in [-4], with the exception that we limit message
sending to occur along the set of designated channels.
Chandy and Misra express the possible behaviors of sys-
tems in terms of totally ordered sets of events called
system computations. Their conditions on system compu-
tations are that (i) projections on each process are possi-
ble local histories, and (ii) the reception of a message
is preceded by its sending. These are equivalent to stating
that the system computations are linearizations of the
--* relation.

We can now use Lamport 's theory to talk about glob-
al states of an asynchronous system. A global state is
some prefix of a run, as defined below.

76

(a) (b)
Fig. 1. Inconsistent (a) vs. consistent (b) cuts

Definition 6. A global state of run a is an N-vector of
prefixes of local histories of a, one prefix per process.

The happens-before relation can be used to define a con-
sistent global state [20, 3], often termed a consistent cut,
as follows.

Definition 7. A consistent cut of a run is any global
state such that if x y e~ ~ ej and e~ is in the global state,
then e~ is also in the global state.

(See Fig. 1. The states of(b) form a consistent cut whereas
those of (a) do not.) Note that a consistent cut is simply
a vector of local states; we will use the notation (a, c) [i3
to indicate the local state of i in cut c of run a.

We often refer to causally-related message chains as
defined below.

Definition 8. In a asynchronous run, a message chain
is a (possibly infinite) sequence of messages ml,mE,
m 3 , . . . such that, for all i, receive(mi) -~ send(mi+ 1). Con-
sequently,

send(m1) -~ receive(m1) ~ send(mE) ~ receive(mE)
-~ send(m3)...

Finally, the following lemma establishes a desirable
property of asynchronous runs; its proof is contained
in Appendix A.1.

Lemma 1. In any asynchronous run of any system, each
local state of each process is included in some consistent
cut of the system.

In any state of the history of process i, i cannot deter-
mine which of the possible consistent cuts including its
current state is an actual real-time global state, i.e. a
set of local states that actually occur at the same instant
of physical time during the execution. In this sense, a
consistent cut is indistinguishable from a real-time global
state. In defining epistemic concepts, the notion of in-
distinguishability plays a key role. For this reason we
have chosen to use consistent cuts rather than real time
in our logic for reasoning about asynchronous distrib-
uted systems.

3 Semantics of concurrent knowledge

The definition of concurrent common knowledge follows
the standard pattern of defining a form of group knowl-
edge and then using a greatest fixed-point operator to
define the appropriate variant of common knowledge
[11].

In order to give a Kripkean interpretation of the
knowledge modality, we need to identify an appropriate
set of possible worlds and a family of possibility relations
between those worlds. The discussion of concurrent
knowledge really involves two modal operators and,
hence, two different collections of accessibility relations
in the semantics. This kind of situation is also seen in
other variants of common knowledge. Discussions of
eventual, epsilon, and timestamped common knowledge
[11, 18] involve a temporal modality in addition to an
epistemic modality.

3.1 The logic

We will first introduce the symbols contained in our
logic. Later we will define a formal semantics by stating
when a formula is satisfied by a pair (a, c), where c is
a consistent cut in asynchronous run a.

We assume that there is a set of primitive propositions
Prop; these typically will be statements like "variable
x in process i is 0" or "process i has sent a message
m to process j" . We represent these by lower-case letters

P, q
We introduce two families of modal operators, each

family indexed by process identifiers. They are written
Ki and P~ respectively. Intuitively, Ki(q~) represents the
statement "i knows ~b," which in terms of asynchronous
systems means "~b is true in all possible consistent global
states that include i's local state." The formula P~(q~) rep-
resents the statement "there is some consistent global
state in this run that includes i's local state, in which
q~ is true." P has, roughly speaking, a role similar to
a temporal modality. It is quite different, however, from
the familiar temporal operators like ~ .

The next modal operator is written E c and stands
for "everyone concurrently knows." The definition of
EC(qS) is as follows.

gC(q~)=def A KiPi(O)"
i~Proc

The last modal operator that we introduce is C c, con-
current common knowledge. Analogously to common
knowledge, we wish to define a state of process knowl-
edge that implies that all processes are in that same state
of knowledge, with respect to qS, along some cut of the
run. In other words, we want a state of knowledge X
satisfying

x = E ~(r ,,, x) .

Thus we want concurrent common knowledge to be a
fixed point of EC(~b/x X). C c will be defined semantically
as the wekest such fixed point, namely as the greatest
fixed-point of EC(0 A X). It therefore satisfies

c~(q~)~.Ec(r cc(r

and informally

c ~ (0) ~ ~ (r (U) ~ (4,)/, (U ? (q~) . . . ,

77

i.e. that (EC)~q5 holds for any k. The greatest fixed point
definition is, however, stronger than the infinite conjunc-
tion.

3.2 Formal semantics

In an asynchronous system, the possible worlds are the
consistent cuts of the set of possible asynchronous runs
A. We use pair (a, c) to stand for the consistent cut c
in the asynchronous run a. Recall that a cut is an N-
vector of local states, one for each process in Proc. Two
cuts are viewed as indistinguishable by process i if they
contain the same local state of process i. This is clearly
an equivalence relation.

Definition 9. We write (a, c)~i (a', c') to represent the
indistinguishability of (a, e) and (a', c') to i:

(a, c)~i (a', e').~ (a, c)[i] =(a', c')[i].

The formal semantics is given via the definition of
the satisfaction relation ~ . Intuitively (a, c)~ ~b, "(a, c)
satisfies ~b," if fact ~ is true in cut c of run a. We assume
that we are given a function n that assigns a truth value
to each primitive proposition p and local state s of pro-
cess i. The truth of a primitive proposition p in (a, c)
is determined by n and c. This defines (a, c)~p. The satis-
faction relation is defined in the obvious way for formu-
las built up using the logical connectives. The following
defines the meaning of K~ in our setting:

(a, c)l= K~(f))<=~ V (a', c')((a', c ')~ (a, e)~(a' , c')~ 0).

This is practically the same as the definition in Halpern
and Moses [11], except that we use asynchronous runs
rather than timed runs.

The meaning of P~ is given by the following definition.

(a, c)~ P~((~)~:~ ~ (a, c')((a, e ') ~ (a, c)/x (a, c')N 0).

In other words, P~(qS) states that there is some cut, in
the same asynchronous run, including i's local state, such
that q~ is true in that cut. (See Fig. 2.) Another way of
viewing the meaning of P~ is to define the equivalence
relation ~ to stand for indistinguishable cuts in the
same run; this is a refinement of the ~ relation.

(a, c) ~i (a', c')~=~(a = a') ,x (a, c),,- ~ (a', c').

Given the definition of ~ we can equivalently define
P~ as follows.

(a, c) ~ P/(~b) ~:~ 9 (a', c')((a', c') ~i (a, c) A (a', c') ~ 4).

(~,~) ~ P,~ (~,~') 1=
Fig. 2. Satisfaction of (a, c)~Pi(~b)

Note that ~b implies Pi(~b). This makes EC(~b)=aef
A KiPi(~b), concurrent knowledge, weaker than E(q~)

ieProc

=aef /~ Ki(~b), "everyone knows."
ieProc

It is not the case, in general, that P~(qS) implies ~b or
even that EC(qS) implies qS. Note that the truth of EC(~b)
is determined with respect to some cut (a, c). A process
cannot distinguish which cut, of the perhaps many cuts
that are in the run and consistent with its local state,
satisfies ~b; it can only know the existence of such a
cut. In particular, the cut c may not satisfy qS. EC(q~)
does imply ~b, but only for certain types of facts, as we
will discuss at the end of this section. Of course, if ~b
implies ~ then EC(~b) implies EC(O), i.e. E c, is monotonic.

The remainder of our formal semantics outlines the
definition of C c using greatest fixed points. In order to
define the meaning of C c using fixed points we need
to define the meaning of formulas with a free variable
X in them; we allow only one free variable in such for-
mulas. We think of the meaning of a formula with a
free variable as a function from sets of consistent cuts
to sets of consistent cuts. Fix a system A. Let Wdenote
the set of consistent cuts of A. Then we can define the
following meaning function for all formulas. We let Z
stand for a generic subset of W. The meaning of the
formulas is given by the inductively defined function d/L
The meaning of the primitive propositions p, q,... is giv-
en by a function n as discussed above. The meaning
function defined below follows very closely the definition
given by Halpern and Moses [11] and by Kozen [14].

1. JgWp~(Z)={ueWln(u, p)=true} where p is a primi-
tive proposition.

2. d//~-~ ~b~ (Z) = W - J~ [~b~ (Z).

4. J//WX~ (Z) = Z.
5. (Z) -- {(a, c) e W IV (a', c') ~ W((a, c) Hi (a', c')

=> (a', c') ~,//g [~qS~] (Z)) } .
6. ~ [Pi (~b)~ (Z) = {(a, c)e W I3 (a', c')e W((a, c) ~i(a', c)

(a', c') e ~ ~b~ (Z))}.

If a formula does not contain a free variable then its
meaning is a constant function, The truth value defini-
tion of the semantics can be recovered by defining

(a, c)~q5 iff (a, c)e~/~b~(0).

In fact the semantic clauses just given are exactly what
one would expect for the Tarski-style truth definition
except that they have been given in terms of sets and
set operations instead of truth values and logical connec-
tives.

We will define C c via a greatest fixed-point operator.
We extend the syntax by vX.(a. The interpretation of
this proceeds as follows. The existence of the greatest
fixed point depends upon the monotonieity of Jg ~q~ (Z);
a function f is monotonic if A~_B implies f(A)~_f(B).
To guarantee monotonicity, we require that free occur-
rences of X in q5 be positive, i.e. all occurrences of X
are in the scope of an even number of negation signs.

78

This is clearly a syntactic property. It is easy to see (by
induction on the structure of formulas) that J t F0](Z)
will be a monotonic function if X appears positively.
Any monotonic function on a complete lattice has a
greatest fixed point [,21]. The powerset 2 w ordered by
inclusion is certainly a complete lattice. We can thus
give meaning to vX.O as

./~[vX.~b](Z)= ~ {BI~//I[c~(B)=B}

and CC(O) can be viewed as a special case of this as
follows:

cc(r ~ x.Ec(4) ~ x).

It is not true that EC(0 A X) defines a continuous func-
tion so the fixed point is not necessarily attained by
simply iterating through all of the integers; in this sense
C c is rather like C ~ [-11]. Note that in the logic the
only occurrence of greatest fixed points is through occur-
rences of C c. In such occurrences one never has to inter-
pret formulas like vX.vY. .XA Y where there are fixed
points of expressions containing more than one free vari-
able.

This completes our definition of satisfiability, i.e.
whether or not (a, c)~ ~b for any asynchronous run a,
cut c in a, and any formula ~b of the logic. Furthermore,
we will use the following terminology and notation to
describe valid formulas that are true in all cuts of all
systems, and formulas that are valid in a system.

Definition 10. Fact ~b is valid in system A, denoted A ~ ~b,
if q~ is true in all cuts of all runs of A, i.e.

V a~ A V c((a, c)~ (~).

Definition 11. Fact 0 is valid, denoted ~q~, if q5 is valid
in all systems, i.e. VA(A~b).

The fact that concurrent common knowledge is a
greatest fixed point is expressed by an induction rule.
Before presenting the rule, we first give a preliminary
lemma that justifies the usual substitution rule for apply-
ing a function to its arguments. It states that applying
the function dr ~O(X)] to the set / # ~b~ (0)is the same
as first replacing X by ~b in ~ and applying the function
~/~ ~ (X/@)~ to 13. This can be proved by an easy structur-
al induction on the formula.

Lemma 2. I f ~ is a formula with free variable X and
0 is a formula, then

W~ (x)] (~ W~ (0)) = ~ [0 (x/@~ (0).

Now the following theorem gives the induction rule
and establishes its soundness.

Theorem 1. The following induction rule is sound with
respect to the semantics defined previously. I f A ~ (~
EC(~b A 0) then A ~ qS~CC(~b).

Proof Let F be the functional 2u.J~EC(@ A 0 A X)~(u),
where u is an element of 2 w and Wis the set of consistent
cuts of A. Recall that the meaning of CC(q5 A 0) is the
greatest fixed point of F.

We assume that qS~EC(q~ A 0) is valid in A. Semanti-
cally, this means that d/t ~0] (0)- Jd~EC((a A ~)~(0). By
Lemma 2 we have that Jd~EC(q~ A ~)~(0)= F (~ q S ~ (0)),
so Jr [-qS~ (0) -- F (~ ~b~ (0)). Now the monotonicity of F
gives us the following chain of inclusions:

~/~ ~qS] (0) - F (d/t ~b] (0)) -~ F (F (J# ~0] (0))) �9

Because, in general, F need not be continuous, we cannot
be sure that it suffices to iterate F through all of the
integers, i.e. up to co. Thus, we need to define F ~ for
arbitrary ordinals e. Recall that ordinals are either the
immediate successor of another ordinal or are limit ordi-
nals. For example, co is not the immediate successor of
any other ordinal; it is instead defined as the least upper
bound of all of the finite ordinals. For an ordinal of
the form e = fl + 1, we have F ~ = F(F~). For limit ordinals,
i.e. ordinals, like co, that are not the immediate successor
of any other ordinal, F~(S)= U (Fr .

fl<a

Thus /g~@~(0)_~UF%/~[q~(0)), where c~ ranges

through the ordinals. Knaster [12] and Tarski [-21] have
proved that U F%/Ct~b](0)is a fixed point of F. Since

d/l~CC((o A 0)] is the greatest fixed point, we have that
U F%/CtWO}(O))~-dg~CC(d~ A 0)~. Therefore it must be

the case that ~[~b](0)___ JCt~cC(q5 A 0)9- So far, we have
shown that if @=~EC(qSAO) is valid in A then
~b~ CC(q5 A 0) is valid in A.

Finally, we need to show that C c is monotonic, i.e.
if q5 implies 0 then CCO implies C c 0. This is immediate
from the fact that the greatest fixed-point operator is
monotonic. The latter is an easy exercise in lattice theory.
Thus, we have CC(qSAO)=~CC~ is valid and hence
O=~cCo is valid in A. []

As noted earlier, it follows from our definitions that

c c (o) ~ , ~ c (4 , Acc (@)

is valid and that cC(qS)~(EC)k(@ is valid for any natural
number k. It does not follow from the definitions, in
general, that either

c c (0 ~ r A c c (0) ~ c c (r

or CC(qS)=~q5 is valid. As noted earlier for EC(@, this
is because processes cannot distinguish whether or not
0 holds on the same cut on which CC(q~) holds; rather,
they know that it holds on some indistinguishable cut
in the current run.

The operators P~, E c, and C c have stronger properties
for local facts. A local fact is one that is determined
solely by the local state of some process; for example,
a fact regarding a value contained only in the local mem-
ory of that process. The following definition is equivalent
to that of Chandy and Misra [4].

Definition 12. A fact 0 is local to process i in system
A if

For a fact q5 that is local to process i in system A,
it is the case that A~(P/(96)~96). Furthermore, if a fact
96 is local to any process in system A, then
A ~ (E c (96) =~ 96) and A ~ (C c (96) ~ 96).

Theorem 2. I f 96 is local to process i in system A, then
A ~ (P~ (96) ~ 96).

Proof. Suppose that 96 is local to process i in system
A. Suppose also that for some cut (a, c), (a, c)~Pi(96). By
the definition of P/, there is some cut c' in run a such
that (a, c) ~i (a, c') and (a, c ')~ 96. By locality,
A~(96~Ki96) and thus (a, c')~Ki96. By the definition
of Ki 96, we have that (a, c)~ 96. []

A corollary to the previous theorem follows because,
for any fact 96 and process i, Ec(96)~P~(96) is valid and
cC(96)~ EC(96) is valid.

Corollary 1. I f fact 96 is local to any process in a system
A, then A ~ (g c (96)=*- 96) and furthermore A ~ (C c (96) => 96).

4 Attainment of CCK

For ordinary common knowledge, C, it is a theorem
that if C is attained then all processes learn it simulta-
neously [11, 19]. An analogous theorem holds for con-
current common knowledge. Before stating the theorem,
we will first formalize the notion of "a t ta inment" and
"learning."

Definition 13. A fact 96 is attained in run a if 3 c ((a, c) ~ 96).

Likewise, we say that a system attains 96 if every run
of the system attains 96.

In this section and the following section we will often
refer to "knowing" a fact in a state rather than in a
consistent cut. Recall that knowledge is dependent only
on the local state of a process, since (a, c)~i (a', c') iff
(a, c) I-i] = (a', c') [i] ; therefore such terminology is reason-
able. Formally, i knows 96 in state s is shorthand for

g (a, c)((a, c) [-i] = s ~ (a, c) ~ 96).

Definition 14. Process i learns 0 in state s{ of run a
if i knows 96 in s{ and, for all states s~ in run a, k<j,
i does not know 96.

The following theorem says that if cC(96) is attained
in a run then all processes i learn p/CC(96) along a single
consistent cut.

Theorem 3. I f cC(96) is attained in a run a, then the
set of states in which all processes learn p/cc(96) forms
a consistent cut in a.

Proof cC(96) is attained in a implies that there exists
some consistent cut where cC(96) holds. Since cC(96) im-
plies /k KiPiCC(96), there must exist states St,..-,SN

ieProc

such that si is the state in which i learns p/CC(96). We
will show that cut c = (s t , ..., SN) must be consistent.

Suppose that c is inconsistent. Then there must be
a message m, say from process j to process k, such that
receive(m) is included in state sk but send(m) is not in-

79

cluded in state sj. Any consistent cut c r where (a, c ')[j]
=sj cannot include the reception of m, since s t does not
include send(m). Furthermore, by the definition of Sk,
the reception of m occurs before k learns Pk cC(96) �9 There-
fore in any consistent cut c' where (a, c')[J] = s j, k does
not know Pk cC(96). We next show that this is impossible.

By the definition of sj, j knows pjCC(96) in sj, i.e. in
any consistent cut c, where (a ,q) [j]=s j , we have
(a, q)~pjcc(96). By the definition of P, this means that
there is some consistent cut c2, (a, C2) [j) = (a, c t) [J'] = s t ,

for which (a, c2)~cC(O). The definition of C c implies
furthermore that (a, c2)~ A KiPiCC(96) which in turn

i~Proc

implies (a, c2)~KkPkCC(96). This contradicts the state-
ment above that, in any consistent cut c' where
(a, c')[j] =s t (including (a, c2)), k does not know Pk Cc(r �9
Hence the supposition that c is inconsistent must be
false, making the theorem true. []

This theorem can be trivially extended to address
cases in which CC(96) is attained periodically. Whenever
cC(96) does not hold on a particular cut but does hold
on some extending cut, between those cuts all processes
i first reach a state in which PicC(r is known along
a single consistent cut.

The previous theorem illustrates an important differ-
ence between C(96) and cC(96). In asynchronous systems,
simultaneous action of any kind is impossible: Action
coordinated to occur along a consistent cut is, however,
easily achievable. We proceed by first presenting our At-
tainment Theorem, which gives a general criterion by
which concurrent common knowledge may be attained
in distributed protocols. Following the Attainment
Theorem we give two protocols and prove that they meet
the criterion of the theorem.

In order to achieve CC(96), it will be sufficient that
a system have a set 5P of cuts, at least one per run,
with the following property: when the local state of any
process is in a cut of 5 a in some run, then the same
local state of that process is at some cut of 5 r in every
run in which it occurs. In other words, the process knows
that its local state is an element of one of the cuts. We
describe this more formally by defining locally-distin-
guishable cut sets below.

Definition 15. A locally-distinguishable cut set • of a
system A is a set of cuts 50 such that:

V a ~ A 3 c ((a , c) ~) and

[V ie ProcV (a, c)e ~ V a'V c' ((a', c'),~i (a, c)

0(3 d((a', d)eY) A (a', d) - , (a', c')))3.

In the definition above, suppose that we let i nY stand
for a formula such that (a, c) ~ in5 ~ iff (a, c) e 50. (If such
a formula did not actually exist, we could carry out an
analogous development using the set 5 P and the meaning
of formulas as functions from sets of cuts to sets of cuts;
for simplicity we use this scheme.) Given the formula
in5 e, the second condition for a locally-distinguishable
cut set can be rewritten as simply

inSf => EC (inSP) .

80

We now show the primary result of this section: any
system that guarantees that there is a locally-distinguish-
able cut set where a fact q5 holds attains concurrent com-
mon knowledge of qS. We will later give two protocols
to guarantee that a system attains C c (~b), given particular
assumptions on the fact qS.

T h e o r e m 4 (Attainment Theorem). I f a system A has
a locally-distinguishable cut set 5e such that

V (a, c) ~ Y ((a, c) ~ O)

then

V(a, c)E SP ((a, c)~ CC(~b)),

i.e. the system attains concurrent common knowledge of (a.

Proof Let inSe stand for a formula such that (a, c)~ inSP
iff (a, c)~ 5 P, as above. By the definition of a locally-distin-
guishable cut set, inS~EC(in5 e) is valid in A. By the
conditions of the theorem, i n S P ~ is valid in A. Thus
we have

A~(inS~ ~ EC(O /x inS~)).

Then, by the induction rule (Theorem 1),

A~(inSP ~CC((~)).

Thus, V(a,c)~5~((a,c)NCC(qS)). []

One consequence of this theorem is that CC(in5 r is
attained any time a locally-distinguishable cut set 5 P
exists. This says that forming a locally-distinguishable
cut set guarantees attainment of a form of concurrent
common knowledge. Conversely, the single-cut theorem
gives us that the attainment of concurrent common
knowledge of any form guarantees the existence of a
locally-distinguishable cut set.

We now proceed to a discussion of attaining C c of
a fact using specific protocols. A protocol is a partial
specification on the set of runs of a system. It includes
a set of actions with conditions on those actions. These
may be conditions on the entire run, such as "process
i executes c~ at some point in the run," or conditions
on the state preceding the action, such as "process i
sends m immediately after receiving m'." We say that
a system implements a protocol if all runs of the system
satisfy the specification. Note that one system may imple-
ment multiple protocols.

Before giving our protocols, we must first discuss for
which facts q5 attaining CC(qS) is possible. Cc(~b) cannot
be guaranteed to be attained by a protocol implementa-
tion if ~b is false or may be falsified during execution
of the protocol. We say that q5 is locally controllable
by i if, whenever i knows q5 in any state, i can prevent
falsifying ~b for any finite number of events. Note that
a stable fact - one that, once true, remains true forever
- is always locally controllable by any process. Unstable
facts that are local to a process i are also typically locally
controllable by i. An example of this is x~= 1, where
xi is a local variable of i. Any fact that becomes known
to some process and is locally controllable by that pro-

cess can become concurrent common knowledge among
all processes.

By our definitions, in order for a system to implement
the following protocols the fact q5 must become known
at some point in all runs. This is not a restriction if
one considers only the subset of runs in which a protocol
is actually run.

We assume that processes can control the receipt of
messages. Furthermore, a protocol can indicate that
messages are not to be sent or received by a process
at certain times.

The two protocols that follow differ in three primary
ways: their message complexities, the degree to which
they prevent communication events from occuring, and
the requirement of F IFO channels. Protocol 1 causes less
suspension of communication but requires FIFO chan-
nels, whereas Protocol 2 requires fewer protocol messa-
ges and does not require FIFO behavior. We will discuss
these issues further after presenting the protocols and
proving their correctness.

In the presentation of each protocol, a cut state refers
to the local state of a particular process that is included
in the protocol cut. Local distinguishability is guaran-
teed because each cut state occurs immediately upon
the completion of specific actions by the process.

Our first protocol is similar to the snapshot algorithm
of Chandy and Lamport [3] and to echo algorithms
of Chang [5]. It causes messages to be sent along every
channel in the system. Intuitively, it creates a consistent
cut because - since channels are FIFO - any message
sent after execution of the protocol must be received
after any messages the protocol sent along the same
channel. Below, CCK identifies messages of the protocol.

P r o t o c o l 1. Attainment of cc(~b).

- The initiator I, at some point in its local history where
I knows ~b, sends the message (I,j,(~b, CCK)) to all
neighborsj and then immediately reaches its cut state.
Between sending the first message and reaching the
cut state, I receives no messages and prevents falsifying

- All other processes, i, upon first receiving a message
of the form (j, i,(4, CCK)), sends (i, k,(~b, CCK)) to
all neighbors k ~ j and then immediately reaches its
cut state. Between sending the first message and reach-
ing the cut state, i receives no messages.

Theorem 5. Let A be a system with reliable, FIFO chan-
nels in which 0 is locally controllable by I. I f A implements
Protocol 1, then A attains CC(qS).

Proof For each process i, let si be the cut state indicated
in the specification of the protocol. We show that states
sl, sz sN form a consistent cut by contradiction. Sup-
pose to the contrary that there is a message m sent after
si but received before s s. Note that m cannot be one
of the CCK-labelled protocol messages, since cut states
are not reached until all protocol messages have been
sent. There are two cases to consider: (1) i sends a proto-
col message to j, or (2) i does not send a protocol message
to j, which implies that i received its first protocol mes-
sage from j.

sj sj

Si Si

(~) (b)

Fig. 3a, b. Proof of Theorem 5:(a) case 1, (b) case 2

In case (1), i must have sent m t o j after si, by assump-
tion, and consequently after sending (i,j,(O, CCK)) to
j. Since channels are FIFO, the protocol message must
reach j before message m. Unless j has already reached
its cut state when receiving (i,j,(c), CCK)), it sends out
its protocol messages and reaches its cut state before
receiving any further messages. In either case, j reaches
sj before receiving m and the assumption that m was
received before sj is false. (See Fig. 3 (a).)

In case (2), the protocol message f romj arrives before
s~ and consequently before the sending of m. By assump-
tion m is received before sj. Sincej must send all protocol
messages before reaching its cut state with no intervening
receives, m must be received by j before sending the pro-
tocol message to i. (See Fig. 3 (b).) However, this implies
causal circularity, since

receive(m) ~ send(j, i,(O, CCK)) ~ received(j, i,((o, CCK))

send (m) ~ received (m).

Again the assumption that m was received before sj must
be false.

Let 5 P be the set of possible consistent cuts character-
ized as above. Every run of a system implementing the
protocol contains one of these cuts. Since the state of
each process contained in the cut always immediately
follows the sending of the protocol messages (and is
therefore distinguishable), 5 f is a locally-distinguishable
cut set. Since ~b holds initially and on any cut up through
t 's completion of the protocol, for any (a, c) in 5 p, we
have (a,c)~(a. The theorem then follows from Theo-
rem 4. []

In Protocol 2, three sets of messages Prepare, Cut,
and Resume are sent respectively from the initiator to
all processes, back to the initiator, and back to processes.
We assume that messages between the initiator and each
process are forwarded as necessary by other processes
on paths of length d or less, where d is the diameter
of the network (recall that the network is not completely
connected, so there may not be channels between the
initiator and some processes). The sending of non-proto-
col messages is suppressed between non-initiators send-
ing Cut and receiving Resume.

Protocol 2. Attainment of CC(~b).

1. The initiator I, at some point in its local history when
I knows ~b, sends the message (I,j,(O, Prepare)) to
each processj 4= I. Also, the initiator prevents falsifying
~b from the beginning of step (1) until the end of step
(3).

(~)

receive(m)
J , . . a X

I d s~ sen (m)

81

(b)

s! (Sends Suspended.) send(m)

Fig. 4a, b. Proof of Theorem 6: (a) case 1, (b) case 2

2. Each process j4=I, upon receiving (I,j,(4), Prepare)),
begins suppression of nonprotocol send events, sends
(j, I,(4), Cut)) to the initiator, and then reaches its cut
state.

3. The initiator I, after receiving (j, I,(O, Cut)) from all
processes j 4= I, immediately reaches its cut state and
then sends (I , j , (~, Resume)) to all processes j 4= I.

4. Each process j4=I, upon receiving (I,j,(O, Resume)),
resumes sending of nonprotocol messages.

Theorem 6. Let A be a system with reliable channels
in which 0 is locally controllable by I. I f A implements
Protocol 2, then A attains cC(qS).

Proof Again, for each process i let state si be the cut
state indicated in the protocol. We show by contradic-
tion that this set of states forms a consistent cut. Suppose
message m is sent after one of these states but received
before another. There are three cases to consider: (1)
m is from I to some j4=I, (2) m is from some j4=I to
I, and (3) m is from some i4= I to some j 4= I.

In case (1), illustrated in Fig. 4(a), let ml, ... mk be
the sequence of forwarded Cut messages from j to the
initiator. In the figure, " x " denotes the cut states sj and
sx. State sj immediately follows the sending of ml. State
Sl immediately follows the initiator's last reception of
a Cut message from its children (after but not necessarily
immediately after the reception of ink). Since the incon-
sistent message m is received before sj, it is received be-
fore send(toO, which immediately precedes s~. Clearly
send(toO happens before receive(rag). But receive(ink) is
received by the initiator before sx and hence before send-
ing m. Thus the inconsistency of m produces a causal
cycle, and hence an invalid run.

In case (2), illustrated in Fig. 4(b), the sending of an
inconsistent message m by j cannot occur until non-pro-
tocol sends are resumed, which happens after Resume
is received by j. Let ml mk be the sequence of for-
warded Resume messages from the initiator to j, so
receive(ink) happens-before send(m). If m is received be-
fore si then it is received before I sends ml, and again
an invalid circularity results.

Case (3), in which the inconsistent message m is be-
tween two non-initiators, is essentially a concatenation

82

of case (1) and case (2). After the reception of m, j must
send a forwarded Cut message to the initiator, which
later sends a forwarded Resume message to i. Message
m cannot be sent by i until after the Resume is received,
with the same result. Therefore the states indicated form
a consistent cut. The remainder of the proof confirms
a locally-distinguishable cut set where q~ holds exactly
as in the proof of Theorem 5. []

Protocol 2 does not require F IFO channels and uses
only 3nd messages, where d is the diameter of the net-
work. If all channels are bi-directional, this can be further
optimized using a spanning tree of the network, to re-
quire only 3 (n - 1) messages [22]. In contrast, Protocol 1
does require F IFO channels and uses up to two messages
per pair of neighboring processes, or O(n 2) messages.
However, Protocol 2 suspends send events between its
phases; communication from the initiator is required to
resume send activity, which in turn occurs only after
the initiator receives communication from every process
indirectly through its children. Protocol 1 only suspends
activity while a process is sending protocol messages to
its neighbors. Hence Protocol 1 interferes less with the
underlying system. The trade-off between these two pro-
tocols depends on the degree that the system may be
degraded by the suspension of activity. This suspension
is termed inhibition and is studied extensively in [22,
6, 71.

We have shown in this section that concurrent com-
mon knowledge is attainable in asynchronous systems
by giving two simple and efficient protocols that do so.
This makes it a potentially useful form of knowledge,
as it describes states that can and do arise in such sys-
tems. Given a problem that can be formulated in terms
of C c, a solution immediately follows from these results.

5 Applications

The logic that we have presented, along with the seman-
tics for concurrent knowledge and concurrent common
knowledge, can have the following roles in the develop-
ment and analysis of distributed algorithms: (1) simplifi-
cation of solutions and proofs for problems that can
be formulated in terms of concurrent knowledge or con-
current common knowledge, (2) characterization of im-
plicit agreement present in certain algorithms, and (3)
a tool for reasoning about asynchronous distributed al-
gorithms, particularly with respect to causality.

This section contains several examples in which these
goals are realized. We prove necessary and sufficient con-
ditions for concurrent actions to take place in distributed
systems. We show that concurrent common knowledge
characterizes the knowledge between two processes at-
tained by a single message transfer along reliable F IFO
channels. We give a novel development and analysis of
the Chandy-Lamport snapshot a lgori thm with regard
to both process states and channel states. Finally, we
prove a sufficient condition for broadcasts from a com-
mon initiator to arrive in their original order at all loca-
tions in the network, and apply this to updating repli-

cated data. The expressiveness of our logic has led to
short, straightforward proofs for these applications. We
assume reliable channels throughout this section.

5.1 Concurrent actions

In the theorem that follows, we use our logic to exhibit
a necessary and sufficient condition for the performance
of concurrent actions in distributed systems. Concurrent
actions are sets of actions that are to be performed con-
currently - immediately following a single consistent cut
of the system - or not at all. The relationship between
concurrent common knowledge and concurrent actions
is analogous to that between common knowledge and
simultaneous actions [171 in synchronous systems.

Definition 16. A vector of action c~= (a l , a2, . . . , aN) is
a concurrent action of system A iff the following holds.
If any dement ei occurs in history a [i] of A, following
state si, then there is a consistent cut (a ,c)=
(s l , s2 sN) and for every j, c~j follows state sj.

For example, suppose that each of a set of processes
has a local clock, and those local clocks are to be reset
concurrently. Then

{~i I ~i--"reset local clock i '}

is the corresponding vector of actions. We use the opera-
tor P~ to give a necessary and sufficient condition on
the concurrent performance of actions in the next theo-
rem.

In the theorem, if qS~ is a precondition of an action
then i will execute the action immediately following
(a, c) [i] iff (a, c)~ ~b i. Reasonable preconditions are local,
i.e. O i ~ K i $ i is valid in the system. This follows auto-
matically from the positive introspection axiom if q~i is
of the form K~ ~9 for any 0- We assume locality of precon-
ditions.

Theorem 7. Let ~= (cq, o~ 2 (Z N) , for each i let Oi be
the precondition of cq, and let ~ - /~ Oi. Then ~ is a
concurrent action in A iff ieProc

A (r
i~Proc

is valid in A.

Proof. First we show that if the formula is not valid
then 8 is not a concurrent action. If the formula is not
valid then, for some i and some (a,c) we have
(a , c) ~ (~ i A ~ K i P i ~) . Since (a , c) ~ K i P i () , there is
some cut (a', c')H i (a, c) such that (a', c ')~ ~ Pi ~b. By local-
ity, (a', c')~q~i, so i executes a i in a'. However, it follows
from (a ' , c ') ~ P ~) that for all c" such that (a',c")
"~i (a', c'), we have (a', c ") ~ ~. Thus all other processes

j do not execute aj concurrently with a~ in a', and
is not a concurrent action in A.

Next we show that if the formula is valid in A then
is a concurrent action. Suppose that, for all i and all

(a,c), ~ i ~ K ~ P ~ holds and that process i executes a~
following state (a, c) [i]. By the definitions of Ki and Pi,
there must be a cut (a, c') such that (a, c')[i] = (a, c)[i]

83

and where ~ holds. By the definition of precondition
all processes j perform action ~ following (a, c')[j].
Therefore the validity of ~bi ~ K iP~ ~b in A guarantees con-
current performance. []

This result is extended by the corollaries below; they
give necessary and sufficient conditions on concurrent
performance based on concurrent common knowledge.

Corollary 2. Given the conditions of Theorem 7, if ~. is
a concurrent action of A then ~ cC~ is valid in A.

Proof From Theorem 7, we have that ~ is a concurrent
action of A implies the validity of /~ (~ i ~ K i P ~) in

i~Proc

A. This is turn implies that /~ q ~ /~ K~P~q5 is valid
i~Proc i~Proc

in A; this formula is equivalent to ~ E C q S . By the in-
duction axiom, we have that q ~ C c q5 is valid in A. []

Clearly, in order for a concurrent action c~ to be executed,
there must be a cut where q5 holds. It then follows that
CC~ holds on this cut also; thus the corollary demon-
strates that concurrent actions are impossible if concur-
rent common knowledge of q5 cannot be obtained. There
are indeed systems in which concurrent common knowl-
edge of any fact is unattainable, and thus executing con-
current actions is impossible. In the related work of
Critchlow and Taylor [22, 7], distinguishable consistent-
cut protocols are defined and shown to be impossible
to achieve in certain cases; in particular, it is impossible
without the existence of inhibition [22]. Although it is
beyond the scope of our discussion to give a precise
mapping of those results in the current framework, it
is clear that the formation of a locally-distinguishable
cut set amounts to having a distinguishable consistent-
cut protocol as defined in [22, 7]. Recall from Sect. 4
that concurrent common knowledge of any fact implies
the existence of a locally-distinguishable cut set. Thus
the results of [22, 7] can be viewed as demonstrating
instances in which concurrent common knowledge can-
not be obtained.

Corollary 3. Given the conditions of Theorem 7, if
/~ (qbi~KiP/CC~) is valid in A, then ~: is a concurrent

i~Proc

action of A.

Proof The validity of the following chain of implications
is a direct result of our basic definitions:
KiP~CC(~)~ KiP~EC(~)~ K~P~KiP~($)~ K~P~(~). Thus
if /~ (~i~KiPiCC~) is valid in A then

icProc

/~ (~b~=~KiP/(qS)) is valid in A. By Theorem 7, this im-
iEProc

plies that g is a concurrent action of A. []

Thus a sufficient condition for performing concurrent
action ~ is to insure that CC~ is attained, and further-
more K~PiCC~ is implied by each q5 i. We now demon-
strate an even stronger result, namely that the ability
to attain any form of concurrent common knowledge
is sufficient to perform concurrent actions. Roughly
speaking, we show that given any protocol for attaining
concurrent common knowledge, we can create a knowl-

edge-based protocol for performing concurrent actions.
It does not matter for which fact the concurrent common
knowledge is attained; all that matters is that it is a
"new" fact.

Recall from Sect. 4 that, if concurrent common know-
ledge of any fact q5 is attained, then there must be a
locally-distinguishable cut set, say 5 P, in which all proces-
ses know p~CC~b for the first time. Furthermore, if we
let inS~ stand for the fact that a cut is an element of
5 p, then all processes know p~CCin5 P for the first time
also. Thus the local distinguishability property inherent
in achieving concurrent common knowledge allows us
to use Oi=KiP~CCin5 ~ as the precondition for each pro-
cess i in a knowledge-based protocol for concurrent ac-
tions. Note that if CCin5 p is attained in any run, by
Theorem 3 there is a locally-distinguishable cut set in
which /~ K~PiCCin5 P holds. This is equivalent to q5

ieProc

if the preconditions are as indicated above. Thus, by
Theorem 4, CC~ is attained as well as CCin5 p. This gives
us that 4~K~P~CCO holds for every i, which is the suffi-
cient condition for concurrent actions in Corollary 3.

The close relationship between concurrent actions
and concurrent common knowledge is important due
to the prevalence of concurrent actions in distributed
systems. Particularly widespread is concurrently saving
all or part of the state of a system; this is done in check-
pointing for rollback recovery [-13] and in taking snap-
shots for stable property detection [-3, 2, 9]. We will
discuss stable property detection further in Sect. 5.3.

5.2 Single message transfer

In this section we show that concurrent common knowl-
edge characterizes the knowledge between two processes
attained by a single message transfer along a reliable
FIFO channel. A formula subscripted with a set of pro-
cess identifiers, such as {i,j}, refers to the subsystem con-
taining only that set of processes.

Theorem 8. A single message m sent along a reliable
FIFO channel from i to j achieves

C~i,j~ ("m has been received ").

Proof The states immediately following the sending and
receiving of m form a locally-distinguishable cut in the
{i,j} subsystem. Furthermore, "m has been received"
holds on this cut. By the Attainment Theorem (Theo-
rem 4), concurrent common knowledge of the fact holds
as well. []

Theorem 8 enables us to explain the role of certain
messages in the snapshot algorithm of the following sec-
tion.

5.3 Snapshots for stable property detection

The goal of taking "snapshots" [3] for stable property
detection is to save a global state, i.e. some set of local

84

states, that can be analyzed for the truth or falsity of
a stable property. Recall that a stable fact is one that,
once true, remains true forever. More specifically, an ap-
propriate definition of stability in the asynchronous-runs
model is that if (a, c)~ 4), 4) is stable, and every event
of (a, c) is included in (a, c'), then (a, c') ~ 4) also. Examples
of stable properties whose detection may be desirable
are deadlock and process termination.

The following two properties are required of a snap-
shot algorithm for stable property detection [-3]. First,
if stable fact 4) is true in any real-time global state before
execution of the snapshot algorithm, then 4) will be true
in the snapshot. Second, if stable fact 4) is true in the
snapshot, then 4) will be true of every real-time global
state after execution of the algorithm. Since real-time
global states are also consistent cuts, it is clear that tak-
ing a snapshot of any consistent cut that arises between
the initiation and termination of the algorithm will yield
the two properties above.

Taking a snapshot is a concurrent action; hence we
can apply the results of Sect. 5.1 and utilize any concur-
rent common knowledge protocol to obtain a snapshot
algorithm. Given a concurrent common knowledge pro-
tocol, as in the discussion after Corollary 3, letting inSP
denote that a cut is the distinguishable cut, KiP~CCinY
yields an appropriate precondition for process i taking
its snapshot. In fact, this is essentially what is done in
the Chandy-Lamport snapshot algorithm. Since F IFO
channels are assumed, a variant of Protocol 1 is used
to obtain the consistent cut.

The Chandy-Lamport algorithm is slightly more
complex than discussed thus far; this is because, in addi-
tion to recording local states, it may also be desirable
to record the messages in transit during the global state.
Additional knowledge is required in order to do this.
Let us take the natural approach and assume that the
message receiver will record the sequence of messages
in each channel. It is then required that at some point
the receiver knows that it has received all messages in
transit during the snapshot. F rom Sect. 5.2, the reception
of any message sent along a reliable F IFO channel be-
comes concurrent common knowledge of the two proces-
ses involved. Consequently, if each process i sends a spe-
cial marker to each neighbor j immediately before re-
cording its state, they reach concurrent common knowl-
edge that all of i's messages sent to j before the snapshot
have been received by j.

The full protocol, a slight variation of [-3], follows.
Initialization occurs by one process following the marker
sending rule.

Marker sending rule for a process i. Before sending or
receiving any other messages, i sends one marker to each
neighbor j, then records its state.

Marker receiving rule for a process j. Upon receiving
a marker from i, if j has not recorded its state, then
j follows the marker sending rule, then records the state
of channel (i,j) as the empty sequence. Otherwise, j re-
cords the state of channel (i,j) as the sequence of messa-

ges received from i after j 's state was recorded and before
j received the marker from i.

The next theorem summarizes the agreement attained
in the protocol regarding both the process states and
the channel states. The theorem statement makes use
of some additional notation. Given any consistent global
state, currenti will denote i's local state. Saved i denotes
the set of states saved by process i. Learni(O) indicates
the local state in which i learns 0. Finally, we extend ~ to
include states in the obvious way.

Theorem 9. In any run of the Chandy-Lamport protocol
in a system with reliable F I F O channels:

1. cC(4)state~) is attained, where

4)~tate~ = V i (current i ~ Savedi)

2. for each channel " " c (l,y), C{i,j}(4)ch ls) is attained, where

4)oh z~ = ~/ m((send (m) ~ Learni Pi C c (4)sta~e~))

(receive (m) --, curren@

and m is a message from i to j.

Informally, the first statement above says that there
is a consistent cut of the system in which all processes
have concurrent common knowledge that all processes
are taking a snapshot. We will not give a proof as this
is straightforward from Sect. 5.1.

The second statement says that - within each (i,j)
subsystem - it becomes concurrent common knowledge
that all messages sent prior to i recording its state have
been received by j. Hence when this is attained, the mes-
sages in the (i,j) channel during the snapshot are exactly
those that have been received since j recorded its state.
This follows from the fact that all messages from i to
j are in one of three states at the snapshot:

1. Received before the snapshot. These are part of j 's
local state at the time of the snapshot.

2. In the channel during the snapshot. All messages not
in (1) received prior to LearnjPj(4)ch is) must be in
this set.

3. Sent after the snapshot. These are not received by
j until after LearnjPj(4)~h Is)"

Proof of Theorem 9, part 2. From Theorem 8, the recep-
tion of the marker by j becomes concurrent common
knowledge between i and j in the subsystem cut formed
by the states immediately following the sending and re-
ceiving of the marker. Since no messages are sent be-
tween the sending of the marker and Learni P/(C c (4)s~ate~)),
and channels are FIFO, all non-marker messages sent
prior to LearniPi(CC(4)state~)) must be received before the
marker. Therefore, at the subsystem cut it becomes con-
current common knowledge of i and j that all messages
sent prior to LearniPi(CC(4)state~)) have been received. []

Any problem that requires only the detection of some
property of a consistent global state can be solved using
the Chandy-Lamport protocol. Some examples of this
type of problem are termination detection [-9], deadlock
detection (2), and checkpointing for rollback recovery

[-13]. Concurrent common knowledge can be used for
a solution and formal analysis of such problems.

5.4 Broadcast ordering

In this subsection and the next one, we illustrate using
the operator P~ for reasoning about sufficient conditions.
We consider the problem of one process broadcasting
a sequence of facts 4)1, 4)2, --- to all processes such they
arrive everywhere in the order that they are sent.

Definition 17. In an asynchronous run, a broadcast of
4) by process i is a set of N - 1 message chains, possibly
having some messages in multiple chains, such that (1)
each message chain begins with a message from i, (2)
all messages contain 4) in the message body, and (3) each
process j :# i is the recipient of the last message of one
of the message chains. Additionally, we say that process
i initiates the broadcast when it sends the first message
in its history that is the first message of one of the mes-
sage chains.

Note that both Protocol 1 and Protocol 2 contain broad-
casts.

In general, broadcasting a series of facts one at a
time - sending the first messages of all chains of one
broadcast before sending any of the next - does not
guarantee that they arrive in the same order everywhere,
even in FIFO systems, because messages may take differ-
ent routes of differing transmission speeds. We give a
theorem and corollary relating sufficient conditions so
that (1) facts are guaranteed to arrive in the correct order
everywhere, and (2) all processes know they arrive in
the correct order everywhere. Let p (4)) denote "fact 4)
has been received by all processes."

Theorem 10. I f i knows P~(P(4)k)) before initiating a broad-
cast of Ok+ i , then Ok is guaranteed to arrive before mes-
sage 4)k+ 1 at all processes.

Proof Consider any run a in which i knows Pi(P(4)k))
before initiating a broadcast of 4)k + 1- By the definition
of P~, there must be a consistent cut (a, c') where p(4)~)
holds; furthermore, (a, c')[i] precedes the beginning of
all of the broadcast message chains for 4)k+1. If 4)~+1
arrived at some process j before 4)k, hence before
(a, c')[j], then the message chain from i to j must begin
after (a, c')[i3 and end before (a, c')[j], making cut c' in-
consistent. D

This is a good example of a simple situation where
KiP~O is sufficient to perform an action rather than the
stronger traditional knowledge K~ 0. Since it is not neces-
sary to know that all messages have been received at
the current instant of real time in order to know P~P(4)k),
this alleviates the latency of waiting for acknowledge-
1Tlents.

A result of this theorem is that Protocol 1 and Proto-
col 2 can be used to insure that multiple messages sent
to all processes are ordered properly. Just as CC(•) is
attained with the protocols invoked with locally-control-
lable parameter e, the fact p(c 0 becomes concurrent corn-

85

mon knowledge also. This follows from the Attainment
Theorem (Theorem 4) because p(~) always holds on the
locally-distinguishable cuts of the protocols. Thus the
protocols can achieve CCp(4)k), which in turn implies
KiPiP(Ok).

The theorem above does not imply that the non-ini-
tiating processes know that they have received messages
in the proper order. This is clearly guaranteed, however,
if it is common knowledge that K~P~p(4)k) is a precondi-
tion to i initiating the broadcast of 4)k + 1-

Corollary 4. I f it is common knowledge that, for all facts
4)k, K~P~p(4)k) is a precondition to i initiating the broadcast
of 4)k+1, then all processes know that they receive the
facts in the order that they are sent by i.

5.5 Updates to replicated data

In this example, we use the results on broadcast message
ordering to develop a protocol for maintaining consi-
stency of updates to replicated data items. Consider a
replicated data item 2, where xi indicates i's copy of
the data. Suppose that process I must perform a se-
quence of updates to 2 such that these updates occur
in the same order at all copies as they do at I.

Operation Ordering Problem. When a process I performs
a series of operations, Opl, Op2, ... that modify its copy
XlOf replicated variable 2, ensure that the operations
are carried out on each additional copy xi so that
Opl (x3 ~ Op2 (x3 --,...

Let Ok denote "operat ion Opk has been performed
on x l . " The sequence numbers are a notational con-
venience and are not necessary in the messages sent by
processes. In the previous section we observed that Pro-
tocol 1 and Protocol 2 can insure that a series of broad-
casts sent by I arrive at all processes in the order that
they are sent. Therefore, a method which uses one of
those protocols for broadcasting operations and in
which each process performs operation Opk immediately
upon reaching its cut state - i.e. upon learning CCp(0k)

solves the Operation Ordering Problem. Using Proto-
col 1 as a basis, we obtain the following protocol. It
assumes FIFO channels.

Protocol 3. Update of Replicated Data 2.

- The initiator I, after performing operation Opk(xi) and
before performing operation Opk+ 1 (XI), sends <I,j, Ok)
to all neighbors j. While sending the protocol messa-
ges, I receives no messages.
All other processes, i, upon first receiving a message
of the form (j , i, 0k), sends <i, k, 0k) to all neighbors
k:~j, and then performs Opk(Xi). Between sending the
first message and performing Opk(xi), i receives no
messages.

In contrast, a typical method for ordering operations
would be to give each a unique sequence number, then
buffer operations until all of those with lower numbers
have arrived and been executed. This requires unboun-
ded messages to accommodate sequence numbers -

86

and buffering of information, neither of which is neces-
sary in Protocol 3.

Note, however, that even concurrent common knowl-
edge of the operations does not guarantee that concur-
rent updates from multiple initiators are ordered the
same everywhere; nor does the sequence number method
above. If process i makes 4)1 concurrent common knowl-
edge and processj makes q5 2 concurrent common knowl-
edge, some other processes may perform Op~ first where-
as others perform Op2 first. Timestamped common
knowledge [11, 18], C T, can guarantee that concurrent
broadcasts from different initiators are ordered the same
everywhere. As we will discuss in Sect. 6.2.4, if local
clocks are logical clocks and if the timestamp of interest
is known to be reached by all processes, t imestamped
common knowledge implies concurrent common knowl-
edge when the appropriate local times are reached. How-
ever, protocols to achieve C T [18] require two rounds
of messages during which underlying communication is
suspended, as in Protocol 2. There do not appear to be
lower-latency protocols such as Protocol 1 for C T. Also,
C c does not require the use of local clocks.

Broadcast protocols which achieve each of these two
forms of knowledge, C c and C T, may be combined to
handle replicated data updates efficiently. A C T protocol
can be used to obtain locks for concurrency control of
transactions. Once locks are obtained, a C c protocol
which is faster and causes less latency can be used to
issue operations within each transaction. A similar
scheme is used in the ISIS project [1], using two broad-
cast primitives, CBCAST (causal broadcast) and AB-
CAST (atomic broadcast). This example illustrates situa-
tions in practical systems where two different forms of
knowledge are both appropriate characterizations of
agreement.

6 Comparisons

In this section we compare our semantics and the defini-
tion of concurrent common knowledge to other standard
knowledge-theoretic semantics and agreement defini-
tions. First, we give a translation from our asynchro-
nous-runs semantics to the timed-runs semantics of Hal-
pern and Moses [11]. Then we compare C c to common
knowledge and to other weakenings of common know-
ledge, namely epsilon common knowledge C ~, eventual
common knowledge C ~ and timestamped common
knowledge C T.

6.1 Translation to timed runs semantics

Timed runs have been used by Halpern and Moses to
provide formal semantics for common knowledge and
the other variants of common knowledge that they intro-
duce. For our purposes, the asynchronous runs provide
a better choice since time does not enter our system
model. Nevertheless, it has become standard to use timed
runs to model a variety of different systems; we will
show that our logic can be given a timed-runs semantics

as well. Also, this will be useful in the following section
when we compare C c to knowledge forms defined in
the timed-runs model. We show that our semantics in
terms of timed runs is essentially equivalent to the
asynchronous runs semantics.

The translation proceeds by first defining an appro-
priate set of possible timed runs R A and a primitive pro-
position function nRA, given an initial set of possible
asynchronous runs A and a primitive proposition func-
tion hA. Next, we define our new modal operators using
timed-runs semantics. Finally, we state a theorem which
formally relates our asynchronous-runs semantics to the
timed-runs semantics, and prove it by structural induc-
tion on the formulas in the logic.

6.1.1 The set of possible timed runs

We first give a definition for timed runs using our nota-
tion that is consistent with that of [-11].

Definition 18. A timed run r is a sequence of N-vectors
of local states (or equivalently, event or action sequences)
indexed by a possibly-infinite sequence of natural num-
bers, such that, for each processor i, (r, t)[i] is a prefix
of (r, t + 1) [i]. We let r [i3 denote the sequence (r, 1) [-i],
(r, 2) [i] ,

We associate an asynchronous run a with timing(a),
the set of all timed runs having the same events and
causal structure. To preserve causal structure, we will
require that the real-time values associated with events
be consistent with the happens-before relation. Let
time(r, e) be the time value t of the latest global state
(r, t) preceding the occurrence of event e; time is a partial
function from runs and events to natural numbers.

Definition 19. Given a run r and event e in r[i], time(r, e)
is the natural number t such that er
e~(r , t+ l)[i].

Definition 20. Given an asynchronous run a =
(h I , h u) , timing(a) is the set of all timed runs r such
that:
1. The local histories are the same, i.e.

VieProc(r [i] = hi).

2. Causal structure of events is preserved, i.e. for all
events el and e2, if el --+ e2 then time(el) < time(e2).

Note that for any one asynchronous run there are, in
general, infinitely many corresponding timed runs. How-
ever, there is exactly one asynchronous run correspond-
ing to each timed run, because a timed run has exactly
one causal structure. Now we can define the set of timed
runs to be the union of all asynchronous timings, so
that, given A, w e can define RA=de f U timing(a).

a E A

Throughout this section, unless otherwise noted, the
ranges of quantification for asynchronous runs and
timed runs are the sets A and R A , respectively.

We next prove that every real-time global state has
a corresponding consistent cut. Note that we can assert

87

the equality of real-time global states and consistent cuts
since they are both N-vectors of local states.

Theorem 11. Given a run r in timing(a), Vt3 !c((r,t)
= (a, c)).

Proof. The proof is by contradiction. By condition (1)
in the definition of timing(a), every local state of r is
a local state of a. Therefore for the theorem to be false,
for some t the local states of (r, t) must be inconsistent.
Thus run r must contain events e~ and e2 such that
e~-+ e2, e 2 is contained in (r, t), and et is not contained
in (r,t). Since el is in r but not in (r,t), time(r, e O > t
and similarly time(r, e2)<t. However, this contradicts
condition (2) of the definition of timing(a), which requires
that if el -+e2 then time(r, eO<time(r , e2). Uniqueness
follows because a set of local states uniquely specifies
a cut in an asynchronous run. []

In view of the preceding theorem, we can define
Cut(r, t) to be the consistent cut corresponding to real-
time global state (r, t).

Definition 21. Cut(r, t) is the pair (a, c) such that r is
in timing(a) and (r, t)= (a, c).

It is also true that for any (a, c) there is some (r, t)
such that Cut(r, t)= (a, c). This is a straightforward conse-
quence of the definitions of consistent cuts and timing(a);
we leave the proof of the theorem to the reader.

Theorem 12. g (a, c) 3 (r, t) (Cut (r, t) = a, c)).

We next define the primitive proposition function nR~
from the primitive proposition function rcA in the obvious
way.

Definition 22. 7CRA((r , t), t~)=de f true iff 7CA(Cut(r , t), if))
= true.

The definition of E c is derivable from the definitions
of A, K,, and Pi and is as follows:

(r, t)~TEC~<=> A V(r', t')[(r', t ')~ i (r, t)
i~Proc

~ 3(r", t")((r"~<r') A ((r", t")~i (r', t')) A (r", t")~T~)].

Finally, (r, t)~T CC~b is defined using the same greatest
fixed-point interpretation as in [11] and as in our
asynchronous runs semantics.

6.1.3 The equivalence of the two semantics

Two preliminary facts are trivial consequences of our
definitions.

Fact I. Let a , a ' e A and let r , r ' eRA, where (a,c)
= Cut(r, t) and (a', c') = Cut(F, t'). Then
(a) (a, c) Hi (a', c') iff (r, t)~"i (r', t'), and
(b) a = a' iff r ~ r'.

The following theorem relates the truth of formulas
in our asynchronous-runs semantics to the truth of for-
mulas in the timed-runs semantics.

Theorem 13. I f r r a then (r, t)~T~)<=>Cut(r , t)~Aq~.

Proof. By structural induction on formulas.
1. Primitive propositions: Follow immediately from the

definition of nR~.
2.--7, A: From the structural induction hypothesis,

(r, t) ~ T ~ ~ Cut (r, t) ~ A ~b, it follows immediately that

(r, t) ~ T--1 ~<~..Cut(r, t) ~ A ~ q~

and

6.1.2 Timed-runs semantics

The timed-runs semantics for the ordinary logical con-
nectives, the primitive propositions, the knowledge mod-
ality K~, and the greatest fixed-point operator are exactly
as in Halpern and Moses [11]. In this subsection we
only discuss the new modal operator, Pi. In order to
avoid confusion, we use the symbols ~T and ~A to
stand for timed-run semantics and asynchronous-runs
semantics, respectively.

First we define the relation ~,< on timed runs, to repre-
sent timed runs that are timings of the same asynchro-
nous run.

Definition 23. Given timed runs r, r', we write r><r'
iff V i~ Proc (r [i3 = r' [i]).

Clearly a real-time global state (r', t') of run r' is also
a consistent cut of run r if r~,<r'. This motivates the
following definition for the meaning of P~ in a timed-runs
semantics.

Definition 24

(r, t) ~ T P/((~)'r ~ (r', t') (r' ~ F) A ((r', if) H i (r, t)) A (r', t') ~ ~b).

.

(r, t) ~ T ~ A r t) ~ A ~ A O.

K~: (=~) It is given that (r, t)~TK~@, i.e. that:

V (r', t ')((r', tt)"~i (r, t) =:~ (r', t ') ~ T ~)"

By Theorem 12 and Fact l(a):

V(a, c) [(a, c) m Cut(r, t) ~ 3(r', t')((r", t')

m (r, t)A Cut(r", t")= (a, c))].

Since (r, t)~wKi~) , we have (r', t')~Tq6. By the struc-
tural induction hypothesis we then have that
V(a, c)((a, c) m Cut(r, t)~ (a , C)~A q S) ; therefore
Cut(r, t)~ A Ki~) as desired.
(~) It is given that Cut(r, t)~AK~dp, i.e. that

g(a, c)((a, c)H i Cut(r, t)~ (a , c)~ A q~).

From Fact 1 (a),

V(r', t')((r', t')..~i (r, t) ~ Cut(F, t')H i Cut(r, t)).

Since Cut(r, t) ~ A K i ~ it follows that

V (r', t') ((r', t') H i (r, t) ~ Cut (r', t') ~ A ~b).

88

Then V(r', t')((r', t')~,,i(r, t)=~(r', t')~Tq~) follows from
the structural induction hypothesis; hence
(r, t)~TKi(a.

4. Pi: (=~) It is given that (r, t)~TPi~b, i.e.

3(r', t')((r'~<r) A (r', t')"~i (r, t) A (r', t ')~Tr

Let (a, c)= Cut(r, t) and (a', c') = Cut(r', t'). By Fact 1,
a = a' and (a, c) m (a', c'). Therefore

3(a, c')((a, c')~i (a, c) A (a, c')= Cut(r', t') A (r', t ')~T r

(a,c')~Ar by the induction hypothesis, so that
(a, C)~APiq~.
(~) It is given that Cut(r, t)~aP~r so that

3(a, c')((a, c')~i Cut(r, t) A (a, C')~A r

By Theorem 12 there exists (r', t') such that Cut(/, t')
=(a, c'). By Fact 1, (r', t ')m (r, t) and r'~,<r. Then

3(/ , t')((r'~r) A (r', t')"~i (r, t) A Cut(r', t')~A(~) ,

giving the desired result by the induction hypothesis.
5. CC: For C c we return to the view that formulas are

functions from sets of global states to sets of global
states; again we use subscripts to distinguish the
timed-runs semantics from the asynchronous-runs se-
mantics. We also use the notation that, for any set
of consistent cuts Z, Z* is the set {(r, t)[Cut(r, t)EZ}.
We need to show that (r, t) is contained in the greatest
fixed point of J tT [EC(r A X)~ iff Cut(r, t) is contained
in the greatest fixed point of J/tn ~EC(r A X)~; in other
words, we want to show that the greatest fixed point
of ~#TWEC(r AX)] is of the form B*, where B is the
greatest fixed of ~/t a ~EC(q~ A X)]. Repeating the tech-
nique for K~ and P~ above, it can be shown that, for
any Z,

(r, t)6,/~ T EEC (q~ A X)~ (Z*)

iff

Cut(r, t) e J/tA ~EC(r A X)~ (Z).

It then follows that B* is a fixed
J/IT~EC(r iff B is a fixed
~A~EC((# A X)~, i.e.

(r, t) �9 B* r (r, t) e J{T ~ Ec (r A X)~ (B*)

iff

point of
point of

Cut (r, t) ~ B <:~ Cut (r, t) e d/tA EE c (r X)] (B).

It just remains to be shown that B is the greatest
fixed point iff B* is the greatest fixed point also. Sup-
pose that B is but B* is not. Then there is some set
C*, not a subset of B*, such that

B $ u C :~ : ~/IT ~EC(r A X)](B $ u C$).

However, since (r, t) is contained in
dgT~EC(4)AX)~(Z *) iff Cut(r,t) is contained in
Jtn~EC(q5/x X)~ (Z), this would be imply that

Bw C = JgA ~EC(r A X)](Bw C).

This contradicts the assumption that B is the greatest
fixed point. An analogous argument holds in the re-
verse direction, thus concluding the proof. []

6.2 Other knowledge forms

There have been other common knowledge variants that
are based on replacing simultaneity with weaker tempo-
ral notions [11]; namely, epsilon common knowledge,
C ~, eventual common knowledge, C ~ and timestamped
common knowledge, C T. In this section we compare con-
current common knowledge to common knowledge and
to each of these variants. As the names indicate, epsilon
common knowledge corresponds to agreement within
e time units, for some ~, eventual common knowledge
corresponds to agreement at some global state of the
system, and timestamped common knowledge corre-
sponds to agreement at local states having the same local
clock value. The strength of timestamped common
knowledge, consequently, depends upon characteristics
of the local clocks used.

In the discussions to follow, we will demonstrate situ-
ations in which one knowledge form is attained but an-
other is not. Recall that we say a fact r is attained in
run a iff there is a cut c such that (a, c)~ A ~b. Similarly,
we say that a fact r is attained in timed run r iff there
is a time t such that (r, t)~TqS. Recall that if r~timing(a)
then r is one of the possible timed runs corresponding
to asynchronous run a. When comparing CC to a knowl-
edge form, say C x, defined in the timed-runs model, we
will consider whether or not attaining CXr in a run
r implies attaining CCr in the asynchronous run a such
that retiming(a), or vice versa.

In Sect. 6.2.1 we demonstrate that common knowl-
edge C is strictly stronger than C c, by showing that
C ~ C c is valid and that there are situations in which
CCr is attainable but C r is not. In Sect. 6.2.2, we define
C ~ and show that it is incomparable to C c in a strict
sense; namely, there are systems and facts q5 for which
C~r is attained and cCr is not, and vice versa.

In Sect. 6.2.3, we demonstrate that C c and C ~ are
also imcomparable. It should be intuitively clear that
eventually agreeing on a fact does not guarantee causal
consistency; the converse, however, may not be so clear.
It turns out that eventual common knowledge guaran-
tees that a fact r is known at points in the run. Concur-
rent common knowledge, in contrast, only guarantees
knowledge of P~r for each i, which is weaker. Conse-
quently, C c and C ~ are indeed incomparable.

In Sect. 6.2.4, we demonstrate that, in general, time-
stamped common knowledge, C T, is incomparable to
concurrent common knowledge. We also demonstrate
that, in the special case of local clocks being logical clocks
[16], cTr implies CCr at a consistent cut where local
time T is reached by all processes.

89

6.2.1 Common knowledge

C~b implies all formulas of the form Ek4 for any natural
number k, where E is defined as follows.

E4=def A Ki4"

More precisely, C is defined as the greatest fixed point
of E(4 A X), where X is the free variable in the greatest
fixed-point operator. We show that this is strictly strong-
er than C c below.

Theorem 14. Common knowledge is strictly stronger than
concurrent common knowledge, i.e. C 4 ~ CC 4 is valid but
c c 4 ~ c 4 is not valid. Furthermore, there are systems
and facts ~ for which CC 4 is attainable but C ~ is not.

Proof To see that C4=>CCO is valid, recall that 4 ~ P ~ 4
is valid. Consequently, the validity of KiO=~K~P~4 fol-
lows and furthermore, E 4 ~ E C 4 is valid. Since CC4
is the greatest fixed point ofEC(4/x X) and C4 is greatest
fixed point of E(4 A X), the desired result follows.

From [11], common knowledge of any fact not ini-
tially common knowledge of a system is unattainable
in any asynchronous system. However, concurrent com-
mon knowledge of certain facts is attainable in such sys-
tems. For example, in a two-processor system in which
exactly one message m is sent, concurrent common
knowledge of "m has been received" is attained along
a cut immediately following the send and reception of
m (cf. the proof of Theorem 15 below). Thus there are
systems and facts 4 for which CC4 is attainable and
C ~b is not; it follows that CC4 =*-C 4 is not valid. []

6.2.2 Epsilon common knowledge

Epsilon common knowledge corresponds to agreement
within an interval of e time units, for some natural
number ~. Its definition is consequently dependent upon
the timed-runs model, since we cannot express "e time
units" in the asynchronous runs model. U, "everyone
knows within (an interval of size) e," is defined as follows
[,,113.

(r, t)~ E~ 4.c* 3t'3e[,(t' < t <_t' + e)

A V i3ti(t' < ti <=t' + e /x (r, h)~ KiO)].

In other words, there is an interval I of length e, including
the current time, such that each process knows 4 at
some point in interval I. Epsilon common knowledge
is then the greatest fixed point of E~(4 A X), where X
is the free variable in the greatest fixed-point operator.
We show that C c and C ~ are incomparable in a strict
sense: there are systems and facts q5 for which CC4 is
attained and C~4 is not, and vice versa.

Theorem 15. Epsilon common knowledge is incomparable
to C c, i.e. neither one implies the other. Moreover, there
are systems and facts 4 for which CC4 is attained but
C~ 4 is not, and vice versa.

Proof First, we demonstrate a system 5P1 and fact 41
for which cC41 is attained, but C~41 is not. Let system

contain only two processes, i and j. In this system,
i may send a single message m to j at some point in
each run, along a reliable channel with unbounded trans-
mission time. No other communication occurs. Let a
be any run of this system in which message m is sent.
Let c be the consistent cut of a consisting of i's local
state immediately after sending m and j's local state im-
mediately after receiving m. Clearly c is a cut, since no
message is sent after it. It is dinstinguishable, because
its occurrence in each local state is determined by specific
events, namely the sending and receiving of m. Let 41
be the fact "message m has been received." Since 41
always holds on cut c, from Theorem 4 it follows that
(a,C)~ACC~I. Therefore CC0, is attained in any run
of the system in which message m is sent.

Now consider every r in timing(a). For C~41 to be
attained, there must be a t such that (r, t)~TC"4a. This
implies further that for some ti within e time units of
t, (r, t i)~TKiO~. However, process i never knows 41, be-
cause every local state of i in r is part of a possible
real-time state in which message m has not yet been
received. Consequently, there is no t for which
(r, t)~TC~41. Therefore 5~ is a system in which CC4~
is attained, but C~4~ is never attained.

Next, we demonstrate a system 502 and fact 42 for
which C~42 is attained but CC0z is not. In system 5~
there are three processes i, j, and k which communicate
along reliable channels having transmission time
bounded by e, for some e> 3. In other words, messages
sent at time t will arrive in time t + 6, 0 < 6 __< e. In each
run, k may or may not send message M simultaneously
to both i and j at some point. No other communication
involving k takes place. Processes i a n d j randomly send
messages to each other. These messages are independent
of M and each other, i.e. they contain no information
about what has been sent or received at the time that
they are sent.

Let 42 be the fact "message M has been sent by k."
C~q52 holds in every run in which M is sent, as soon
as M is sent by k. However, we will demonstrate that
CC~2 can never hold in any run. Recall that if CC42
is attained r, then there must be a single consistent cut
in which p/CC42 and pjcC02 are learned by i and j,
respectively. We will denote the local states of i and
j in such a cut by L(r, i) and L(r,j).

In any run r of this system, let t~(r) be the earliest
time at which M has been received by i, and similarly
for tj(r). In other words, (r, t~(r)) is the earliest state con-
taining receive(i, M). (If M is never sent in r, then ti(r)
= tj(r)= oe.) We will show by induction on 7 that, in
every run r, neither L(r, i) nor L(r,j) can occur before
(r, h(r) + 7) or (r, tj(r) + 7), respectively, for all 7 > 0. It will
then follow that C c 42 is never attained in 502 .

The base case is for 7=0. Clearly, in every run r,
L(r,i) must be (r, ti(r))[,i] or a later state (containing
(r, ti(r))[-i]). Otherwise, M may never be sent, and KiPi42
cannot possibly hold. This is also true for L(r,j).

We now assume that the inductive hypothesis holds
for some ? and show that it must also hold for ? + 1.

90

i

Fig. 5. Run r' in proof of Theorem 15

Consider any run r, and suppose that L(r, i) does occur
before (r, t i (r)+7+ 1). By the inductive hypothesis, this
implies that L(r,/) is (r, t~ (r)+ ~)[i].

Recall, from our assumptions, that the time of M's
reception at i and j can differ by two. Recall also that
i and j randomly send messages to each other, indepen-
dently of M. Thus, there is a run r' with the following
properties. (1) The state of process i in r' is exactly as
in run r up to ti(r)+7, i.e. ti(r')=ti(r) and (r',ti(r')
+ 7) [i] = (r, h(r) + 7) [i]. Consequently, L(r, i) = L(r', i). (2)
Time tj(r') is two time units greater than h(r'). (3) Process
i sends a message m to j between (r ' ,h(r ')+7) and
(r', t j (r ')+7+ 1). (4) Message m is received by j between
(r', h(r')+ y+ 1) and (r', h(r')+ y+ 2)=(r', tj(r')+ ~). Run r'
is pictured in Fig. 5.

By the inductive hypothesis, L(r',j) cannot occur be-
fore (r', tj(r')+ 7). Therefore, in run r', there is no consis-
tent cut containing L(r', i) and L(r',j). This implies further
that cC4)2 cannot hold in any consistent cut of r' con-
taining L(r', i). Thus piCc4)2 cannot hold in L(r', i), and
KiPiCC4)a cannot hold in L(r, i). This is inconsistent with
the definition of L(r, i), thus our assumption that L(r, i)
is (r, t~(r)+ 7) is false. A symmetric argument holds for
L(r,j), thus completing the inductive proof. []

6.2.3 Eventual common knowledge

Eventual common knowledge coresponds to agreement
at some (not necessarily consistent) global state of a run.
We express it using standard definitions in the timed-
runs model [11].

E ~, "everyone will eventually have known," is defined
as follows.

(r,t)~E~4)~=>Vi3ti (ti>O/x(r,h)~Ki4)).

In other words, each processor knows 4) at some point
in the past, present, or future. Note that, unless facts
are stable, E~4) does not imply that E4) ever holds.

Like the other common knowledge variants, C~4) is
defined as the greatest fixed point of E~(4)/x X). C~4)
implies, but is strictly stronger than, (E~)k4) for all k
[11]. We prove that C~4) is not only incomparable to
cC4), but that there are runs in which each is attained
but the other is not for some fact.

Theorem 16. Eventual common knowledge is incompara-
ble to concurrent common knowledge, i.e. CC4) does not
imply C~ 4) and C~ 4) does not imply CC4). Moreover, there
are systems in which CC4) is attained and C~4) is not
for some fact 4), and vice versa.

Proof From Theorem 15, there are systems and facts
4) for which C~4) is attained but CC4) is not. Since C~4)

implies C~4) [11], the same result immediately follows
for C%

Next, we demonstrate a fact 4) and a system in which
CC4) is attained, but C'4) is not. Consider again system
5~1 from the proof of Theorem 15, containing only two
processes i and j. Process i sends a single message m
to j along a reliable channel with unbounded transmis-
sion time. Fact 4)1 is "message m has been received."
As before, CC4)1 is attained in any run of 5P~ ; however,
clearly i never knows 4)1. Since C'4)~ implies that eventu-
ally Ki4)1 holds, C~4)1 cannot be attained in every run
of 5~1. []

6.2.4 Timestamped common knowledge

Timestamped common knowledge [11, 18] corresponds
to agreement at local states having the same local clock
value. It is sufficient for our purposes to use the asyn-
chronous-runs model for comparison; we give the appro-
priate definitions for that model. Let clock(a, c, i) be the
value of i's local clock at cut c in run a. Then time-
stamped knowledge, K/T is defined as follows.

(a, C)~ A K[4) iff V c' (clock(a, c', i)= T=>(a, c')N A KiO).

Note that the satisfaction of Kf4) is dependent only
upon the run a, not upon the cut c. The definition of
E T follows the usual pattern.

gT4)=def A KT4)"

Now, timestamped common knowledge is defined as the
greatest fixed point of Er(4) A X).

The strength of timestamped common knowledge de-
pends upon characteristics of the local clocks used. For
example [11]:
1. If it is common knowledge that all clocks always show

identical times, then at T on any clock, Cr4)<=>CO
holds.

2. If 4) is a stable fact and it is epsilon common knowl-
edge that all clocks are within e time units of each
other, then at Ton any clock, C r 4) ~ C~4) holds.

3. If 4) is a stable fact and it is eventual common knowl-
edge that all local clocks read T eventually, then at
time T on any clock, Cr4)~C<>4) holds.
One type of local clock is termed a logical clock [16].

Logical clocks have the property that, if event a happens-
before event b, then the local clock value at which a
occurs is less than the local clock value at which b occurs.
This implies that local states having the same clock
values are incomparable with respect to happens-before,
and consequently form a consistent cut. It might seem
that if it is common knowledge that local clocks are
logical clocks then Cr4) implies cC4). However, there
are two problems with this. One issue is that Cr4) alone
does not guarantee that the clock value T is ever reached
by any process. Consequently Cr4) may hold although
not all processes know it; in particular, not those whose
clocks never reach T. If T is never reached by any pro-
cess, then CrOCalse) holds. This is the case for CrO re-

91

gardless of the local clock properties; it is also the reason
that statements like "if it is eventual common knowledge
that all local clocks read T eventually" are necessary
in the three comparisons above. We will use Reached(T)
to denote that clock value T is reached by all processes
in a run.

If it is common knowledge that all local clocks are
logical clocks, then attainment of Cr(Reached(T)A 4)
does guarantee attainment of CC4. Still, it is not the
case that C r (Reached (T) A 4) implies C c 4; another issue
is that c r 4 holds throughout the run, not just when
clocks read T. Only when the clocks read Tdoes c r 4
imply C c 4. We use the notation A t(T) as follows:

(a,c)~AAt(T) iff Viclock(a,c,i)=T.

Thus At(T) implies both that T is reached by all local
clocks and that, on this cut, all clocks have the value
T. It is indeed the case that

C~(A t T)/, 4) = C ~ 4

is valid, as we will show in our next theorem.
It is not the case that with logical clocks CC4 implies

c r 4 for some T. The reasons for this are that (1) logical
clocks do not guarantee that every consistent cut con-
tains states having the same local clock value, and (2)
as for eventual common knowledge, timestamped com-
mon knowledge implies that every process knows a fact,
which is not guaranteed by concurrent common knowl-
edge.

We formalize these observations regarding time-
stamped common knowledge with logical clocks in the
next two theorems.

Theorem 17. Assume that it is common knowledge that
local clock values are logical clocks. Then if
Cr (Reached(T) A 4) is attained in a run of system ~9 ~ then
cC4 is attained also, and furthermore

Cr (A t(T) A 4)= cC 4

is valid in 5 P.

Proof Suppose that Cr(Reached(T)A 4)) is attained in
run a of a system Y. Consider any set of local states
in which all clock values read T; there must be at least
one set since Reached(T) holds. From the definition of
logical clocks, the set must form a consistent cut; call
it c. From the definition of C r4 , we have (a,C)~A4.
Cut c is distinguishable from the occurrence of the local
clock value T and the knowledge of Reached(T). There-
fore, from Theorem 4, (a, c)~ A C c 4. Thus attainment of
Cr(Reached(T) A 4) guarantees attainment of cC4 . Fur-
thermore, since Cr(At(T)A 4)implies the conditions on
cut c above, Cr(At(T)A 4)=~CC(@) is valid in 5 p. []

Theorem 18. I f it is common knowledge that local clock
values are logical clocks, cC 4 does not imply Cr @ for
any T. Moreover, there are systems and facts 0 for which
CC 4 is attained but Cr O is not attained for any T.

Proof Consider a system Y'I as follows. As in system
5~ of Sect. 6.2.2, there are only two processes i and j.

At some point process i sends a single message m to
process j. In addition, i has a local clock which begins
with the value 1, and increments to 2 immediately after
i sends m. Process j has a local clock which begins at
2, and increments to 3 immediately after j receives m.
It is simple to verify that the clock values indicated obey
the conditions for logical clocks, since m is sent at local
time 1 and received at local time 2. Let 41 be the fact
"message m has been received." CC41 is attained in runs
of this system exactly as in Sect. 6.2.2. However, there
is not time T at which 4 t holds when each process
reaches T. Furthermore, i never knows 41, which is neces-
sary by the definition of C r 4 . By either argument, Cr41
is not attained for any Tin any run of this system. []

Finally, we consider general local clocks. Since attain-
ing CC4 does not guarantee attainment of C r 4 in the
case of logical clocks, clearly it does not for the general
case. Unlike for logical clocks, in the general case
Cr(Reached(T)A4) does not guarantee attainment of
CC4.

Theorem 19. For general local clocks, there are systems
in which Cr(Reached(T) A 4) is attained and CC O is not,
for some fact 4.

Proof Consider system 5P; as follows: as in 503 in the
proof of Theorem 16, there are two processors i and j,
and i sends a series of messages - possibly zero to
j along non-FIFO channels. Process j sends no messages
to i. Also, in 50'3, each local clock is initialized to zero
and increments each time a message is sent or received.
Recall fact 43, "i has sent at least one message to j ."
It is straightforward to see that Cr(Reached(T)A 43) is
attained in any run of this system in which at least one
message is sent, for T = 1. However, CC43 is not attained
in any run, exactly as in the proof of Theorem 16. []

Although Cr (A t (T) A 4) implies C c 4 for systems us-
ing logical clocks, this does not preclude the relevance
of concurrent common knowledge for such systems.
Cr(AtT)A 4), as shown, is a stronger condition than
CC4. It implies a useful property for some distributed
applications which CC4 does not; namely, if two facts
@a and 42 become timestamped common knowledge
with different timestamps, then all processors learn
C r ' (A t(T 0 A 41) and Cr2(A t(T2) A 42) in the same order.
Known algorithms to achieve C r with logical clocks [18]
use two-phase algorithms such as Protocol 2. There do
not appear to be low-latency protocols such as Proto-
col 1 for timestamped common knowledge. Further-
more, concurrent common knowledge does not require
processes to keep a local clock value. Thus, for some
applications CC4 may be a more desirable, though
weaker, form of knowledge than Cr(A t(T)A 4). One ex-
ample in which both forms are useful is given in Sect. 5.3.

7 Conclusions

In this paper we have given a new knowledge-based defi-
nition of agreement that applies to asynchronous sys-
tems. We have defined the concept in terms of the causal-

92

ity re la t ion between events, which is an appropr ia te re-
p lacement for the concept of t ime when one is discussing
a synchronous systems [16]. We have defined concur ren t
c o m m o n knowledge using a moda l logic and semantics
tha t are designed specifically to capture the causal struc-
ture re levant to a synch ronous systems. We have shown
that concur ren t c o m m o n knowledge is a t t a inab le by two
simple and efficient a lgor i thms and given several applica-
t ions using it and other elements of the new logic. It
is the a t ta inabi l i ty and b road appl icabi l i ty of concur ren t
c o m m o n knowledge that makes it an i m p o r t a n t concept
for a synchronous d is t r ibuted comput ing .

One of the con t r ibu t ions of our work is that we have
given a knowledge- theore t ic defini t ion that applies
whenever one needs to reason abou t the global states
of a synchronous systems. Thus we have p inned down
the form of knowledge a pro tocol designer should try
to a t ta in when developing a pro tocol to reach agreement
abou t some proper ty of the global state. We have also
used our logic to prove necessary and sifficient condi-
t ions for per forming concur ren t act ions in a synch ronous
dis t r ibuted systems.

There have been other proposals for weakened forms
of c o m m o n knowledge that are also a t ta inable asyn-
chronously , namely eventual c o m m o n knowledge and
t imes tamped c o m m o n knowledge [11]. They use var ious
t empora l modal i t ies in order to weaken the or iginal defi-
n i t i on of c o m m o n knowledge. C o n c u r r e n t c o m m o n
knowledge is strictly weaker than c o m m o n knowledge
but is, in general, incomparab le , with the other forms
above. In the case of t imes tamped c o m m o n knowledge,
if the clocks used in the defini t ion are logical clocks as
in [181 and the t imes tamp of interest is gua ran teed to
be reached by all processes, then t imes tamped c o m m o n
knowledge implies concur ren t c o m m o n knowledge when
the appropr ia te local times are reached. However, in
practice t imes tamped c o m m o n knowledge involves lon-
ger la tency and requires the suspens ion of system events
for an interval. It also requires m a i n t a i n i n g local clocks,
which concur ren t c o m m o n knowledge does not. Thus
achieving concur ren t c o m m o n knowledge may be more
pract ical when it is sufficient for a par t icu lar appl icat ion.

In the future, we hope to use our logic to u n d e r s t a n d
better the c o m m u n i c a t i o n requi rements of a wider vari-
ety of a synchronous d is t r ibuted protocols, and to aid
in developing new and improved protocols. We also
hope to extend the usefulness of our logic by addressing
the issue of faulty env i ronments .

Acknowledgements. We have benefited fi'om discussions with Ken
Birman, Ajei Gopal, Yoram Moses, Gil Neiger, Fred Schneider,
Sam Toueg, Moshe Vardi, and especially Joe Halpern.

A Appendix

A. I P r o o f o f cons is ten t -cu t ex i s t ence

In this section we prove Lemma 1. This lemma says that, in any
asynchronous run of any system, each local state of each process
is included in some consistent cut of the system.

Proof of Lemma 1. Fix an asynchronous run, a, of a system. Con-
sider any local state of any process, say state s~ on process i. Let

Fig. 6. Proof of Lemma 1 : message chains during iterative construc-
tion

e~' be the last event executed in s~. We will iteratively construct
a consistent cut c of a such that (a, c)[i] is equal to s~'. Let
MinSends(k) for any k be the minimum (earliest) local state of pro-
cess k in run a which includes the sending of all messages received
by i from k in local state s~. Initialize a vector of local states
c as follows: (a, c) [i] = s}' and for any j @ i, (a, c) [j] = minSends(j)).
We refer to this as the initial state vector. Of course this vector
is not necessarily a consistent cut. On each step of the iteration,
find a message m' from any process j to any other process k whose
reception is in c but whose sending is not (if such a message doesn't
exist then we are finished). Set (a, c)[j] to be the minimum local
state in a[j] which includes the sending of m'; note that the old
(a, c) [j] is a strict prefix of the original. In order to meet the condi-
tions of the theorem, we must show that (1) the iterations terminate
and that (2) the value of (a, c) I-i] never changes.

We first make an observation to be used extensively in the
remainder of the proof: for any inconsistent message m' in the
above construction, there is a message chain beginning with m'
and ending with a message received within the initial state vector.
Consider any message m' as above, from process j to process k.
Then either (a, c)[k] is an element of the initial state vector or
the last event of (a, c)[k] is the sending of a message m", where
m" was the inconsistent message of some previous iteration. In
the latter case receive (m') ~ send (m"). This argument can be contin-
ued resulting in a message chain

send(m') ~ receive(re') --+ send(re") --+ receive (m") receive(m ~

where reeeive(m ~ is in the initial state vector. (See Fig. 6. The solid
circles represent the initial state vector.)

We now show that the iteration terminates; suppose that it
does not. At any iteration there are only finitely many inconsistent
messages, since prefixes contain a finite number of receive events.
Thus for the iteration to be non-terminating there must be an
infinite message chain of the form described above. By the pigeon-
hole principle, in such a chain there must be two messages, say
ml and mj, that are sent by the same process. If ml--*m2 in the
chain then also m 2 ~ ml because there is a local state which includes
mz but not ml. This cannot occur in any valid run. Therefore
the iteration terminates.

Finally, we show that the local state of i is not changed, i.e.
upon termination (a, c)[i] =s~'. Suppose that during the iteration
state (a, c)[i] is changed, due to a message m' sent by i. Again,
there must be a chain of messages as above ending with receive(m ~
in the original states and send(re') --+ receive(m~ There are two cases
depending on what process has receive(m~ (1) If it is process i
then there is a circularity in ~ similar to the proof of termination
above, as the message chain begins and ends with the same process.
(2) Suppose that it is a process j + i. Recall that e x is the last event
of s~ and hence of the original (a, c)[i]. Recall also that, by the
definition of MinSends, the last event ofj in the initial state vector
is the sending of a message to i, call it m j, which is received before
or at event e~. We thus have that mj is sent after receive(m ~ and
received before or at e~, so that receive(m~ However, e~

send(re') and send(re')--* receive(m~ resulting in an invalid circu-
larity. Hence the final (a, c) [i] is equal to s~. []

References

1. Birman K, Joseph T: Reliable communication in the presence
of failures. ACM Trans Comp Syst 5(1):47-76 (1987)

93

2. Bracha G, Toueg S: Distributed deadlock detection. Distrib
Comput 2(3):127 138 (1987)

3. Chandy M, Lamport L: Finding global states of a distributed
system. ACM Trans Comp Syst 3(1):63 75 (1985)

4. Chandy M, Misra J: How processes learn. Distrib Comput
1(1):40=52 (1986)

5. Chang EJH: Echo algorithms: depth parallel operations on
graphs. IEEE Trans Software Eng SE-8(4): 391400 (1982)

6. Critchlow C: On inhibition and atomicity in asynchronous con-
sistent-cut protocols. Tech Rep 89-1069, Cornell University De-
partment of Computer Science, 1989

7. Critchlow C, Taylor K: The inhibition spectrum and the
achievement of causal consistency. Proc 9th ACM Syrup on
Principles of Distributed Computing, pp 31-42 (1990)

8. Dwork C, Moses Y: Knowledge and common knowledge in
a byzantine enbironment: the case of crash failures. In: Halpern
J (ed) Proc Conf on Theoreti~cal Aspects of Reasoning About
Knowledge. Kaufmann M, 1986, pp 149-170 (to appear in Inf
Comput)

9. Francez N: Distributed termination. ACM Trans Program
Lang Syst 2(1):4~55 (1980)

10. Halpern JY, Fagin R: Modelling knowledge and action in dis-
tributed systems. Distrib Comput 3(4): 139-179 (1989)

11. Halpern JY, Moses Y: Knowledge and common knowledge
in a distributed environment. J ACM 37(3):549-587 (1990)

12. Knaster B: Un th6orbme sur les functions d'ensembles. Ann
Polish Math Soc 6:133 134 (1928)

13. Koo R, Toueg S: Checkpointing and rollback-recovery for dis-

tributed systems. IEEE Trans Software Eng SE-13(1):23-31
(1987)

14. Kozen D: Results on the propositional/~-calculus. Theor Corn-
put Sci 27:333-354 (1983)

15. Lamport L: Paradigms for distributed computing. In: Paul M,
Siegert HJ (eds) Methods and tools for specification, an ad-
vanced course. Lect Notes Comput Sci, vol 190. Springer, Berlin
Heidelberg New York 1985, pp 19 30, 454468

16. Lamport L: Time, clocks, and the ordering of events in a distrib-
uted system. Commun ACM 21(7):558-565 (1978)

17. Moses Y, Tuttle M: Programming simultaneous actions using
common knowledge. Algorithmica 3:121-169 (1988)

18. Neiger G, Toueg S: Substituting for real time and common
knowledge in asynchronous distributed systems. Proc 6th ACM
Symp on Principles of Distributed Computing, pp 281-293,
1987 (to appear in J ACM)

19. Parikh R, Ramanujam R: Distributed processing and the logic
of knowledge. Proc Brooklyn College Workshop on Logics of
Programs, pp 25(~268 (1985)

20. Russell DL: Process backup in producer-consumer systems.
Proc ACM Syrup on Operating Systems Principles (1977)

21. Tarski A: A lattice-theoretic fixpoint theorem and its applica-
tions. Pac J Math 5:285-309 (1955)

22. Taylor K: The role of inhibition in asynchronous consistent-cut
protocols. In: Bermond J-C, Raynal M (eds) Proc 3rd Int Work-
shop on Distributed Algorithms, Nice, France, September 1989.
(Lect Notes Comput Sci, vol 392: Distributed algorithms.)
Springer, Berlin Heidelberg New York 1989, pp 28~291

