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Summary. In  this paper  we present a new, knowledge-  
theoretic definition of  agreement  designed for asynchro-  
nous systems. In  ana logy with c o m m o n  knowledge,  it 
is called concurrent common knowledge. Unlike c o m m o n  
knowledge,  it is a form of agreement  that  is at tainable 
asynchronously .  In defining concurrent  c o m m o n  knowl-  
edge, we give a logic with new modal  operators  and 
a formal semantics, bo th  of  which are based on causali ty 
and consequent ly  capture only the relevant structure of  
purely asynchronous  systems. We give general condi- 
t ions by which protocols  at tain concurrent  c o m m o n  
knowledge and prove that  two simple a n d  efficient pro-  
tocols do so. We also present several applications of 
our  logic. We show that  concurrent  c o m m o n  knowledge 
is a necessary and sufficient condi t ion for the concurrent  
performance of  distr ibuted actions. We also demonst ra te  
the role of  knowledge in taking snapshots  for stable 
proper ty  detection and asynchronous  broadcasts .  In  gen- 
eral, applications that  involve all processes reaching 
agreement  about  some porper ty  of  a consistent global 
state can be unders tood  in terms of  concurrent  c o m m o n  
knowledge. 

Key words: Distr ibuted systems - Asynchronous  com- 
munica t ion  - Agreement  protocols  Moda l  logic - 
Knowledge  

1 Introduction 

Knowledge  has become an impor tan t  tool  for reasoning 
about  communica t ion  and coopera t ion  in distributed 
systems [-11, 8, 17, 10]. In  this approach,  one reasons 
about  what  processes " ' know"  about  the states of  other  
processes. Coope ra t ion  on a distributed task is charac-  
terized by its requirement  of  some form o f "  g roup  knowl-  
edge," and communica t ion  is viewed as a means  of  trans- 
ferring knowledge. In [11], common knowledge is pro-  
posed as a definition for agreement  in distributed sys- 
tems. C o m m o n  knowledge of  a fact ~ implies that  
"everyone  knows q5 and everyone knows that  everyone 
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knows ~b and everyone knows that everyone knows that 
everyone knows q~" and so on. Common knowledge, 
however, requires simultaneous action for its achieve- 
ment and is consequently unattainable in asynchronous 
systems [11, 17]. 

In this paper we discuss a new, knowledge-theoretic 
definition of agreement appropriate for asynchronous 
systems. This definition has two important  features: first, 
it uses the causality relation between events in its defini- 
tion [16] rather than physical time and, second, this 
form of knowledge is actually attainable in an asynchro- 
nous system. In analogy with common knowledge, we 
call it concurrent common knowledge. The idea behind 
concurrent common knowledge is quite natural. Given 
that ordinary common knowledge must be attained si- 
multaneously by all processes, it seems clear that a viable 
alternative for asynchronous systems could use causality 
rather than real time. 

The idea that causal structure is fundamental to the 
analysis of asynchronous systems was brought into com- 
puter science by Lamport  [16]. The appropriate causal 
analogue of a real-time global state, i.e. a global state 
corresponding to the system at an instant of real time, 
is a possible global state or, as it is now widely called, 
a consistent cut. It is the appropriate analogue because 

in asynchronous systems - no process can distinguish 
whether or not a consistent cut is, in f a c t , a  real-time 
global state. Intuitively, we define everyone concurrently 
knows to be true at a consistent cut if all processes know 
that q~ is true of some "indistinguishable" consistent cut. 
Concurrent common knowledge of a fact ~b then implies 
all formulas of the form "everyone concurrently knows 
~b and everyone concurrently knows that everyone con- 
currently knows q~," and so on. 

In order to define concurrent common knowledge, 
we present a logic with new modal operators. Truth 
values are assigned to the formulas of this logic via a 
new asynchronous-runs semantics in contrast to the com- 
monly-used timed-runs semantics of Halpern and Moses 
[11, 10]. We find this new semantics more natural for 
expressing our formulas as it contains only the causal 
structure relevant to asynchronous systems and not real 
time, which is unobservable in such systems. We give 
a translation of our semantics to the timed-runs seman- 
tics; this allows us to compare rigorously concurrent 
common knowledge to knowlege formulas defined in the 
timed-runs semantics. 

We prove a general condition under which protocols 
achieve concurrent common knowledge and give two 
simple and efficient protocols that do so. Several applica- 
tions of our new logic are given. We show that concur- 
rent common knowledge is a necessary and sufficient 
condition for performing concurrent actions in asynchro- 
nous distributed systems, analogously to simultaneous 
actions and common knowledge [17] in synchronous 
systems. It is shown that the snapshot algorithm of [3] 
achieves two forms of concurrent common knowledge. 
In general, applications that involve all processes reach- 
ing agreement about  some property of a consistent glob- 
al state can be understood in terms of concurrent com- 
mon knowledge, thus we have isolated the form of 

knowledge underlying many existing protocols. We also 
give results pertaining to broadcast message ordering 
and replicated data updates. 

The paper is organized as follows. Section 2 contains 
our system model. In Sect. 3 we define our logic and 
its formal semantics. Section 4 contains our Attainment 
Theorem, followed by two protocols which satisfy condi- 
tions of that theorem and hence attain concurrent com- 
mon knowledge. In Sect. 5 several applications of our 
logic are presented. In Sect. 6 we give a translation of 
our semantics into the standard timed-runs semantics 
[11], and formally compare concurrent common knowl- 
edge to common knowledge and other variants of com- 
mon knowledge. Section 7 contains concluding remarks. 

2 System model 

The definitions that we give in this section describe asyn- 
chronous, distributed systems. By the term distributed, 
we mean that the system is composed of a set of processes 
that can communicate only by sending messages along 
a fixed set of channels. The network is not necessarily 
completely connected. By asynchronous, we mean that 
there is no global clock in the system, the relative speeds 
of processes are independent, and the delivery time of 
messages is finite but unbounded. 

It is our intention to give a definition of the model 
that uses the structures that are relevant to such systems. 
Thus we do not use timed runs to describe these systems 
[11, 10]. The resulting definitions turn out to be more 
natural than if we had detailed timing information in 
the model description. Of course, the timed runs model 
is more generally applicable than ours. In Sect. 6.1 we 
give a precise translation of our formalism in the timed 
runs formalism. Our model turns out to be similar to 
that of Chandy and Misra [4]. 

The description of distributed systems is based on 
the behaviors of the individual components or processes 
in the system. We take the notion of a local state of 
a process to be primitive. Actions, as in [15, 10], are 
state transformers. 

Definition 1. An action is a function from local states 
to local states. There are three types of actions: send 
actions denoted send(m) where m is a message (described 
later), receive actions denoted receive(m), and internal ac- 
tions. 

We use local states and actions to compose local his- 
tories as in [15, 10]. 

Definition 2. A local history, h~, of process i, is a (possibly 
infinite) sequence of alternating local states - beginning 
with a distinguished initial state and actions. We write 
such a sequence as follows 

h,=s o <, st 4, 4,  st... 
We use s{ (c~]) to refer to the jth state (action) in process 
i's local history. 

An event corresponds to a state transition. 

Definition 3. An event is a tuple <s, ~, s ')  consisting of 
a state, an action, and a state. 
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T h e f  h event in process i's history, (s{- 1, cci, si), is denot- 
ed el. 

The state of a process can be obtained from its initial 
state and the sequence of actions or events that have 
occurred up to the current state. Hence the local history 
may be equivalently described as either of the following: 

hi= sO, cr , 2 3 O~ i , O~i . . .  

hi = s ~ 1 2 e i , e i , e~  . . .  

If it is additionally assumed that the local state includes 
a description of all past actions in the local history (cor- 
responding to the complete history interpretation of [11, 
10]), then 

hi__ sO, s], z a Si , Si . . .  

is also an equivalent discription of the history. We will 
assume such an interpretation; note that this interpreta- 
tion results in a maximum amount  of information being 
available to a process based on its local state. We often 
omit the subscript or superscript on states, events, and 
actions when it is obvious or irrelevant. 

An asynchronous system consists of the following 
sets. 
1. A set Proc={1,  ..., N} of process identifiers, where 

N is the total number of processes in the system. 
2. A set C~_ {(i,j)li, jeProc} of channels. The occurrence 

of (i,j) in C indicates that process i can send messages 
to process j. 

3. A set H i of possible local histories for each process 
i in Proc. 

4. A set A of asynchronous runs. Each asynchronous run 
is a vector of local histories, one per process, indexed 
by process identifiers. Thus we use the notation 

a = @1, h2, h3, ... hN). 

Constraints on the set A are described throughout 
this section. 

5. A set M of messages. A message is a triple (i,j, B)  
where i~Proc is the sender of the message, j~Proc 
is the message recipient, and B is the body of the mes- 
sage. B can be either a special value (e.g. a tag to 
denote a special-purpose message), or some proposi- 
tion about the run (e.g. "i has reset variable X to 
zero"), or both�9 We assume, for ease of exposition only, 
that messages are unique. 

Since we assume uniquences of messages, we will typi- 
cally refer to an event by its action, e.g. send(m). 

The set of channels C and our assumptions about 
their behavior induce two constraints on the runs in 
A. The first constraint corresponds to our intuitive no- 
tion of channels: i cannot send a message to j unless 
(i,j) is a channel. The second constraints says that, if 
the reception of a message m is in the run, then the 
sending of m must also be in that run; this implies that 
the network cannot introduce spurious messages or alter 
messages. 

Constraint (1). If send ( ( i, j, t~ ) ) ~ h i then ( i, j) a C. 

Constraint (2). If receive((i,j, ( 9 ) ) @ h j  then send((i,j, d?)) 
sh~. 

In addition, we introduce two optional channel con- 
straints: reliability and FIFO. Reliability says that if a 
message is sent then it is received, i.e. no message loss 
occurs. F IFO indicates that channels exhibit first-in-first- 
out behavior. These properties are not necessary for our 
definitions, but we will want to address systems that 
satisfy them when we address the attainability of concur- 
rent common knowledge. Unless otherwise stated, they 
will not be assumed in the model. 

Reliability Constraint: If send((i,j ,O))Ehi then re- 
ceive((i,j, d?))~hj. 

F IF O  Constraint: If cr = send(( i, j, 01)), ~ = 
send((i , j ,~2)),  w < x ,  and there exist actions c~Y= 
receive((i,j, ~bl} ) and cr = receive((i,j, q~2}), then y < z. 

Our model of an asynchronous system does not men- 
tion time. There is, however, an ordering of events in 
the system due to the fact that certain events are known 
to precede other events. We can define this order using 
potential causality as done by Lamport  [-16-1. Intuitively, 
two events exhibit potential causality if it is possible 
for one to have an effect on the other. In an asynchro- 
nous system, potential causality results only from se- 
quential execution on single processes and from message 
passing between separate processes. It is described using 
the happens-immediately-before relatiow->and the hap- 
pens-before relation ~ .  

Definition 4. Event e~ happens-immediately-before event 
e~, denoted e~'~ e~, if and only if (1) e~ and e~ are different 
events in the history of some process i and e~' occurs 
earlier in the sequence, i.e. i= j  and x < y ,  or (2) e x is 
the sending of a message and e y is the reception of that 
message; i.e. there exists m such that e~=send(m) and 
e~=receive(m). 

Definition 5. The happens-before relation, denoted ~ ,  
is the transitive closure of happens-immediately-before. 

Thus if ef ~ e~, then either x y e i ~ ey o r  there exists an event 
ekz such that e~---> e~ and ek~--~e i ~ Y. 

Our final requirement is that--* be anti-symmetric, 
which is necessary if the system is to model actual execu- 
tions. 

Constraint (3). For  no two events e~ and e 2 does el -~ e2 
and e2 ~ el. 

Our requirements on asynchronous runs are equivalent 
to those in [-4], with the exception that we limit message 
sending to occur along the set of designated channels. 
Chandy and Misra express the possible behaviors of sys- 
tems in terms of totally ordered sets of events called 
system computations. Their conditions on system compu- 
tations are that (i) projections on each process are possi- 
ble local histories, and (ii) the reception of a message 
is preceded by its sending. These are equivalent to stating 
that the system computations are linearizations of the 
--* relation. 

We can now use Lamport 's  theory to talk about glob- 
al states of an asynchronous system. A global state is 
some prefix of a run, as defined below. 
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(a) (b) 
Fig. 1. Inconsistent (a) vs. consistent (b) cuts 

Definition 6. A global state of run a is an N-vector of 
prefixes of local histories of a, one prefix per process. 

The happens-before relation can be used to define a con- 
sistent global state [20, 3], often termed a consistent cut, 
as follows. 

Definition 7. A consistent cut of a run is any global 
state such that if x y e~ ~ ej and e~ is in the global state, 
then e~ is also in the global state. 

(See Fig. 1. The states of(b) form a consistent cut whereas 
those of (a) do not.) Note that a consistent cut is simply 
a vector of local states; we will use the notation (a, c) [i3 
to indicate the local state of i in cut c of run a. 

We often refer to causally-related message chains as 
defined below. 

Definition 8. In a asynchronous run, a message chain 
is a (possibly infinite) sequence of messages ml,mE, 
m 3 ,  . . .  such that, for all i, receive(mi) -~ send(mi+ 1). Con- 
sequently, 

send(m1) -~ receive(m1) ~ send(mE) ~ receive(mE) 
-~ send(m3)... 

Finally, the following lemma establishes a desirable 
property of asynchronous runs; its proof  is contained 
in Appendix A.1. 

Lemma 1. In any asynchronous run of any system, each 
local state of each process is included in some consistent 
cut of  the system. 

In any state of the history of process i, i cannot deter- 
mine which of the possible consistent cuts including its 
current state is an actual real-time global state, i.e. a 
set of local states that actually occur at the same instant 
of physical time during the execution. In this sense, a 
consistent cut is indistinguishable from a real-time global 
state. In defining epistemic concepts, the notion of in- 
distinguishability plays a key role. For  this reason we 
have chosen to use consistent cuts rather than real time 
in our logic for reasoning about asynchronous distrib- 
uted systems. 

3 Semantics of concurrent knowledge 

The definition of concurrent common knowledge follows 
the standard pattern of defining a form of group knowl- 
edge and then using a greatest fixed-point operator to 
define the appropriate variant of common knowledge 
[11]. 

In order to give a Kripkean interpretation of the 
knowledge modality, we need to identify an appropriate 
set of possible worlds and a family of possibility relations 
between those worlds. The discussion of concurrent 
knowledge really involves two modal operators and, 
hence, two different collections of accessibility relations 
in the semantics. This kind of situation is also seen in 
other variants of common knowledge. Discussions of 
eventual, epsilon, and timestamped common knowledge 
[11, 18] involve a temporal modality in addition to an 
epistemic modality. 

3.1 The logic 

We will first introduce the symbols contained in our 
logic. Later we will define a formal semantics by stating 
when a formula is satisfied by a pair (a, c), where c is 
a consistent cut in asynchronous run a. 

We assume that there is a set of primitive propositions 
Prop; these typically will be statements like "variable 
x in process i is 0" or "process i has sent a message 
m to process j" .  We represent these by lower-case letters 

P, q . . . . .  
We introduce two families of modal operators, each 

family indexed by process identifiers. They are written 
Ki and P~ respectively. Intuitively, Ki(q~) represents the 
statement "i knows ~b," which in terms of asynchronous 
systems means "~b is true in all possible consistent global 
states that include i's local state." The formula P~(q~) rep- 
resents the statement "there is some consistent global 
state in this run that includes i's local state, in which 
q~ is true." P has, roughly speaking, a role similar to 
a temporal modality. It is quite different, however, from 
the familiar temporal operators like ~ .  

The next modal operator is written E c and stands 
for "everyone concurrently knows." The definition of 
EC(qS) is as follows. 

gC(q~)=def A KiPi(O)" 
i~Proc 

The last modal operator  that we introduce is C c, con- 
current common knowledge. Analogously to common 
knowledge, we wish to define a state of process knowl- 
edge that implies that all processes are in that same state 
of knowledge, with respect to qS, along some cut of the 
run. In other words, we want a state of knowledge X 
satisfying 

x = E ~(r ,,, x ) .  

Thus we want concurrent common knowledge to be a 
fixed point of EC(~b/x X). C c will be defined semantically 
as the wekest such fixed point, namely as the greatest 
fixed-point of EC(0 A X). It therefore satisfies 

c~(q~)~.Ec(r  cc(r 

and informally 

c ~ (0 )  ~ ~ (r (U)  ~ (4,)/, ( U ?  (q~) . . . ,  
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i.e. that (EC)~q5 holds for any k. The greatest fixed point 
definition is, however, stronger than the infinite conjunc- 
tion. 

3.2 Formal semantics 

In an asynchronous system, the possible worlds are the 
consistent cuts of the set of possible asynchronous runs 
A. We use pair (a, c) to stand for the consistent cut c 
in the asynchronous run a. Recall that a cut is an N- 
vector of local states, one for each process in Proc. Two 
cuts are viewed as indistinguishable by process i if they 
contain the same local state of process i. This is clearly 
an equivalence relation. 

Definition 9. We write (a, c)~i (a', c') to represent the 
indistinguishability of (a, e) and (a', c') to i: 

(a, c)~i (a', e').~ (a, c)[i] =(a', c')[i]. 

The formal semantics is given via the definition of 
the satisfaction relation ~ .  Intuitively (a, c)~ ~b, "(a, c) 
satisfies ~b," if fact ~ is true in cut c of run a. We assume 
that we are given a function n that assigns a truth value 
to each primitive proposition p and local state s of pro- 
cess i. The truth of a primitive proposition p in (a, c) 
is determined by n and c. This defines (a, c)~p. The satis- 
faction relation is defined in the obvious way for formu- 
las built up using the logical connectives. The following 
defines the meaning of K~ in our setting: 

(a, c)l= K~(f))<=~ V (a', c')((a', c ' )~  (a, e)~(a' ,  c')~ 0). 

This is practically the same as the definition in Halpern 
and Moses [11], except that we use asynchronous runs 
rather than timed runs. 

The meaning of P~ is given by the following definition. 

(a, c)~ P~((~)~:~ ~ (a, c')((a, e ' ) ~  (a, c)/x (a, c')N 0). 

In other words, P~(qS) states that there is some cut, in 
the same asynchronous run, including i's local state, such 
that q~ is true in that cut. (See Fig. 2.) Another way of 
viewing the meaning of P~ is to define the equivalence 
relation ~ to stand for indistinguishable cuts in the 
same run; this is a refinement of the ~ relation. 

(a, c) ~i (a', c')~=~(a = a') ,x (a, c),,- ~ (a', c'). 

Given the definition of ~ we can equivalently define 
P~ as follows. 

(a, c) ~ P/(~b) ~:~ 9 (a', c')((a', c') ~i (a, c) A (a', c') ~ 4). 

(~,~) ~ P,~ (~,~') 1= 
Fig. 2. Satisfaction of (a, c)~Pi(~b) 

Note that ~b implies Pi(~b). This makes EC(~b)=aef 
A KiPi(~b), concurrent knowledge, weaker than E(q~) 

ieProc 

=aef /~ Ki(~b), "everyone knows." 
ieProc 

It is not the case, in general, that P~(qS) implies ~b or 
even that EC(qS) implies qS. Note that the truth of EC(~b) 
is determined with respect to some cut (a, c). A process 
cannot distinguish which cut, of the perhaps many cuts 
that are in the run and consistent with its local state, 
satisfies ~b; it can only know the existence of such a 
cut. In particular, the cut c may not satisfy qS. EC(q~) 
does imply ~b, but only for certain types of facts, as we 
will discuss at the end of this section. Of course, if ~b 
implies ~ then EC(~b) implies EC(O), i.e. E c, is monotonic. 

The remainder of our formal semantics outlines the 
definition of C c using greatest fixed points. In order to 
define the meaning of C c using fixed points we need 
to define the meaning of formulas with a free variable 
X in them; we allow only one free variable in such for- 
mulas. We think of the meaning of a formula with a 
free variable as a function from sets of consistent cuts 
to sets of consistent cuts. Fix a system A. Let Wdenote 
the set of consistent cuts of A. Then we can define the 
following meaning function for all formulas. We let Z 
stand for a generic subset of W. The meaning of the 
formulas is given by the inductively defined function d/L 
The meaning of the primitive propositions p, q,... is giv- 
en by a function n as discussed above. The meaning 
function defined below follows very closely the definition 
given by Halpern and Moses [11] and by Kozen [14]. 

1. JgWp~(Z)={ueWln(u,  p)=true} where p is a primi- 
tive proposition. 

2. d//~-~ ~b~ (Z) = W -  J~ [~b~ (Z). 

4. J//WX~ (Z)  = Z. 
5. (Z) -- {(a, c) e W IV (a', c') ~ W((a, c) Hi (a', c') 

=> (a', c') ~,//g [~qS~] (Z)) } .  
6. ~ [Pi (~b)~ (Z) = {(a, c)e W I3 (a', c')e W((a, c) ~i(a', c) 

(a', c') e ~ ~b~ (Z))}. 

If a formula does not contain a free variable then its 
meaning is a constant function, The truth value defini- 
tion of the semantics can be recovered by defining 

(a, c)~q5 iff (a, c)e~/~b~(0). 

In fact the semantic clauses just given are exactly what 
one would expect for the Tarski-style truth definition 
except that they have been given in terms of sets and 
set operations instead of truth values and logical connec- 
tives. 

We will define C c via a greatest fixed-point operator. 
We extend the syntax by vX.(a. The interpretation of 
this proceeds as follows. The existence of the greatest 
fixed point depends upon the monotonieity of Jg ~q~ (Z); 
a function f is monotonic if A~_B implies f(A)~_f(B).  
To guarantee monotonicity, we require that free occur- 
rences of X in q5 be positive, i.e. all occurrences of X 
are in the scope of an even number of negation signs. 
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This is clearly a syntactic property. It is easy to see (by 
induction on the structure of formulas) that J t  F0](Z) 
will be a monotonic function if X appears positively. 
Any monotonic function on a complete lattice has a 
greatest fixed point [,21]. The powerset 2 w ordered by 
inclusion is certainly a complete lattice. We can thus 
give meaning to vX.O as 

./~[vX.~b](Z)= ~ {BI~//I[c~(B)=B} 

and CC(O) can be viewed as a special case of this as 
follows: 

cc(r  ~ x.Ec(4) ~ x). 

It is not true that EC(0 A X) defines a continuous func- 
tion so the fixed point is not necessarily attained by 
simply iterating through all of the integers; in this sense 
C c is rather like C ~ [-11]. Note that in the logic the 
only occurrence of greatest fixed points is through occur- 
rences of C c. In such occurrences one never has to inter- 
pret formulas like vX.vY. .XA Y where there are fixed 
points of expressions containing more than one free vari- 
able. 

This completes our definition of satisfiability, i.e. 
whether or not (a, c)~ ~b for any asynchronous run a, 
cut c in a, and any formula ~b of the logic. Furthermore, 
we will use the following terminology and notation to 
describe valid formulas that are true in all cuts of all 
systems, and formulas that are valid in a system. 

Definition 10. Fact ~b is valid in system A, denoted A ~  ~b, 
if q~ is true in all cuts of all runs of A, i.e. 

V a~ A V c((a, c)~ (~). 

Definition 11. Fact 0 is valid, denoted ~q~, if q5 is valid 
in all systems, i.e. VA(A~b).  

The fact that concurrent common knowledge is a 
greatest fixed point is expressed by an induction rule. 
Before presenting the rule, we first give a preliminary 
lemma that justifies the usual substitution rule for apply- 
ing a function to its arguments. It states that applying 
the function dr ~O(X)] to the set / #  ~b~ (0)is the same 
as first replacing X by ~b in ~ and applying the function 
~/~ ~ (X/@)~ to 13. This can be proved by an easy structur- 
al induction on the formula. 

Lemma 2. I f  ~ is a formula with free variable X and 
0 is a formula, then 

W~ (x)] ( ~  W~ (0)) = ~ [0 (x/@~ (0). 

Now the following theorem gives the induction rule 
and establishes its soundness. 

Theorem 1. The following induction rule is sound with 
respect to the semantics defined previously. I f  A ~ ( ~  
EC(~b A 0) then A ~  qS~CC(~b). 

Proof Let F be the functional 2u.J~EC(@ A 0 A X)~(u), 
where u is an element of 2 w and Wis the set of consistent 
cuts of A. Recall that the meaning of CC(q5 A 0) is the 
greatest fixed point of F. 

We assume that qS~EC(q~ A 0) is valid in A. Semanti- 
cally, this means that d/t ~0] (0)-  Jd~EC((a A ~)~(0). By 
Lemma 2 we have that Jd~EC(q~ A ~)~(0)= F ( ~ q S ~  (0)), 
so Jr [-qS~ (0) -- F ( ~  ~b~ (0)). Now the monotonicity of F 
gives us the following chain of inclusions: 

~/~ ~qS] (0) - F (d/t ~b] (0)) -~ F (F (J# ~0] (0))) �9 

Because, in general, F need not be continuous, we cannot 
be sure that it suffices to iterate F through all of the 
integers, i.e. up to co. Thus, we need to define F ~ for 
arbitrary ordinals e. Recall that ordinals are either the 
immediate successor of another ordinal or are limit ordi- 
nals. For example, co is not the immediate successor of 
any other ordinal; it is instead defined as the least upper 
bound of all of the finite ordinals. For  an ordinal of 
the form e = fl + 1, we have F ~ = F(F~). For limit ordinals, 
i.e. ordinals, like co, that are not the immediate successor 
of any other ordinal, F~(S)= U (Fr . 

fl<a 

Thus /g~@~(0)_~UF%/~[q~(0)), where c~ ranges 

through the ordinals. Knaster [12] and Tarski [-21] have 
proved that U F%/Ct~b](0)is a fixed point of F. Since 

d/l~CC((o A 0)] is the greatest fixed point, we have that 
U F%/CtWO}(O))~-dg~CC(d~ A 0)~. Therefore it must be 

the case that ~[~b](0)___ JCt~cC(q5 A 0)9- So far, we have 
shown that if @=~EC(qSAO) is valid in A then 
~b~ CC(q5 A 0) is valid in A. 

Finally, we need to show that C c is monotonic, i.e. 
if q5 implies 0 then CCO implies C c 0. This is immediate 
from the fact that the greatest fixed-point operator is 
monotonic. The latter is an easy exercise in lattice theory. 
Thus, we have CC(qSAO)=~CC~ is valid and hence 
O=~cCo is valid in A. [] 

As noted earlier, it follows from our definitions that 

c c ( o ) ~ , ~ c ( 4 ,  Acc (@)  

is valid and that cC(qS)~(EC)k(@ is valid for any natural 
number k. It does not follow from the definitions, in 
general, that either 

c c (0 ~ r A c c ( 0 ) ~  c c (r 

or CC(qS)=~q5 is valid. As noted earlier for EC(@, this 
is because processes cannot distinguish whether or not 
0 holds on the same cut on which CC(q~) holds; rather, 
they know that it holds on some indistinguishable cut 
in the current run. 

The operators P~, E c, and C c have stronger properties 
for local facts. A local fact is one that is determined 
solely by the local state of some process; for example, 
a fact regarding a value contained only in the local mem- 
ory of that process. The following definition is equivalent 
to that of Chandy and Misra [4]. 

Definition 12. A fact 0 is local to process i in system 
A if 



For  a fact q5 that is local to process i in system A, 
it is the case that A~(P/(96)~96). Furthermore,  if a fact 
96 is local to any process in system A, then 
A ~ (E c (96) =~ 96) and A ~ (C c (96) ~ 96). 

Theorem 2. I f  96 is local to process i in system A, then 
A ~ (P~ (96) ~ 96). 

Proof. Suppose that 96 is local to process i in system 
A. Suppose also that for some cut (a, c), (a, c)~Pi(96). By 
the definition of P/, there is some cut c' in run a such 
that (a, c) ~i (a, c') and (a, c ' )~ 96. By locality, 
A~(96~Ki96) and thus (a, c')~Ki96. By the definition 
of Ki 96, we have that (a, c )~  96. []  

A corollary to the previous theorem follows because, 
for any fact 96 and process i, Ec(96)~P~(96) is valid and 
cC(96)~ EC(96) is valid. 

Corollary 1. I f  fact 96 is local to any process in a system 
A, then A ~ (g c (96)=*- 96) and furthermore A ~ (C c (96) => 96). 

4 Attainment of CCK 

For  ordinary common knowledge, C, it is a theorem 
that if C is attained then all processes learn it simulta- 
neously [11, 19]. An analogous theorem holds for con- 
current common knowledge. Before stating the theorem, 
we will first formalize the notion of "a t ta inment"  and 
"learning." 

Definition 13. A fact 96 is attained in run a if 3 c ((a, c) ~ 96). 

Likewise, we say that a system attains 96 if every run 
of the system attains 96. 

In this section and the following section we will often 
refer to "knowing"  a fact in a state rather than in a 
consistent cut. Recall that knowledge is dependent only 
on the local state of a process, since (a, c)~i (a', c') iff 
(a, c) I-i] = (a', c') [i] ; therefore such terminology is reason- 
able. Formally, i knows 96 in state s is shorthand for 

g (a, c)((a, c) [-i] = s ~ (a, c) ~ 96). 

Definition 14. Process i learns 0 in state s{ of run a 
if i knows 96 in s{ and, for all states s~ in run a, k<j,  
i does not know 96. 

The following theorem says that if cC(96) is attained 
in a run then all processes i learn p/CC(96) along a single 
consistent cut. 

Theorem 3. I f  cC(96) is attained in a run a, then the 
set of states in which all processes learn p/cc(96) forms 
a consistent cut in a. 

Proof cC(96) is attained in a implies that there exists 
some consistent cut where cC(96) holds. Since cC(96) im- 
plies /k  KiPiCC(96), there must exist states St,..-,SN 

ieProc 

such that si is the state in which i learns p/CC(96). We 
will show that cut c = (s t ,  ..., SN) must be consistent. 

Suppose that c is inconsistent. Then there must be 
a message m, say from process j to process k, such that 
receive(m) is included in state sk but send(m) is not in- 
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cluded in state sj. Any consistent cut c r where (a, c ')[ j]  
=sj cannot include the reception of m, since s t does not 
include send(m). Furthermore, by the definition of Sk, 
the reception of m occurs before k learns Pk cC(96) �9 There- 
fore in any consistent cut c' where (a, c')[J] = s j, k does 
not know Pk cC(96). We next show that this is impossible. 

By the definition of sj, j knows pjCC(96) in sj, i.e. in 
any consistent cut c, where (a ,q ) [ j ]=s j ,  we have 
(a, q)~pjcc(96).  By the definition of P, this means that 
there is some consistent cut c2, (a, C2) [ j )  = (a, c t )  [J'] = s t ,  

for which (a, c2)~cC(O). The definition of C c implies 
furthermore that (a, c2)~ A KiPiCC(96) which in turn 

i~Proc 

implies (a, c2)~KkPkCC(96). This contradicts the state- 
ment above that, in any consistent cut c' where 
(a, c')[j] =s t (including (a, c2)), k does not know Pk Cc(r �9 
Hence the supposition that c is inconsistent must be 
false, making the theorem true. [] 

This theorem can be trivially extended to address 
cases in which CC(96) is attained periodically. Whenever 
cC(96) does not hold on a particular cut but does hold 
on some extending cut, between those cuts all processes 
i first reach a state in which PicC(r is known along 
a single consistent cut. 

The previous theorem illustrates an important  differ- 
ence between C(96) and cC(96). In asynchronous systems, 
simultaneous action of any kind is impossible: Action 
coordinated to occur along a consistent cut is, however, 
easily achievable. We proceed by first presenting our At- 
tainment Theorem, which gives a general criterion by 
which concurrent common knowledge may be attained 
in distributed protocols. Following the Attainment 
Theorem we give two protocols and prove that they meet 
the criterion of the theorem. 

In order to achieve CC(96), it will be sufficient that 
a system have a set 5P of cuts, at least one per run, 
with the following property: when the local state of any 
process is in a cut of 5 a in some run, then the same 
local state of that process is at some cut of 5 r in every 
run in which it occurs. In other words, the process knows 
that its local state is an element of one of the cuts. We 
describe this more formally by defining locally-distin- 
guishable cut sets below. 

Definition 15. A locally-distinguishable cut set • of a 
system A is a set of cuts 50 such that: 

V a ~ A 3 c ( ( a , c ) ~ )  and 

[V ie ProcV (a, c)e ~ V a'V c' ((a', c'),~i (a, c) 

0(3 d((a', d)eY)  A (a', d ) - ,  (a', c')))3. 

In the definition above, suppose that we let i nY  stand 
for a formula such that (a, c) ~ in5 ~ iff (a, c) e 50. (If such 
a formula did not actually exist, we could carry out an 
analogous development using the set 5 P and the meaning 
of formulas as functions from sets of cuts to sets of cuts; 
for simplicity we use this scheme.) Given the formula 
in5 e, the second condition for a locally-distinguishable 
cut set can be rewritten as simply 

inSf => EC ( inSP) . 
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We now show the primary result of this section: any 
system that guarantees that there is a locally-distinguish- 
able cut set where a fact q5 holds attains concurrent com- 
mon knowledge of qS. We will later give two protocols 
to guarantee that a system attains C c (~b), given particular 
assumptions on the fact qS. 

T h e o r e m  4 (Attainment Theorem). I f  a system A has 
a locally-distinguishable cut set 5e such that 

V (a, c) ~ Y ((a, c) ~ O) 

then 

V(a, c)E SP ((a, c)~ CC(~b)), 

i.e. the system attains concurrent common knowledge of (a. 

Proof Let inSe stand for a formula such that (a, c)~ inSP 
iff (a, c)~ 5 P, as above. By the definition of a locally-distin- 
guishable cut set, inS~EC(in5 e) is valid in A. By the 
conditions of the theorem, i n S P ~  is valid in A. Thus 
we have 

A~(inS~ ~ EC(O /x inS~)). 

Then, by the induction rule (Theorem 1), 

A~(inSP ~CC((~)). 

Thus, V(a,c)~5~((a,c)NCC(qS)). []  

One consequence of this theorem is that CC(in5 r is 
attained any time a locally-distinguishable cut set 5 P 
exists. This says that forming a locally-distinguishable 
cut set guarantees attainment of a form of concurrent 
common knowledge. Conversely, the single-cut theorem 
gives us that the attainment of concurrent common 
knowledge of any form guarantees the existence of a 
locally-distinguishable cut set. 

We now proceed to a discussion of attaining C c of 
a fact using specific protocols. A protocol is a partial 
specification on the set of runs of a system. It includes 
a set of actions with conditions on those actions. These 
may be conditions on the entire run, such as "process 
i executes c~ at some point in the run," or conditions 
on the state preceding the action, such as "process i 
sends m immediately after receiving m'." We say that 
a system implements a protocol if all runs of the system 
satisfy the specification. Note that one system may imple- 
ment multiple protocols. 

Before giving our protocols, we must first discuss for 
which facts q5 attaining CC(qS) is possible. Cc(~b) cannot 
be guaranteed to be attained by a protocol implementa- 
tion if ~b is false or may be falsified during execution 
of the protocol. We say that q5 is locally controllable 
by i if, whenever i knows q5 in any state, i can prevent 
falsifying ~b for any finite number of events. Note that 
a stable fact - one that, once true, remains true forever 
- is always locally controllable by any process. Unstable 
facts that are local to a process i are also typically locally 
controllable by i. An example of this is x~= 1, where 
xi is a local variable of i. Any fact that becomes known 
to some process and is locally controllable by that pro- 

cess can become concurrent common knowledge among 
all processes. 

By our definitions, in order for a system to implement 
the following protocols the fact q5 must become known 
at some point in all runs. This is not a restriction if 
one considers only the subset of runs in which a protocol 
is actually run. 

We assume that processes can control the receipt of 
messages. Furthermore,  a protocol can indicate that 
messages are not to be sent or received by a process 
at certain times. 

The two protocols that follow differ in three primary 
ways: their message complexities, the degree to which 
they prevent communication events from occuring, and 
the requirement of F IFO channels. Protocol 1 causes less 
suspension of communication but requires FIFO chan- 
nels, whereas Protocol 2 requires fewer protocol messa- 
ges and does not require FIFO behavior. We will discuss 
these issues further after presenting the protocols and 
proving their correctness. 

In the presentation of each protocol, a cut state refers 
to the local state of a particular process that is included 
in the protocol cut. Local distinguishability is guaran- 
teed because each cut state occurs immediately upon 
the completion of specific actions by the process. 

Our first protocol is similar to the snapshot algorithm 
of Chandy and Lamport  [3] and to echo algorithms 
of Chang [5]. It causes messages to be sent along every 
channel in the system. Intuitively, it creates a consistent 
cut because - since channels are FIFO - any message 
sent after execution of the protocol must be received 
after any messages the protocol sent along the same 
channel. Below, CCK identifies messages of the protocol. 

P r o t o c o l  1. Attainment of cc(~b). 

- The initiator I, at some point in its local history where 
I knows ~b, sends the message (I,j,(~b, CCK)) to all 
neighborsj  and then immediately reaches its cut state. 
Between sending the first message and reaching the 
cut state, I receives no messages and prevents falsifying 

- All other processes, i, upon first receiving a message 
of the form (j, i,(4, CCK)), sends (i, k,(~b, CCK)) to 
all neighbors k ~ j  and then immediately reaches its 
cut state. Between sending the first message and reach- 
ing the cut state, i receives no messages. 

Theorem 5. Let A be a system with reliable, FIFO chan- 
nels in which 0 is locally controllable by I. I f  A implements 
Protocol 1, then A attains CC(qS). 

Proof For  each process i, let si be the cut state indicated 
in the specification of the protocol. We show that states 
sl,  sz . . . . .  sN form a consistent cut by contradiction. Sup- 
pose to the contrary that there is a message m sent after 
si but received before s s. Note that m cannot be one 
of the CCK-labelled protocol messages, since cut states 
are not reached until all protocol messages have been 
sent. There are two cases to consider: (1) i sends a proto- 
col message to j, or (2) i does not send a protocol message 
to j, which implies that i received its first protocol mes- 
sage from j. 



sj sj 

Si Si 
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Fig. 3a, b. Proof of Theorem 5:(a) case 1, (b) case 2 

In case (1), i must have sent m t o j  after si, by assump- 
tion, and consequently after sending (i,j,(O, CCK))  to 
j. Since channels are FIFO, the protocol message must 
reach j before message m. Unless j has already reached 
its cut state when receiving (i,j,(c), CCK)),  it sends out 
its protocol messages and reaches its cut state before 
receiving any further messages. In either case, j reaches 
sj before receiving m and the assumption that m was 
received before sj is false. (See Fig. 3 (a).) 

In case (2), the protocol message f romj  arrives before 
s~ and consequently before the sending of m. By assump- 
tion m is received before sj. Sincej must send all protocol 
messages before reaching its cut state with no intervening 
receives, m must be received by j before sending the pro- 
tocol message to i. (See Fig. 3 (b).) However, this implies 
causal circularity, since 

receive(m) ~ send(j, i,(O, CCK)) ~ received(j, i,((o, CCK)) 

send (m) ~ received (m). 

Again the assumption that m was received before sj must 
be false. 

Let 5 P be the set of possible consistent cuts character- 
ized as above. Every run of a system implementing the 
protocol contains one of these cuts. Since the state of 
each process contained in the cut always immediately 
follows the sending of the protocol messages (and is 
therefore distinguishable), 5 f is a locally-distinguishable 
cut set. Since ~b holds initially and on any cut up through 
t 's completion of the protocol, for any (a, c) in 5 p, we 
have (a,c)~(a. The theorem then follows from Theo- 
rem 4. [] 

In Protocol 2, three sets of messages Prepare, Cut, 
and Resume are sent respectively from the initiator to 
all processes, back to the initiator, and back to processes. 
We assume that messages between the initiator and each 
process are forwarded as necessary by other processes 
on paths of length d or less, where d is the diameter 
of the network (recall that the network is not completely 
connected, so there may not be channels between the 
initiator and some processes). The sending of non-proto- 
col messages is suppressed between non-initiators send- 
ing Cut and receiving Resume. 

Protocol 2. Attainment of CC(~b). 

1. The initiator I, at some point in its local history when 
I knows ~b, sends the message (I,j,(O, Prepare)) to 
each processj  4= I. Also, the initiator prevents falsifying 
~b from the beginning of step (1) until the end of step 
(3). 

(~) 

receive(m) 
J , . . a X  

I d s~ sen (m) 
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(b) 

s! (Sends Suspended. ) send(m) 

Fig. 4a, b. Proof of Theorem 6: (a) case 1, (b) case 2 

2. Each process j4=I, upon receiving (I,j,(4), Prepare)), 
begins suppression of nonprotocol  send events, sends 
(j,  I,(4), Cut)) to the initiator, and then reaches its cut 
state. 

3. The initiator I, after receiving (j,  I,(O, Cut)) from all 
processes j 4= I, immediately reaches its cut state and 
then sends (I , j , (~,  Resume)) to all processes j 4= I. 

4. Each process j4=I, upon receiving (I,j,(O, Resume)), 
resumes sending of nonprotocol  messages. 

Theorem 6. Let A be a system with reliable channels 
in which 0 is locally controllable by I. I f  A implements 
Protocol 2, then A attains cC(qS). 

Proof Again, for each process i let state si be the cut 
state indicated in the protocol. We show by contradic- 
tion that this set of states forms a consistent cut. Suppose 
message m is sent after one of these states but received 
before another. There are three cases to consider: (1) 
m is from I to some j4=I, (2) m is from some j4=I to 
I, and (3) m is from some i4= I to some j 4= I. 

In case (1), illustrated in Fig. 4(a), let ml, ... mk be 
the sequence of forwarded Cut messages from j to the 
initiator. In the figure, " x "  denotes the cut states sj and 
sx. State sj immediately follows the sending of ml. State 
Sl immediately follows the initiator's last reception of 
a Cut message from its children (after but not necessarily 
immediately after the reception of ink). Since the incon- 
sistent message m is received before sj, it is received be- 
fore send(toO, which immediately precedes s~. Clearly 
send(toO happens before receive(rag). But receive(ink) is 
received by the initiator before sx and hence before send- 
ing m. Thus the inconsistency of m produces a causal 
cycle, and hence an invalid run. 

In case (2), illustrated in Fig. 4(b), the sending of an 
inconsistent message m by j cannot occur until non-pro- 
tocol sends are resumed, which happens after Resume 
is received by j. Let ml . . . .  mk be the sequence of for- 
warded Resume messages from the initiator to j, so 
receive(ink) happens-before send(m). If m is received be- 
fore si then it is received before I sends ml, and again 
an invalid circularity results. 

Case (3), in which the inconsistent message m is be- 
tween two non-initiators, is essentially a concatenation 
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of case (1) and case (2). After the reception of m, j must 
send a forwarded Cut message to the initiator, which 
later sends a forwarded Resume message to i. Message 
m cannot be sent by i until after the Resume is received, 
with the same result. Therefore the states indicated form 
a consistent cut. The remainder of the proof confirms 
a locally-distinguishable cut set where q~ holds exactly 
as in the proof  of Theorem 5. []  

Protocol 2 does not require F IFO channels and uses 
only 3nd messages, where d is the diameter of the net- 
work. If all channels are bi-directional, this can be further 
optimized using a spanning tree of the network, to re- 
quire only 3 ( n -  1) messages [22]. In contrast, Protocol 1 
does require F IFO channels and uses up to two messages 
per pair of neighboring processes, or O(n 2) messages. 
However, Protocol 2 suspends send events between its 
phases; communication from the initiator is required to 
resume send activity, which in turn occurs only after 
the initiator receives communication from every process 
indirectly through its children. Protocol 1 only suspends 
activity while a process is sending protocol messages to 
its neighbors. Hence Protocol 1 interferes less with the 
underlying system. The trade-off between these two pro- 
tocols depends on the degree that the system may be 
degraded by the suspension of activity. This suspension 
is termed inhibition and is studied extensively in [22, 
6, 71. 

We have shown in this section that concurrent com- 
mon knowledge is attainable in asynchronous systems 
by giving two simple and efficient protocols that do so. 
This makes it a potentially useful form of knowledge, 
as it describes states that can and do arise in such sys- 
tems. Given a problem that can be formulated in terms 
of C c, a solution immediately follows from these results. 

5 Applications 

The logic that we have presented, along with the seman- 
tics for concurrent knowledge and concurrent common 
knowledge, can have the following roles in the develop- 
ment and analysis of distributed algorithms: (1) simplifi- 
cation of solutions and proofs for problems that can 
be formulated in terms of concurrent knowledge or con- 
current common knowledge, (2) characterization of im- 
plicit agreement present in certain algorithms, and (3) 
a tool for reasoning about  asynchronous distributed al- 
gorithms, particularly with respect to causality. 

This section contains several examples in which these 
goals are realized. We prove necessary and sufficient con- 
ditions for concurrent actions to take place in distributed 
systems. We show that concurrent common knowledge 
characterizes the knowledge between two processes at- 
tained by a single message transfer along reliable F IFO 
channels. We give a novel development and analysis of 
the Chandy-Lamport  snapshot a lgori thm with regard 
to both process states and channel states. Finally, we 
prove a sufficient condition for broadcasts from a com- 
mon initiator to arrive in their original order at all loca- 
tions in the network, and apply this to updating repli- 

cated data. The expressiveness of our logic has led to 
short, straightforward proofs for these applications. We 
assume reliable channels throughout  this section. 

5.1 Concurrent actions 

In the theorem that follows, we use our logic to exhibit 
a necessary and sufficient condition for the performance 
of concurrent actions in distributed systems. Concurrent  
actions are sets of actions that are to be performed con- 
currently - immediately following a single consistent cut 
of the system - or not at all. The relationship between 
concurrent common knowledge and concurrent actions 
is analogous to that between common knowledge and 
simultaneous actions [171 in synchronous systems. 

Definition 16. A vector of action c~= ( a l ,  a2, . . . ,  aN) is 
a concurrent action of system A iff the following holds. 
If any dement  ei occurs in history a [i] of A, following 
state si, then there is a consistent cut (a ,c)= 
( s l ,  s2 . . . .  sN) and for every j, c~j follows state sj. 

For  example, suppose that each of a set of processes 
has a local clock, and those local clocks are to be reset 
concurrently. Then 

{~i I ~i--"reset local clock i '}  

is the corresponding vector of actions. We use the opera- 
tor P~ to give a necessary and sufficient condition on 
the concurrent performance of actions in the next theo- 
rem. 

In the theorem, if qS~ is a precondition of an action 
then i will execute the action immediately following 
(a, c) [i] iff (a, c )~  ~b i. Reasonable preconditions are local, 
i.e. O i ~ K i $ i  is valid in the system. This follows auto- 
matically from the positive introspection axiom if q~i is 
of the form K~ ~9 for any 0- We assume locality of precon- 
ditions. 

Theorem 7. Let ~= (cq, o~ 2 . . . . .  ( Z N )  , for each i let Oi be 
the precondition of cq, and let ~ -  /~ Oi. Then ~ is a 
concurrent action in A iff ieProc 

A ( r  
i~Proc 

is valid in A. 

Proof. First we show that if the formula is not valid 
then 8 is not a concurrent action. If the formula is not 
valid then, for some i and some (a,c) we have 
( a , c ) ~ ( ~ i A ~ K i P i ~ ) .  Since ( a , c ) ~ K i P i ( ) ,  there is 
some cut (a', c')H i (a, c) such that (a', c ' )~ ~ Pi ~b. By local- 
ity, (a', c')~q~i, so i executes a i in a'. However, it follows 
from ( a ' , c ' ) ~ P ~ )  that for all c" such that (a',c") 
"~i (a', c'), we have (a', c " ) ~  ~. Thus all other processes 

j do not execute aj concurrently with a~ in a', and 
is not a concurrent action in A. 

Next we show that if the formula is valid in A then 
is a concurrent action. Suppose that, for all i and all 

(a,c), ~ i ~ K ~ P ~  holds and that process i executes a~ 
following state (a, c) [i]. By the definitions of Ki and Pi, 
there must be a cut (a, c') such that (a, c')[i] = (a, c)[i] 



83 

and where ~ holds. By the definition of precondition 
all processes j perform action ~ following (a, c')[j]. 
Therefore the validity of ~bi ~ K iP~ ~b in A guarantees con- 
current performance. [] 

This result is extended by the corollaries below; they 
give necessary and sufficient conditions on concurrent 
performance based on concurrent common knowledge. 

Corollary 2. Given the conditions of Theorem 7, if ~. is 
a concurrent action of A then ~ cC~ is valid in A. 

Proof From Theorem 7, we have that ~ is a concurrent 
action of A implies the validity of /~ ( ~ i ~ K i P ~ )  in 

i~Proc 

A. This is turn implies that /~ q ~  /~ K~P~q5 is valid 
i~Proc i~Proc 

in A; this formula is equivalent to ~ E C q S .  By the in- 
duction axiom, we have that q ~  C c q5 is valid in A. [] 

Clearly, in order for a concurrent action c~ to be executed, 
there must be a cut where q5 holds. It then follows that 
CC~ holds on this cut also; thus the corollary demon- 
strates that concurrent actions are impossible if concur- 
rent common knowledge of q5 cannot be obtained. There 
are indeed systems in which concurrent common knowl- 
edge of any fact is unattainable, and thus executing con- 
current actions is impossible. In the related work of 
Critchlow and Taylor [22, 7], distinguishable consistent- 
cut protocols are defined and shown to be impossible 
to achieve in certain cases; in particular, it is impossible 
without the existence of inhibition [22]. Although it is 
beyond the scope of our discussion to give a precise 
mapping of those results in the current framework, it 
is clear that the formation of a locally-distinguishable 
cut set amounts to having a distinguishable consistent- 
cut protocol as defined in [22, 7]. Recall from Sect. 4 
that concurrent common knowledge of any fact implies 
the existence of a locally-distinguishable cut set. Thus 
the results of [22, 7] can be viewed as demonstrating 
instances in which concurrent common knowledge can- 
not be obtained. 

Corollary 3. Given the conditions of Theorem 7, if 
/~ (qbi~KiP/CC~) is valid in A, then ~: is a concurrent 

i~Proc 

action of A. 

Proof The validity of the following chain of implications 
is a direct result of our basic definitions: 
KiP~CC(~)~ KiP~EC(~)~ K~P~KiP~($)~ K~P~(~). Thus 
if /~ (~i~KiPiCC~) is valid in A then 

icProc 

/~ (~b~=~KiP/(qS)) is valid in A. By Theorem 7, this im- 
iEProc 

plies that g is a concurrent action of A. [] 

Thus a sufficient condition for performing concurrent 
action ~ is to insure that CC~ is attained, and further- 
more K~PiCC~ is implied by each q5 i. We now demon- 
strate an even stronger result, namely that the ability 
to attain any form of concurrent common knowledge 
is sufficient to perform concurrent actions. Roughly 
speaking, we show that given any protocol for attaining 
concurrent common knowledge, we can create a knowl- 

edge-based protocol for performing concurrent actions. 
It does not matter for which fact the concurrent common 
knowledge is attained; all that matters is that it is a 
"new" fact. 

Recall from Sect. 4 that, if concurrent common know- 
ledge of any fact q5 is attained, then there must be a 
locally-distinguishable cut set, say 5 P, in which all proces- 
ses know p~CC~b for the first time. Furthermore, if we 
let inS~ stand for the fact that a cut is an element of 
5 p, then all processes know p~CCin5 P for the first time 
also. Thus the local distinguishability property inherent 
in achieving concurrent common knowledge allows us 
to use Oi=KiP~CCin5 ~ as the precondition for each pro- 
cess i in a knowledge-based protocol for concurrent ac- 
tions. Note that if CCin5 p is attained in any run, by 
Theorem 3 there is a locally-distinguishable cut set in 
which /~ K~PiCCin5 P holds. This is equivalent to q5 

ieProc 

if the preconditions are as indicated above. Thus, by 
Theorem 4, CC~ is attained as well as CCin5 p. This gives 
us that 4~K~P~CCO holds for every i, which is the suffi- 
cient condition for concurrent actions in Corollary 3. 

The close relationship between concurrent actions 
and concurrent common knowledge is important due 
to the prevalence of concurrent actions in distributed 
systems. Particularly widespread is concurrently saving 
all or part of the state of a system; this is done in check- 
pointing for rollback recovery [-13] and in taking snap- 
shots for stable property detection [-3, 2, 9]. We will 
discuss stable property detection further in Sect. 5.3. 

5.2 Single message transfer 

In this section we show that concurrent common knowl- 
edge characterizes the knowledge between two processes 
attained by a single message transfer along a reliable 
FIFO channel. A formula subscripted with a set of pro- 
cess identifiers, such as {i,j}, refers to the subsystem con- 
taining only that set of processes. 

Theorem 8. A single message m sent along a reliable 
FIFO channel from i to j achieves 

C~i,j~ ("m has been received "). 

Proof The states immediately following the sending and 
receiving of m form a locally-distinguishable cut in the 
{i,j} subsystem. Furthermore, "m has been received" 
holds on this cut. By the Attainment Theorem (Theo- 
rem 4), concurrent common knowledge of the fact holds 
as well. [] 

Theorem 8 enables us to explain the role of certain 
messages in the snapshot algorithm of the following sec- 
tion. 

5.3 Snapshots for stable property detection 

The goal of taking "snapshots" [3] for stable property 
detection is to save a global state, i.e. some set of local 
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states, that can be analyzed for the truth or falsity of 
a stable property. Recall that a stable fact is one that, 
once true, remains true forever. More specifically, an ap- 
propriate definition of stability in the asynchronous-runs 
model is that if (a, c )~  4), 4) is stable, and every event 
of (a, c) is included in (a, c'), then (a, c') ~ 4) also. Examples 
of stable properties whose detection may be desirable 
are deadlock and process termination. 

The following two properties are required of a snap- 
shot algorithm for stable property detection [-3]. First, 
if stable fact 4) is true in any real-time global state before 
execution of the snapshot algorithm, then 4) will be true 
in the snapshot. Second, if stable fact 4) is true in the 
snapshot, then 4) will be true of every real-time global 
state after execution of the algorithm. Since real-time 
global states are also consistent cuts, it is clear that tak- 
ing a snapshot of any consistent cut that arises between 
the initiation and termination of the algorithm will yield 
the two properties above. 

Taking a snapshot is a concurrent action; hence we 
can apply the results of Sect. 5.1 and utilize any concur- 
rent common knowledge protocol to obtain a snapshot 
algorithm. Given a concurrent common knowledge pro- 
tocol, as in the discussion after Corollary 3, letting inSP 
denote that a cut is the distinguishable cut, KiP~CCinY 
yields an appropriate precondition for process i taking 
its snapshot. In fact, this is essentially what is done in 
the Chandy-Lamport  snapshot algorithm. Since F IFO 
channels are assumed, a variant of Protocol 1 is used 
to obtain the consistent cut. 

The Chandy-Lamport  algorithm is slightly more 
complex than discussed thus far; this is because, in addi- 
tion to recording local states, it may also be desirable 
to record the messages in transit during the global state. 
Additional knowledge is required in order to do this. 
Let us take the natural approach and assume that the 
message receiver will record the sequence of messages 
in each channel. It is then required that at some point 
the receiver knows that it has received all messages in 
transit during the snapshot. F rom Sect. 5.2, the reception 
of any message sent along a reliable F IFO channel be- 
comes concurrent common knowledge of the two proces- 
ses involved. Consequently, if each process i sends a spe- 
cial marker to each neighbor j immediately before re- 
cording its state, they reach concurrent common knowl- 
edge that all of i's messages sent to j before the snapshot 
have been received by j. 

The full protocol, a slight variation of [-3], follows. 
Initialization occurs by one process following the marker 
sending rule. 

Marker  sending rule for  a process i. Before sending or 
receiving any other messages, i sends one marker to each 
neighbor j, then records its state. 

Marker  receiving rule for a process j. Upon receiving 
a marker from i, if j has not recorded its state, then 
j follows the marker sending rule, then records the state 
of channel (i,j) as the empty sequence. Otherwise, j re- 
cords the state of channel (i,j) as the sequence of messa- 

ges received from i after j 's state was recorded and before 
j received the marker from i. 

The next theorem summarizes the agreement attained 
in the protocol regarding both the process states and 
the channel states. The theorem statement makes use 
of some additional notation. Given any consistent global 
state, currenti will denote i's local state. Saved i denotes 
the set of states saved by process i. Learni(O) indicates 
the local state in which i learns 0. Finally, we extend ~ to 
include states in the obvious way. 

Theorem 9. In any run of  the Chandy-Lamport  protocol 
in a system with reliable F I F O  channels: 

1. cC(4)state~) is attained, where 

4)~tate~ = V i (current i ~ Savedi) 

2. for  each channel " " c (l,y), C{i,j}(4)ch . . . .  ls) is attained, where 

4)oh . . . .  z~ = ~/ m((send (m) ~ Learni Pi C c ( 4)sta~e~)) 

(receive (m) --, curren@ 

and m is a message from i to j. 

Informally, the first statement above says that there 
is a consistent cut of the system in which all processes 
have concurrent common knowledge that all processes 
are taking a snapshot. We will not give a proof as this 
is straightforward from Sect. 5.1. 

The second statement says that - within each (i,j) 
subsystem - it becomes concurrent common knowledge 
that all messages sent prior to i recording its state have 
been received by j. Hence when this is attained, the mes- 
sages in the (i,j) channel during the snapshot are exactly 
those that have been received since j recorded its state. 
This follows from the fact that all messages from i to 
j are in one of three states at the snapshot: 

1. Received before the snapshot. These are part of j 's  
local state at the time of the snapshot. 

2. In the channel during the snapshot. All messages not 
in (1) received prior to LearnjPj(4)ch . . . .  is) must be in 
this set. 

3. Sent after the snapshot. These are not received by 
j until after LearnjPj(4)~h . . . .  Is)" 

Proof  of  Theorem 9, part 2. From Theorem 8, the recep- 
tion of the marker by j becomes concurrent common 
knowledge between i and j in the subsystem cut formed 
by the states immediately following the sending and re- 
ceiving of the marker. Since no messages are sent be- 
tween the sending of the marker and Learni P/(C c (4)s~ate~)), 
and channels are FIFO, all non-marker messages sent 
prior to LearniPi(CC(4)state~)) must be received before the 
marker. Therefore, at the subsystem cut it becomes con- 
current common knowledge of i and j that all messages 
sent prior to LearniPi(CC(4)state~)) have been received. [] 

Any problem that requires only the detection of some 
property of a consistent global state can be solved using 
the Chandy-Lamport  protocol. Some examples of this 
type of problem are termination detection [-9], deadlock 
detection (2), and checkpointing for rollback recovery 



[-13]. Concurrent common knowledge can be used for 
a solution and formal analysis of such problems. 

5.4 Broadcast ordering 

In this subsection and the next one, we illustrate using 
the operator P~ for reasoning about sufficient conditions. 
We consider the problem of one process broadcasting 
a sequence of facts 4)1, 4)2, --- to all processes such they 
arrive everywhere in the order that they are sent. 

Definition 17. In an asynchronous run, a broadcast of 
4) by process i is a set of N -  1 message chains, possibly 
having some messages in multiple chains, such that (1) 
each message chain begins with a message from i, (2) 
all messages contain 4) in the message body, and (3) each 
process j :# i  is the recipient of the last message of one 
of the message chains. Additionally, we say that process 
i initiates the broadcast when it sends the first message 
in its history that is the first message of one of the mes- 
sage chains. 

Note that both Protocol 1 and Protocol 2 contain broad- 
casts. 

In general, broadcasting a series of facts one at a 
time - sending the first messages of all chains of one 
broadcast before sending any of the next - does not 
guarantee that they arrive in the same order everywhere, 
even in FIFO systems, because messages may take differ- 
ent routes of differing transmission speeds. We give a 
theorem and corollary relating sufficient conditions so 
that (1) facts are guaranteed to arrive in the correct order 
everywhere, and (2) all processes know they arrive in 
the correct order everywhere. Let p (4)) denote "fact 4) 
has been received by all processes." 

Theorem 10. I f  i knows P~(P(4)k)) before initiating a broad- 
cast of Ok+ i , then Ok is guaranteed to arrive before mes- 
sage 4)k+ 1 at all processes. 

Proof Consider any run a in which i knows Pi(P(4)k)) 
before initiating a broadcast of 4)k + 1- By the definition 
of P~, there must be a consistent cut (a, c') where p(4)~) 
holds; furthermore, (a, c')[i] precedes the beginning of 
all of the broadcast message chains for 4)k+1. If 4)~+1 
arrived at some process j before 4)k, hence before 
(a, c')[j], then the message chain from i to j must begin 
after (a, c')[i3 and end before (a, c')[j], making cut c' in- 
consistent. D 

This is a good example of a simple situation where 
KiP~O is sufficient to perform an action rather than the 
stronger traditional knowledge K~ 0. Since it is not neces- 
sary to know that all messages have been received at 
the current instant of real time in order to know P~P(4)k), 
this alleviates the latency of waiting for acknowledge- 
1Tlents. 

A result of this theorem is that Protocol 1 and Proto- 
col 2 can be used to insure that multiple messages sent 
to all processes are ordered properly. Just as CC(•) is 
attained with the protocols invoked with locally-control- 
lable parameter e, the fact p(c 0 becomes concurrent corn- 
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mon knowledge also. This follows from the Attainment 
Theorem (Theorem 4) because p(~) always holds on the 
locally-distinguishable cuts of the protocols. Thus the 
protocols can achieve CCp(4)k), which in turn implies 
KiPiP(Ok). 

The theorem above does not imply that the non-ini- 
tiating processes know that they have received messages 
in the proper order. This is clearly guaranteed, however, 
if it is common knowledge that K~P~p(4)k) is a precondi- 
tion to i initiating the broadcast of 4)k + 1- 

Corollary 4. I f  it is common knowledge that, for all facts 
4)k, K~P~p(4)k) is a precondition to i initiating the broadcast 
of 4)k+1, then all processes know that they receive the 
facts in the order that they are sent by i. 

5.5 Updates to replicated data 

In this example, we use the results on broadcast message 
ordering to develop a protocol for maintaining consi- 
stency of updates to replicated data items. Consider a 
replicated data item 2, where xi indicates i's copy of 
the data. Suppose that process I must perform a se- 
quence of updates to 2 such that these updates occur 
in the same order at all copies as they do at I. 

Operation Ordering Problem. When a process I performs 
a series of operations, Opl, Op2, ... that modify its copy 
XlOf  replicated variable 2, ensure that the operations 
are carried out on each additional copy xi so that 
Opl (x3 ~ Op2 (x3 --,... 

Let Ok denote "operat ion Opk has been performed 
on x l . "  The sequence numbers are a notational con- 
venience and are not necessary in the messages sent by 
processes. In the previous section we observed that Pro- 
tocol 1 and Protocol 2 can insure that a series of broad- 
casts sent by I arrive at all processes in the order that 
they are sent. Therefore, a method which uses one of 
those protocols for broadcasting operations and in 
which each process performs operation Opk immediately 
upon reaching its cut state - i.e. upon learning CCp(0k) 

solves the Operation Ordering Problem. Using Proto- 
col 1 as a basis, we obtain the following protocol. It 
assumes FIFO channels. 

Protocol 3. Update of Replicated Data  2. 

- The initiator I, after performing operation Opk(xi) and 
before performing operation Opk+ 1 (XI), sends <I,j, Ok) 
to all neighbors j. While sending the protocol messa- 
ges, I receives no messages. 
All other processes, i, upon first receiving a message 
of the form (j ,  i, 0k), sends <i, k, 0k) to all neighbors 
k:~j, and then performs Opk(Xi). Between sending the 
first message and performing Opk(xi), i receives no 
messages. 

In contrast, a typical method for ordering operations 
would be to give each a unique sequence number, then 
buffer operations until all of those with lower numbers 
have arrived and been executed. This requires unboun- 
ded messages to accommodate sequence numbers - 
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and buffering of information, neither of which is neces- 
sary in Protocol  3. 

Note, however, that even concurrent common knowl- 
edge of the operations does not guarantee that concur- 
rent updates from multiple initiators are ordered the 
same everywhere; nor  does the sequence number method 
above. If process i makes 4)1 concurrent common knowl- 
edge and processj  makes q5 2 concurrent common knowl- 
edge, some other processes may perform Op~ first where- 
as others perform Op2 first. Timestamped common 
knowledge [11, 18], C T, can guarantee that concurrent 
broadcasts from different initiators are ordered the same 
everywhere. As we will discuss in Sect. 6.2.4, if local 
clocks are logical clocks and if the timestamp of interest 
is known to be reached by all processes, t imestamped 
common knowledge implies concurrent common knowl- 
edge when the appropriate local times are reached. How- 
ever, protocols to achieve C T [18] require two rounds 
of messages during which underlying communication is 
suspended, as in Protocol 2. There do not appear to be 
lower-latency protocols such as Protocol 1 for C T. Also, 
C c does not require the use of local clocks. 

Broadcast protocols which achieve each of these two 
forms of knowledge, C c and C T, may be combined to 
handle replicated data updates efficiently. A C T protocol 
can be used to obtain locks for concurrency control of 
transactions. Once locks are obtained, a C c protocol 
which is faster and causes less latency can be used to 
issue operations within each transaction. A similar 
scheme is used in the ISIS project [1], using two broad- 
cast primitives, CBCAST (causal broadcast) and AB- 
CAST (atomic broadcast). This example illustrates situa- 
tions in practical systems where two different forms of 
knowledge are both appropriate characterizations of 
agreement. 

6 Comparisons 

In this section we compare our semantics and the defini- 
tion of concurrent common knowledge to other standard 
knowledge-theoretic semantics and agreement defini- 
tions. First, we give a translation from our asynchro- 
nous-runs semantics to the timed-runs semantics of Hal- 
pern and Moses [11]. Then we compare C c to common 
knowledge and to other weakenings of common know- 
ledge, namely epsilon common knowledge C ~, eventual 
common knowledge C ~ and timestamped common 
knowledge C T. 

6.1 Translation to timed runs semantics 

Timed runs have been used by Halpern and Moses to 
provide formal semantics for common knowledge and 
the other variants of common knowledge that they intro- 
duce. For  our purposes, the asynchronous runs provide 
a better choice since time does not enter our system 
model. Nevertheless, it has become standard to use timed 
runs to model a variety of different systems; we will 
show that our logic can be given a timed-runs semantics 

as well. Also, this will be useful in the following section 
when we compare C c to knowledge forms defined in 
the timed-runs model. We show that our semantics in 
terms of timed runs is essentially equivalent to the 
asynchronous runs semantics. 

The translation proceeds by first defining an appro- 
priate set of possible timed runs R A and a primitive pro- 
position function nRA, given an initial set of possible 
asynchronous runs A and a primitive proposition func- 
tion hA. Next, we define our new modal operators using 
timed-runs semantics. Finally, we state a theorem which 
formally relates our asynchronous-runs semantics to the 
timed-runs semantics, and prove it by structural induc- 
tion on the formulas in the logic. 

6.1.1 The set of possible timed runs 

We first give a definition for timed runs using our nota- 
tion that is consistent with that of [-11]. 

Definition 18. A timed run r is a sequence of N-vectors 
of local states (or equivalently, event or action sequences) 
indexed by a possibly-infinite sequence of natural num- 
bers, such that, for each processor i, (r, t)[i] is a prefix 
of (r, t + 1) [i]. We let r [i3 denote the sequence (r, 1) [-i], 
(r, 2) [ i ] ,  . . . .  

We associate an asynchronous run a with timing(a), 
the set of all timed runs having the same events and 
causal structure. To preserve causal structure, we will 
require that the real-time values associated with events 
be consistent with the happens-before relation. Let 
time(r, e) be the time value t of the latest global state 
(r, t) preceding the occurrence of event e; time is a partial 
function from runs and events to natural numbers. 

Definition 19. Given a run r and event e in r[i], time(r, e) 
is the natural number t such that er 
e~(r , t+ l)[i]. 

Definition 20. Given an asynchronous run a =  
( h  I . . . .  , h u )  , timing(a) is the set of all timed runs r such 
that: 
1. The local histories are the same, i.e. 

VieProc(r [i] = hi). 

2. Causal structure of events is preserved, i.e. for all 
events el and e2, if el --+ e2 then time(el) < time(e2). 

Note that for any one asynchronous run there are, in 
general, infinitely many corresponding timed runs. How- 
ever, there is exactly one asynchronous run correspond- 
ing to each timed run, because a timed run has exactly 
one causal structure. Now we can define the set of timed 
runs to be the union of all asynchronous timings, so 
that, given A, w e  can define RA=de f U timing(a). 

a E A  

Throughout  this section, unless otherwise noted, the 
ranges of quantification for asynchronous runs and 
timed runs are the sets A and R A ,  respectively. 

We next prove that every real-time global state has 
a corresponding consistent cut. Note that we can assert 
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the equality of real-time global states and consistent cuts 
since they are both N-vectors of local states. 

Theorem 11. Given a run r in timing(a), Vt3  !c((r,t) 
= (a, c)). 

Proof. The proof is by contradiction. By condition (1) 
in the definition of timing(a), every local state of r is 
a local state of a. Therefore for the theorem to be false, 
for some t the local states of (r, t) must be inconsistent. 
Thus run r must contain events e~ and e2 such that 
e~-+ e2, e 2 is contained in (r, t), and et is not contained 
in (r,t). Since el is in r but not in (r,t), time(r, e O > t  
and similarly time(r, e2)<t. However, this contradicts 
condition (2) of the definition of timing(a), which requires 
that if el -+e2 then time(r, eO<time(r ,  e2). Uniqueness 
follows because a set of local states uniquely specifies 
a cut in an asynchronous run. [] 

In view of the preceding theorem, we can define 
Cut(r, t) to be the consistent cut corresponding to real- 
time global state (r, t). 

Definition 21. Cut(r, t) is the pair (a, c) such that r is 
in timing(a) and (r, t )= (a, c). 

It is also true that for any (a, c) there is some (r, t) 
such that Cut(r, t)= (a, c). This is a straightforward conse- 
quence of the definitions of consistent cuts and timing(a); 
we leave the proof of the theorem to the reader. 

Theorem 12. g (a, c) 3 (r, t) (Cut (r, t) = a, c)). 

We next define the primitive proposition function nR~ 
from the primitive proposition function rcA in the obvious 
way. 

Definition 22. 7CRA((r , t), t~)=de f true iff 7CA(Cut(r , t), if)) 
= true. 

The definition of E c is derivable from the definitions 
of A, K,, and Pi and is as follows: 

(r, t)~TEC~<=> A V(r', t')[(r', t ' )~ i (r, t) 
i~Proc 

~ 3(r", t")((r"~<r') A ((r", t")~i  (r', t')) A (r", t")~T~)]. 

Finally, (r, t)~T CC~b is defined using the same greatest 
fixed-point interpretation as in [11] and as in our 
asynchronous runs semantics. 

6.1.3 The equivalence of the two semantics 

Two preliminary facts are trivial consequences of our 
definitions. 

Fact I. Let a , a ' e A  and let r , r ' eRA,  where (a,c) 
= Cut(r, t) and (a', c') = Cut(F, t'). Then 
(a) (a, c) Hi (a', c') iff (r, t)~"i (r', t'), and 
(b) a = a' iff r ~ r'. 

The following theorem relates the truth of formulas 
in our asynchronous-runs semantics to the truth of for- 
mulas in the timed-runs semantics. 

Theorem 13. I f  r r  a then (r, t)~T~)<=>Cut(r , t)~Aq~. 

Proof. By structural induction on formulas. 
1. Primitive propositions: Follow immediately from the 

definition of nR~. 
2.--7, A: From the structural induction hypothesis, 

(r, t) ~ T ~ ~ Cut (r, t) ~ A ~b, it follows immediately that 

(r, t) ~ T--1 ~<~..Cut(r, t ) ~ A ~  q~ 

and 

6.1.2 Timed-runs semantics 

The timed-runs semantics for the ordinary logical con- 
nectives, the primitive propositions, the knowledge mod- 
ality K~, and the greatest fixed-point operator are exactly 
as in Halpern and Moses [11]. In this subsection we 
only discuss the new modal operator, Pi. In order to 
avoid confusion, we use the symbols ~T and ~A to 
stand for timed-run semantics and asynchronous-runs 
semantics, respectively. 

First we define the relation ~,< on timed runs, to repre- 
sent timed runs that are timings of the same asynchro- 
nous run. 

Definition 23. Given timed runs r, r', we write r><r' 
iff V i~ Proc (r [i3 = r' [i]). 

Clearly a real-time global state (r', t') of run r' is also 
a consistent cut of run r if r~,<r'. This motivates the 
following definition for the meaning of P~ in a timed-runs 
semantics. 

Definition 24 

(r, t) ~ T P/((~)'r ~ (r', t') (r' ~ F) A ((r', if) H i (r, t)) A (r', t') ~ ~b). 

. 

(r, t ) ~ T ~  A r  t ) ~  A ~ A O. 

K~: (=~) It is given that (r, t)~TK~@, i.e. that: 

V (r', t ')((r', tt)"~i (r, t) =:~ (r', t ' ) ~  T ~)" 

By Theorem 12 and Fact l(a): 

V(a, c) [(a, c ) m  Cut(r, t ) ~  3(r',  t')((r", t') 

m (r, t)A Cut(r", t")= (a, c))]. 

Since (r, t )~wKi~) , we have (r', t')~Tq6. By the struc- 
tural induction hypothesis we then have that 
V(a, c)((a, c ) m  Cut(r, t )~ (a ,  C)~A q S ) ;  therefore 
Cut(r, t )~  A Ki~) as desired. 
( ~ )  It is given that Cut(r, t)~AK~dp, i.e. that 

g(a, c)((a, c)H i Cut(r, t )~ (a ,  c)~ A q~). 

From Fact 1 (a), 

V(r', t')((r', t')..~i (r, t ) ~  Cut(F, t')H i Cut(r, t)). 

Since Cut(r, t ) ~ A K i ~  it follows that 

V (r', t') ((r', t') H i (r, t) ~ Cut (r', t') ~ A ~b). 
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Then V(r', t')((r', t')~,,i(r, t)=~(r', t')~Tq~) follows from 
the structural induction hypothesis; hence 
(r, t)~TKi(a. 

4. Pi: (=~) It is given that (r, t)~TPi~b, i.e. 

3(r', t')((r'~<r) A (r', t')"~i (r, t) A (r', t ' )~Tr 

Let (a, c)= Cut(r, t) and (a', c') = Cut(r', t'). By Fact 1, 
a = a' and (a, c) m (a', c'). Therefore 

3(a, c')((a, c')~i (a, c) A (a, c')= Cut(r', t') A (r', t ')~T r 

(a,c')~Ar by the induction hypothesis, so that 
(a, C)~APiq~. 
( ~ )  It is given that Cut(r, t)~aP~r so that 

3(a, c')((a, c')~i Cut(r, t) A (a, C')~A r 

By Theorem 12 there exists (r', t') such that Cut(/, t') 
=(a, c'). By Fact 1, (r', t ' )m (r, t) and r'~,<r. Then 

3(/ ,  t')((r'~r) A (r', t')"~i (r, t) A Cut(r', t')~A(~) , 

giving the desired result by the induction hypothesis. 
5. CC: For C c we return to the view that formulas are 

functions from sets of global states to sets of global 
states; again we use subscripts to distinguish the 
timed-runs semantics from the asynchronous-runs se- 
mantics. We also use the notation that, for any set 
of consistent cuts Z, Z* is the set {(r, t)[ Cut(r, t)EZ}. 
We need to show that (r, t) is contained in the greatest 
fixed point of J tT [EC(r A X)~ iff Cut(r, t) is contained 
in the greatest fixed point of J/tn ~EC(r A X)~; in other 
words, we want to show that the greatest fixed point 
of ~#TWEC(r AX)] is of the form B*, where B is the 
greatest fixed of ~/t a ~EC(q~ A X)]. Repeating the tech- 
nique for K~ and P~ above, it can be shown that, for 
any Z, 

(r, t)6,/~ T EEC (q~ A X)~ (Z*) 

iff 

Cut(r, t) e J/tA ~EC(r A X)~ (Z). 

It then follows that B* is a fixed 
J/IT~EC(r iff B is a fixed 
~A~EC((# A X)~, i.e. 

(r, t) �9 B* r (r, t) e J{T ~ Ec (r A X)~ (B*) 

iff 

point of 
point of 

Cut (r, t) ~ B <:~ Cut (r, t) e d/tA EE c (r X)] (B). 

It just remains to be shown that B is the greatest 
fixed point iff B* is the greatest fixed point also. Sup- 
pose that B is but B* is not. Then there is some set 
C*, not a subset of B*, such that 

B $ u C :~ : ~/IT ~EC(r A X)](B $ u C$). 

However, since (r, t) is contained in 
dgT~EC(4)AX)~(Z *) iff Cut(r,t) is contained in 
Jtn~EC(q5/x X)~ (Z), this would be imply that 

Bw C = JgA ~EC(r A X)](Bw C). 

This contradicts the assumption that B is the greatest 
fixed point. An analogous argument holds in the re- 
verse direction, thus concluding the proof. [] 

6.2 Other knowledge forms 

There have been other common knowledge variants that 
are based on replacing simultaneity with weaker tempo- 
ral notions [11]; namely, epsilon common knowledge, 
C ~, eventual common knowledge, C ~ and timestamped 
common knowledge, C T. In this section we compare con- 
current common knowledge to common knowledge and 
to each of these variants. As the names indicate, epsilon 
common knowledge corresponds to agreement within 
e time units, for some ~, eventual common knowledge 
corresponds to agreement at some global state of the 
system, and timestamped common knowledge corre- 
sponds to agreement at local states having the same local 
clock value. The strength of timestamped common 
knowledge, consequently, depends upon characteristics 
of the local clocks used. 

In the discussions to follow, we will demonstrate situ- 
ations in which one knowledge form is attained but an- 
other is not. Recall that we say a fact r is attained in 
run a iff there is a cut c such that (a, c)~ A ~b. Similarly, 
we say that a fact r is attained in timed run r iff there 
is a time t such that (r, t)~TqS. Recall that if r~timing(a) 
then r is one of the possible timed runs corresponding 
to asynchronous run a. When comparing CC to a knowl- 
edge form, say C x, defined in the timed-runs model, we 
will consider whether or not attaining CXr in a run 
r implies attaining CCr in the asynchronous run a such 
that retiming(a), or vice versa. 

In Sect. 6.2.1 we demonstrate that common knowl- 
edge C is strictly stronger than C c, by showing that 
C ~ C  c is valid and that there are situations in which 
CCr is attainable but C r is not. In Sect. 6.2.2, we define 
C ~ and show that it is incomparable to C c in a strict 
sense; namely, there are systems and facts q5 for which 
C~r is attained and cCr is not, and vice versa. 

In Sect. 6.2.3, we demonstrate that C c and C ~ are 
also imcomparable. It should be intuitively clear that 
eventually agreeing on a fact does not guarantee causal 
consistency; the converse, however, may not be so clear. 
It turns out that eventual common knowledge guaran- 
tees that a fact r is known at points in the run. Concur- 
rent common knowledge, in contrast, only guarantees 
knowledge of P~r for each i, which is weaker. Conse- 
quently, C c and C ~ are indeed incomparable. 

In Sect. 6.2.4, we demonstrate that, in general, time- 
stamped common knowledge, C T, is incomparable to 
concurrent common knowledge. We also demonstrate 
that, in the special case of local clocks being logical clocks 
[16], cTr  implies CCr at a consistent cut where local 
time T is reached by all processes. 
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6.2.1 Common knowledge 

C~b implies all formulas of the form Ek4 for any natural 
number k, where E is defined as follows. 

E4=def A Ki4" 

More precisely, C is defined as the greatest fixed point 
of E(4  A X), where X is the free variable in the greatest 
fixed-point operator. We show that this is strictly strong- 
er than C c below. 

Theorem 14. Common knowledge is strictly stronger than 
concurrent common knowledge, i.e. C 4 ~ CC 4 is valid but 
c c 4 ~ c 4  is not valid. Furthermore, there are systems 
and facts ~ for which CC 4 is attainable but C ~ is not. 

Proof To see that C4=>CCO is valid, recall that 4 ~ P ~ 4  
is valid. Consequently, the validity of KiO=~K~P~4 fol- 
lows and furthermore, E 4 ~ E C 4  is valid. Since CC4 
is the greatest fixed point ofEC(4/x X) and C4  is greatest 
fixed point of E(4  A X), the desired result follows. 

From [11], common knowledge of any fact not ini- 
tially common knowledge of a system is unattainable 
in any asynchronous system. However, concurrent com- 
mon knowledge of certain facts is attainable in such sys- 
tems. For  example, in a two-processor system in which 
exactly one message m is sent, concurrent common 
knowledge of "m has been received" is attained along 
a cut immediately following the send and reception of 
m (cf. the proof  of Theorem 15 below). Thus there are 
systems and facts 4 for which CC4 is attainable and 
C ~b is not; it follows that CC4 =*-C 4 is not valid. [] 

6.2.2 Epsilon common knowledge 

Epsilon common knowledge corresponds to agreement 
within an interval of e time units, for some natural 
number ~. Its definition is consequently dependent upon 
the timed-runs model, since we cannot express "e time 
units" in the asynchronous runs model. U, "everyone 
knows within (an interval of size) e," is defined as follows 
[,,113. 

(r, t )~  E~ 4.c* 3t'3e[,(t' < t <_t' + e) 

A V i3ti(t' < ti <=t' + e /x (r, h)~  KiO)]. 

In other words, there is an interval I of length e, including 
the current time, such that each process knows 4 at 
some point in interval I. Epsilon common knowledge 
is then the greatest fixed point of E~(4 A X), where X 
is the free variable in the greatest fixed-point operator. 
We show that C c and C ~ are incomparable in a strict 
sense: there are systems and facts q5 for which CC4 is 
attained and C~4 is not, and vice versa. 

Theorem 15. Epsilon common knowledge is incomparable 
to C c, i.e. neither one implies the other. Moreover, there 
are systems and facts 4 for which CC4 is attained but 
C~ 4 is not, and vice versa. 

Proof First, we demonstrate a system 5P1 and fact 41 
for which cC41 is attained, but C~41 is not. Let system 

contain only two processes, i and j. In this system, 
i may send a single message m to j at some point in 
each run, along a reliable channel with unbounded trans- 
mission time. No other communication occurs. Let a 
be any run of this system in which message m is sent. 
Let c be the consistent cut of a consisting of i's local 
state immediately after sending m and j's local state im- 
mediately after receiving m. Clearly c is a cut, since no 
message is sent after it. It is dinstinguishable, because 
its occurrence in each local state is determined by specific 
events, namely the sending and receiving of m. Let 41 
be the fact "message m has been received." Since 41 
always holds on cut c, from Theorem 4 it follows that 
(a,C)~ACC~I. Therefore CC0, is attained in any run 
of the system in which message m is sent. 

Now consider every r in timing(a). For  C~41 to be 
attained, there must be a t such that (r, t )~TC"4a.  This 
implies further that for some ti within e time units of 
t, (r, t i)~TKiO~. However, process i never knows 41, be- 
cause every local state of i in r is part of a possible 
real-time state in which message m has not yet been 
received. Consequently, there is no t for which 
(r, t )~TC~41.  Therefore 5~ is a system in which CC4~ 
is attained, but C~4~ is never attained. 

Next, we demonstrate a system 502 and fact 42 for 
which C~42 is attained but CC0z is not. In system 5~ 
there are three processes i, j, and k which communicate 
along reliable channels having transmission time 
bounded by e, for some e>  3. In other words, messages 
sent at time t will arrive in time t + 6, 0 < 6 __< e. In each 
run, k may or may not send message M simultaneously 
to both i and j at some point. No other communication 
involving k takes place. Processes i a n d j  randomly send 
messages to each other. These messages are independent 
of M and each other, i.e. they contain no information 
about what has been sent or received at the time that 
they are sent. 

Let 42 be the fact "message M has been sent by k." 
C~q52 holds in every run in which M is sent, as soon 
as M is sent by k. However, we will demonstrate that 
CC~2 can never hold in any run. Recall that if CC42 
is attained r, then there must be a single consistent cut 
in which p/CC42 and pjcC02 are learned by i and j, 
respectively. We will denote the local states of i and 
j in such a cut by L(r, i) and L(r,j). 

In any run r of this system, let t~(r) be the earliest 
time at which M has been received by i, and similarly 
for tj(r). In other words, (r, t~(r)) is the earliest state con- 
taining receive(i, M). (If M is never sent in r, then ti(r) 
= tj(r)= oe.) We will show by induction on 7 that, in 
every run r, neither L(r, i) nor L(r,j) can occur before 
(r, h(r) + 7) or (r, tj(r) + 7), respectively, for all 7 > 0. It will 
then follow that C c 42 is never attained in 502 . 

The base case is for 7=0.  Clearly, in every run r, 
L(r,i) must be (r, ti(r))[,i] or a later state (containing 
(r, ti(r))[-i]). Otherwise, M may never be sent, and KiPi42 
cannot possibly hold. This is also true for L(r,j). 

We now assume that the inductive hypothesis holds 
for some ? and show that it must also hold for ? + 1. 
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i 

Fig. 5. Run r' in proof of Theorem 15 

Consider any run r, and suppose that L(r, i) does occur 
before (r, t i ( r )+7+ 1). By the inductive hypothesis, this 
implies that L(r,/) is (r, t~ (r)+ ~)[i]. 

Recall, from our assumptions, that the time of M's 
reception at i and j can differ by two. Recall also that 
i and j randomly send messages to each other, indepen- 
dently of M. Thus, there is a run r' with the following 
properties. (1) The state of process i in r' is exactly as 
in run r up to ti(r)+7, i.e. ti(r')=ti(r) and (r',ti(r') 
+ 7) [i] = (r, h(r) + 7) [i]. Consequently, L(r, i) = L(r', i). (2) 
Time tj(r') is two time units greater than h(r'). (3) Process 
i sends a message m to j between (r ' ,h(r ')+7) and 
(r', t j ( r ' )+7+ 1 ). (4) Message m is received by j between 
(r', h(r')+ y+ 1) and (r', h(r')+ y+ 2)=(r', tj(r')+ ~). Run r' 
is pictured in Fig. 5. 

By the inductive hypothesis, L(r',j) cannot occur be- 
fore (r', tj(r')+ 7). Therefore, in run r', there is no consis- 
tent cut containing L(r', i) and L(r',j). This implies further 
that cC4)2 cannot hold in any consistent cut of r' con- 
taining L(r', i). Thus piCc4)2 cannot hold in L(r', i), and 
KiPiCC4)a cannot hold in L(r, i). This is inconsistent with 
the definition of L(r, i), thus our assumption that L(r, i) 
is (r, t~(r)+ 7) is false. A symmetric argument holds for 
L(r,j), thus completing the inductive proof. [] 

6.2.3 Eventual common knowledge 

Eventual common knowledge coresponds to agreement 
at some (not necessarily consistent) global state of a run. 
We express it using standard definitions in the timed- 
runs model [11]. 

E ~, "everyone will eventually have known," is defined 
as follows. 

(r,t)~E~4)~=>Vi3ti (ti>O/x(r,h)~Ki4)). 

In other words, each processor knows 4) at some point 
in the past, present, or future. Note that, unless facts 
are stable, E~4) does not imply that E4) ever holds. 

Like the other common knowledge variants, C~4) is 
defined as the greatest fixed point of E~(4)/x X). C~4) 
implies, but is strictly stronger than, (E~)k4) for all k 
[11]. We prove that C~4) is not only incomparable to 
cC4), but that there are runs in which each is attained 
but the other is not for some fact. 

Theorem 16. Eventual common knowledge is incompara- 
ble to concurrent common knowledge, i.e. CC4) does not 
imply C~ 4) and C~ 4) does not imply CC4). Moreover, there 
are systems in which CC4) is attained and C~4) is not 
for some fact 4), and vice versa. 

Proof From Theorem 15, there are systems and facts 
4) for which C~4) is attained but CC4) is not. Since C~4) 

implies C~4) [11], the same result immediately follows 
for C% 

Next, we demonstrate a fact 4) and a system in which 
CC4) is attained, but C'4) is not. Consider again system 
5~1 from the proof of Theorem 15, containing only two 
processes i and j. Process i sends a single message m 
to j along a reliable channel with unbounded transmis- 
sion time. Fact 4)1 is "message m has been received." 
As before, CC4)1 is attained in any run of 5P~ ; however, 
clearly i never knows 4)1. Since C'4)~ implies that eventu- 
ally Ki4)1 holds, C~4)1 cannot be attained in every run 
of 5~1. [] 

6.2.4 Timestamped common knowledge 

Timestamped common knowledge [11, 18] corresponds 
to agreement at local states having the same local clock 
value. It is sufficient for our purposes to use the asyn- 
chronous-runs model for comparison; we give the appro- 
priate definitions for that model. Let clock(a, c, i) be the 
value of i's local clock at cut c in run a. Then time- 
stamped knowledge, K/T is defined as follows. 

(a, C)~ A K[  4) iff V c' (clock(a, c', i)= T=>(a, c')N A KiO). 

Note that the satisfaction of Kf4) is dependent only 
upon the run a, not upon the cut c. The definition of 
E T follows the usual pattern. 

gT4)=def A KT4)" 

Now, timestamped common knowledge is defined as the 
greatest fixed point of Er(4) A X). 

The strength of timestamped common knowledge de- 
pends upon characteristics of the local clocks used. For  
example [11]: 
1. If it is common knowledge that all clocks always show 

identical times, then at T on any clock, Cr4)<=>CO 
holds. 

2. If 4) is a stable fact and it is epsilon common knowl- 
edge that all clocks are within e time units of each 
other, then at Ton any clock, C r 4 ) ~  C~4) holds. 

3. If 4) is a stable fact and it is eventual common knowl- 
edge that all local clocks read T eventually, then at 
time T on any clock, Cr4)~C<>4) holds. 
One type of local clock is termed a logical clock [16]. 

Logical clocks have the property that, if event a happens- 
before event b, then the local clock value at which a 
occurs is less than the local clock value at which b occurs. 
This implies that local states having the same clock 
values are incomparable with respect to happens-before, 
and consequently form a consistent cut. It might seem 
that if it is common knowledge that local clocks are 
logical clocks then Cr4) implies cC4). However, there 
are two problems with this. One issue is that Cr4) alone 
does not guarantee that the clock value T is ever reached 
by any process. Consequently Cr4) may hold although 
not all processes know it; in particular, not those whose 
clocks never reach T. If T is never reached by any pro- 
cess, then CrOCalse) holds. This is the case for CrO re- 
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gardless of the local clock properties; it is also the reason 
that statements like "if  it is eventual common knowledge 
that all local clocks read T eventually" are necessary 
in the three comparisons above. We will use Reached(T) 
to denote that clock value T is reached by all processes 
in a run. 

If it is common knowledge that all local clocks are 
logical clocks, then attainment of Cr(Reached(T)A 4) 
does guarantee attainment of CC4. Still, it is not the 
case that C r (Reached (T) A 4) implies C c 4; another issue 
is that c r 4  holds throughout  the run, not just when 
clocks read T. Only when the clocks read Tdoes  c r 4  
imply C c 4. We use the notation A t(T) as follows: 

(a,c)~AAt(T) iff Viclock(a,c,i)=T. 

Thus At(T) implies both that T is reached by all local 
clocks and that, on this cut, all clocks have the value 
T. It is indeed the case that 

C~(A t T)/, 4) = C ~ 4 

is valid, as we will show in our next theorem. 
It is not the case that with logical clocks CC4 implies 

c r 4  for some T. The reasons for this are that (1) logical 
clocks do not guarantee that every consistent cut con- 
tains states having the same local clock value, and (2) 
as for eventual common knowledge, timestamped com- 
mon knowledge implies that every process knows a fact, 
which is not guaranteed by concurrent common knowl- 
edge. 

We formalize these observations regarding time- 
stamped common knowledge with logical clocks in the 
next two theorems. 

Theorem 17. Assume that it is common knowledge that 
local clock values are logical clocks. Then if 
Cr (Reached(T) A 4) is attained in a run of system ~9 ~ then 
cC4 is attained also, and furthermore 

Cr (A t(T) A 4)= cC 4 

is valid in 5 P. 

Proof Suppose that Cr(Reached(T)A 4)) is attained in 
run a of a system Y. Consider any set of local states 
in which all clock values read T; there must be at least 
one set since Reached(T) holds. From the definition of 
logical clocks, the set must form a consistent cut; call 
it c. From the definition of C r4 ,  we have (a,C)~A4. 
Cut c is distinguishable from the occurrence of the local 
clock value T and the knowledge of Reached(T). There- 
fore, from Theorem 4, (a, c )~  A C c 4. Thus attainment of 
Cr(Reached(T) A 4) guarantees attainment of cC4 . Fur- 
thermore, since Cr(At(T)A 4)implies the conditions on 
cut c above, Cr(At(T)A 4)=~CC(@) is valid in 5 p. []  

Theorem 18. I f  it is common knowledge that local clock 
values are logical clocks, cC 4 does not imply Cr @ for 
any T. Moreover, there are systems and facts 0 for which 
CC 4 is attained but Cr O is not attained for any T. 

Proof Consider a system Y'I as follows. As in system 
5~ of Sect. 6.2.2, there are only two processes i and j. 

At some point process i sends a single message m to 
process j. In addition, i has a local clock which begins 
with the value 1, and increments to 2 immediately after 
i sends m. Process j has a local clock which begins at 
2, and increments to 3 immediately after j receives m. 
It is simple to verify that the clock values indicated obey 
the conditions for logical clocks, since m is sent at local 
time 1 and received at local time 2. Let 41 be the fact 
"message m has been received." CC41 is attained in runs 
of this system exactly as in Sect. 6.2.2. However, there 
is not time T at which 4 t  holds when each process 
reaches T. Furthermore, i never knows 41, which is neces- 
sary by the definition of C r 4  . By either argument, Cr41  
is not attained for any Tin any run of this system. []  

Finally, we consider general local clocks. Since attain- 
ing CC4 does not guarantee attainment of C r 4  in the 
case of logical clocks, clearly it does not for the general 
case. Unlike for logical clocks, in the general case 
Cr(Reached(T)A4) does not guarantee attainment of 
CC4. 

Theorem 19. For general local clocks, there are systems 
in which Cr(Reached(T) A 4) is attained and CC O is not, 
for some fact 4. 

Proof Consider system 5P; as follows: as in 503 in the 
proof of Theorem 16, there are two processors i and j, 
and i sends a series of messages - possibly zero to 
j along non-FIFO channels. Process j sends no messages 
to i. Also, in 50'3, each local clock is initialized to zero 
and increments each time a message is sent or received. 
Recall fact 43, "i  has sent at least one message to j ."  
It is straightforward to see that Cr(Reached(T)A 43) is 
attained in any run of this system in which at least one 
message is sent, for T =  1. However, CC43 is not attained 
in any run, exactly as in the proof of Theorem 16. [] 

Although Cr  (A t (T) A 4) implies C c 4 for systems us- 
ing logical clocks, this does not preclude the relevance 
of concurrent common knowledge for such systems. 
Cr(AtT)A 4), as shown, is a stronger condition than 
CC4. It implies a useful property for some distributed 
applications which CC4 does not; namely, if two facts 
@a and 42 become timestamped common knowledge 
with different timestamps, then all processors learn 
C r '  (A t(T 0 A 41) and Cr2(A t(T2) A 42) in the same order. 
Known algorithms to achieve C r with logical clocks [18] 
use two-phase algorithms such as Protocol 2. There do 
not appear to be low-latency protocols such as Proto- 
col 1 for timestamped common knowledge. Further- 
more, concurrent common knowledge does not require 
processes to keep a local clock value. Thus, for some 
applications CC4 may be a more desirable, though 
weaker, form of knowledge than Cr(A t(T)A 4). One ex- 
ample in which both forms are useful is given in Sect. 5.3. 

7 Conclusions 

In this paper we have given a new knowledge-based defi- 
nition of agreement that  applies to asynchronous sys- 
tems. We have defined the concept in terms of the causal- 
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ity re la t ion between events, which is an  appropr ia te  re- 
p lacement  for the concept  of t ime when one is discussing 
a synchronous  systems [16]. We have defined concur ren t  
c o m m o n  knowledge using a moda l  logic and  semantics  
tha t  are designed specifically to capture  the causal  struc- 
ture re levant  to a synch ronous  systems. We have shown 
that  concur ren t  c o m m o n  knowledge  is a t t a inab le  by two 
simple and  efficient a lgor i thms and  given several applica- 
t ions using it and  other  elements  of the new logic. It  
is the a t ta inabi l i ty  and  b road  appl icabi l i ty  of concur ren t  
c o m m o n  knowledge  that  makes  it an  i m p o r t a n t  concept  
for a synchronous  d is t r ibuted  comput ing .  

One  of the con t r ibu t ions  of our  work is that  we have 
given a knowledge- theore t ic  defini t ion that  applies 
whenever  one needs to reason abou t  the global  states 
of a synchronous  systems. Thus  we have p inned  down  
the form of knowledge  a pro tocol  designer should  try 
to a t ta in  when  developing a pro tocol  to reach agreement  
abou t  some proper ty  of the global  state. We have also 
used our  logic to prove necessary and  sifficient condi-  
t ions for per forming concur ren t  act ions in a synch ronous  
dis t r ibuted systems. 

There have been other  proposals  for weakened forms 
of c o m m o n  knowledge  that  are also a t ta inable  asyn- 
chronously ,  namely  eventual  c o m m o n  knowledge  and  
t imes tamped  c o m m o n  knowledge  [11]. They  use var ious  
t empora l  modal i t ies  in order  to weaken  the or iginal  defi- 
n i t i on  of c o m m o n  knowledge.  C o n c u r r e n t  c o m m o n  
knowledge  is strictly weaker  than  c o m m o n  knowledge  
but  is, in general,  incomparab le ,  with the other  forms 
above. In  the case of t imes tamped  c o m m o n  knowledge,  
if the clocks used in  the defini t ion are logical clocks as 
in [181 and  the t imes tamp of interest  is gua ran teed  to 
be reached by all processes, then t imes tamped  c o m m o n  
knowledge implies concur ren t  c o m m o n  knowledge  when 
the appropr ia te  local times are reached. However,  in 
practice t imes tamped  c o m m o n  knowledge involves lon-  
ger la tency and  requires the suspens ion  of system events 
for an  interval.  It also requires m a i n t a i n i n g  local clocks, 
which concur ren t  c o m m o n  knowledge  does not.  Thus  
achieving concur ren t  c o m m o n  knowledge  may  be more  
pract ical  when  it is sufficient for a par t icu lar  appl icat ion.  

In  the future, we hope to use our  logic to u n d e r s t a n d  
better  the c o m m u n i c a t i o n  requi rements  of a wider vari-  
ety of a synchronous  d is t r ibuted  protocols,  and  to aid 
in developing new and  improved  protocols.  We also 
hope to extend the usefulness of our  logic by addressing 
the issue of faulty env i ronments .  
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A Appendix 

A. I  P r o o f  o f  cons is ten t -cu t  ex i s t ence  

In this section we prove Lemma 1. This lemma says that, in any 
asynchronous run of any system, each local state of each process 
is included in some consistent cut of the system. 

Proof of Lemma 1. Fix an asynchronous run, a, of a system. Con- 
sider any local state of any process, say state s~ on process i. Let 

Fig. 6. Proof of Lemma 1 : message chains during iterative construc- 
tion 

e~' be the last event executed in s~. We will iteratively construct 
a consistent cut c of a such that (a, c)[i] is equal to s~'. Let 
MinSends(k) for any k be the minimum (earliest) local state of pro- 
cess k in run a which includes the sending of all messages received 
by i from k in local state s~. Initialize a vector of local states 
c as follows: (a, c) [i] = s}' and for any j @ i, (a, c) [j] = minSends(j)). 
We refer to this as the initial state vector. Of course this vector 
is not necessarily a consistent cut. On each step of the iteration, 
find a message m' from any process j to any other process k whose 
reception is in c but whose sending is not (if such a message doesn't 
exist then we are finished). Set (a, c)[j] to be the minimum local 
state in a[j] which includes the sending of m'; note that the old 
(a, c) [j] is a strict prefix of the original. In order to meet the condi- 
tions of the theorem, we must show that (1) the iterations terminate 
and that (2) the value of (a, c) I-i] never changes. 

We first make an observation to be used extensively in the 
remainder of the proof: for any inconsistent message m' in the 
above construction, there is a message chain beginning with m' 
and ending with a message received within the initial state vector. 
Consider any message m' as above, from process j to  process k. 
Then either (a, c)[k] is an element of the initial state vector or 
the last event of (a, c)[k] is the sending of a message m", where 
m" was the inconsistent message of some previous iteration. In 
the latter case receive (m') ~ send (m"). This argument can be contin- 
ued resulting in a message chain 

send(m') ~ receive(re') --+ send(re") --+ receive (m") . . . .  receive(m ~ 

where reeeive(m ~ is in the initial state vector. (See Fig. 6. The solid 
circles represent the initial state vector.) 

We now show that the iteration terminates; suppose that it 
does not. At any iteration there are only finitely many inconsistent 
messages, since prefixes contain a finite number of receive events. 
Thus for the iteration to be non-terminating there must be an 
infinite message chain of the form described above. By the pigeon- 
hole principle, in such a chain there must be two messages, say 
ml and mj, that are sent by the same process. If ml--*m2 in the 
chain then also m 2 ~ ml because there is a local state which includes 
mz but not ml. This cannot occur in any valid run. Therefore 
the iteration terminates. 

Finally, we show that the local state of i is not changed, i.e. 
upon termination (a, c)[i] =s~'. Suppose that during the iteration 
state (a, c)[i] is changed, due to a message m' sent by i. Again, 
there must be a chain of messages as above ending with receive(m ~ 
in the original states and send(re') --+ receive(m~ There are two cases 
depending on what process has receive(m~ (1) If it is process i 
then there is a circularity in ~ similar to the proof of termination 
above, as the message chain begins and ends with the same process. 
(2) Suppose that it is a process j + i. Recall that e x is the last event 
of s~ and hence of the original (a, c)[i]. Recall also that, by the 
definition of MinSends, the last event ofj in the initial state vector 
is the sending of a message to i, call it m j, which is received before 
or at event e~. We thus have that mj is sent after receive(m ~ and 
received before or at e~, so that receive(m~ However, e~ 

send(re') and send(re')--* receive(m~ resulting in an invalid circu- 
larity. Hence the final (a, c) [i] is equal to s~. [] 
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