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Abstract

This note presents a formal argument why it is impossible to give a
least fixpoint semantics for McCarthy’s amb [3] that discriminates pro-
grams with different divergence behaviour and satisifies some equational
axioms.

1 Introduction

McCarthy’s ambiguous choice operator amb [3] differs from erratic choice in its
divergence behaviour: amb evaluates all branches in fair parallel and may only
diverge if every branch may diverge, whereas erratic choice selects one branch
up-front and thus may diverge if any branch may diverge. Therefore the charac-
teristics of amb is only brought out by semantics that take divergence behaviour
into account. Let us say that a semantics is adequate if it discriminates programs
with different divergence behaviours.

With this definition of adequacy, amb is known to be non-monotone with
respect to known adequate least fixpoint semantics partial orders [4, 5]. Specif-
ically, amb is monotone with respect to the “Hoare” partial-correctness partial
order used in the lower powerdomain construction, which is not adequate in our
sense, and amb is non-monotone with respect to the “Smyth” total-correctness
partial order and the “Egli-Milner” partial order used in the upper and convex
powerdomains, which are adequate.

This note goes further and proves that amb is not monotone with respect
to any partial order semantics with divergence as bottom element, provided
the semantics is adequate and satisfies a set of equational axioms, namely β-
conversion and basic algebraic properties of amb and erratic choice.

Outline Section 2 defines the syntax and operational semantics of the λ-
calculus extended with amb. Section 3 specifies the equational axioms for the
language. In Section 4 we prove that there is no adequate least fixpoint seman-
tics for amb which satisfies the equational axioms.
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2 Syntax and operational semantics

Consider the pure untyped λ-calculus extended with amb:

Variables x, y, z

Terms t ::= x | λx. t | t1 t2 | amb(t1, t2)

Terms are identified up to renaming of bound variables and t1[t2/x] denotes the
capture-free substitution of t2 for the free occurrences of x in t1.

The term amb(t1, t2) non-deterministically chooses between t1 and t2. In-
formally, it does so by evaluating t1 and t2 in fair parallel and choosing the
outcome of the branch that first evaluates to a result. It may only diverge if
both threads of execution in the fair parallel evaluation may diverge.

Recall the following standard combinators: the identity function I = λx. x,
true T = λx. λy. x, false F = λx. λy. y, and Curry’s fixed point combinator
Fix = λx. (λy. x (y y)) (λy. x (y y)). Let Ω = Fix I.

Erratic choice can be defined in terms of amb as follows:

err(t1, t2) = amb(T, F ) t1 t2.

Following [4], we specify the operational semantics as an inductively defined
may evaluation relation t wh w between closed terms t and λ-abstractions w,
and a co-inductively defined may divergence predicate t⇑wh on closed terms t.

λx. t wh λx. t

t1  wh λx. t t[t2/x] wh w

t1 t2  wh w

t1  wh w

amb(t1, t2) wh w

t2  wh w

amb(t1, t2) wh w

t1⇑wh

t1 t2⇑wh

− t1  wh λx. t t[t2/x]⇑wh

t1 t2⇑wh

− t1⇑wh t2⇑wh

amb(t1, t2)⇑wh

−

(The minuses mean that the rules are co-inductive. May divergence is defined
as the largest predicate on closed terms that is dense with respect to the rules.)

Given the operational definition of divergence, we define adequacy as follows.

Definition 2.1. A relation on terms is adequate if and only if related terms have
the same divergence behaviour, that is, if t is related to t′ then t⇑wh ⇔ t′⇑wh.

2



3 Equations

Let � be the equational theory generated by the following equations:

(λx. t1) t2 � t1[t2/x] (1)
amb(t1, amb(t2, t3)) � amb(amb(t1, t2), t3) (2)

amb(t1, t2) � amb(t2, t1) (3)
amb(t, t) � t (4)

amb(Ω, t) � amb(t, Ω) � t (5)
amb(err(t1, t2), t3) � err(amb(t1, t3), amb(t2, t3)) (6)
err(amb(t1, t2), t3) � amb(err(t1, t3), err(t2, t3)) (7)

amb(λx1. t1, λx2. t2) � err(λx1. t1, λx2. t2) (8)
err(t1, err(t2, t3)) � err(err(t1, t2), t3) (9)

err(t1, t2) � err(t2, t1) (10)
err(t, t) � t (11)

err(t1, t2) t � err(t1 t, t2 t) (12)

These equations are all included in the equational theories for amb in [2, 1],
called Kleene equivalence, whnf bisimilarity, whnf simulation equivalence, and
contextual equivalence. The theories are all adequate.

4 Least fixpoints

Every term t is a fixpoint of I, up to β-equivalence (1), that is, I t � t. Therefore,
if Ω = Fix I is the least fixpoint of I with respect to some ordering on terms,
then Ω is the least element in the ordering.

Theorem 1. Suppose @∼ is a pre-congruence relation on terms and ∼= is the
induced congruence relation, t ∼= t′ ⇔ t @∼ t′ & t′ @∼ t. Furthermore, suppose
∼= ⊇ � and ∼= is adequate. Then Ω cannot be least with respect to @∼.

Proof. Let t = amb(Ω, F ) Ω and t′ = amb(I, F ) Ω. Then t and t′ have different
divergence behaviour, t′⇑wh and ¬t⇑wh. Therefore, by the assumption that
∼= is adequate, t 6∼= t′. We will use this fact to prove that Ω is not least, by
contradiction, namely we will show that Ω is least implies t ∼= t′.

Suppose Ω is least. Then Ω @∼ I and Ω @∼ t. Since @∼ is a pre-congruence,
Ω @∼ I implies

t @∼ t′ (13)

and Ω @∼ t implies
err(Ω, t) @∼ err(t, t). (14)
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From (14) and the calculation

t′ = amb(I, F ) Ω� err(I, F ) Ω by (8)
� err(I Ω, F Ω) by (12)
� err(Ω, F Ω) by (1)
� err(Ω, amb(Ω, F ) Ω) by (5)
= err(Ω, t)

and (11) and the assumption ∼= ⊇ �, derive

t′ ∼= err(Ω, t) @∼ err(t, t) ∼= t. (15)

Finally, by (13), (15), and the assumption t ∼= t′ ⇔ t @∼ t′ & t′ @∼ t, deduce
t ∼= t′.

Not all the equations from section 3 are used in the proof of the theorem.
The condition ∼= ⊇ � in the statement of theorem serves only to ensure that
t ∼= err(t, t) and err(Ω, t) ∼= amb(I, F ) Ω, where t = amb(Ω, F ) Ω.
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