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Abstract. We develop an algebraic modal logic that combines epistandady-

namic modalities with a view to modelling information acsjtion (learning) by
automated agents in a changing world. Unlike most treatsnafindynamic epis-
temic logic, we have transitions that “change the statehefunderlying system
and not just the state of knowledge of the agents. The keylrfeature that
emerges is the need to have a way of “inverting transitioms!’ distinguishing

between transitions that “really happen” and transitidrad &ire possible.

Our approach is algebraic, rather than being based on ad<sphe semantics.
The semantics are given in terms of quantales. We study a ofaguantales
with the appropriate inverse operations and prove pragenf the setting. We
illustrate the ideas with toy robot-navigation problembe3e illustrate how an
agent learns information by taking actions.

1 Introduction

Epistemic logic has proved very important in the analysipmitocols in distributed
systems (see, for example, _[FHMV95]) and, more generallgiriy situation where
there is some notion of cooperation or “agreement” betweenis. The original work
in distributed systems, by Halpern and Moses [HM84,HM9@] aeveral others mod-
elled the knowledge of agents using Kripke-style [Kii63]dets. In these models there
are a set of states (often called “possible worlds”) in whrelagent could be and, for
each agent, an equivalence relation on the states. If twesstae equivalent to an agent
then that agent cannot “tell them apart”. An agent “knowséaet ® in the states if,

in all statest that the agent “thinks” is equivalent tq the fact¢ holds. The quoted
words in the preceding sentences are, of course, unnegesgaropomorphisms that
are intended to give an intuition for the definitions.

A vital part of any analysis is how processes “learn” as thastipipate in the proto-
col. The bulk of papers in the distributed systems communésit this as a change
in the Kripke equivalence relations and argue about theaagdsonly in the seman-
tics. The logic itself does not have the “dynamic” modalitiestthefer to updating
of the state of knowledge. On the other hand, dynamic epistéogic has indeed
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been studied; see, for example the recent book [vDvdHK@8thé second author’s
doctoral dissertation an algebraic approach to dynamstepic logic was studied in
depth [BCSO7,Sad06].

The advantage of working in the algebraic setting is thabgti@acts over the details
of the Kripke structures and showcases the high level stref the actions and their
updates. As a result, one can relate the structure of epistetions and their updates
to the other areas of computer science, e.g. reasoning abaoeictness of programs
and observational logics, e.g. of Abramsky and Vickers [B)/9n particular, it turns
out that the epistemic update is the action of the quantafgajrams/actions on the
module of propositions (factual and epistemic), henceltédeft adjoint to the dynamic
modality which encodes the weakest precondition of Hoagid.&secondly (and in a
novel attempt), epistemic modalities (too) are encodednaadjoint pair: the belief
modality is the right adjoint of the appearance map, whidhéslifting (to subsets) of
the accessibility relation of the Kripke structure. Apaarh the conceptual novelty and
the charm of this adjoint-based approach, it offers a vanpk method of reasoning
about knowledge acquisition after an action, i.e. by umifanfolding of epistemic and
dynamic adjunctions. This method simplifies, to a greatrexthe proofs of complex
protocols and puzzles, such as the muddy children, evenetsions with dishonest
children, for details seé [BCSI7,Sad06].

The bulk of the work in this area (algebraic and relationadycerns situations where
the state of knowledges changed by broadcasts but not situations wherestiie of
the systenis changed. An illuminating and concrete example of suakasiins arise
in, but are not limited to, robot navigation in Al. The gerideatures of these protocols
is that an agent is given the description of a place, but dadet@rmine where it is;
however, it can move and as a result may acquire informatiahdllows it to infer
where it is. Consider a robot is given the map of a small comgudaboratory with 5
rooms accessible via 3 actions, as follows:

82—>83—>S5

|

51—>S4

Since the robot can do the same actions in the pairs, andss, s4, it cannot tell them
apart. Once iy, (similarly for s5), it thinks that it could be irs; or so, and once irs3
(similarly for s4), it thinks that it could be irs3 or s4. But if once ins; it performs am
action, then it reaches and learns where it is and where it was before moving.

A deeper investigation of such situations reveals thatitosa question of “patching
up” the theory. There are some interesting fundamentalggsthat need to be made.
First of all, one has to distinguish between transitions &xést in the agent’s “mental
model” of the system and actions thattually occur Second, one has to introduce
a converse dynamic modality in order to correctly formuldie axioms for updating
knowledge. To see why, let us reason as we think the robotdghwhen it reachesy,,

it checks with its map and reasons that the only way it coulgehreached:, would



be that it was originally irs; . It rules outss from its uncertainty set abouj, because,
according to the map, it could not have reachkgdia ana action. We have two types of
data here, the locations and actions described on the maps#tre ones in reality. The
data on the map are hard-coded in the robot and there is notaimtg about it, the map
fully describes the system. But the real locations and astaye only partially known.
The robot is uncertain about locations and the actions @dakange its uncertainties.
The other issue is that to be able to encode what action&l haveled the robot to
where it is, it needs to look back, so we need a converse opetatreason about the
past. Now by moving frons; to s4, the robot has changed its uncertainty, acquired
information, and learned where it is located. This is exaittt manner in which our
new uncertainty reductiomxiom formalizes the elimination of past uncertaintiesciaf
performing a certain move in the real world, the robot cotsdtd description, considers
its possibilities and eliminates the ones that could noehzeen reached as a result of
the action it just performed. Furthermore with this coneepperation, we can also
derive information about past, that the robot was;ibbefore doing action.

This paper presents an algebraic theory with these featitesalgebra of previous
work, e.g. [BCSOF] fails for such situations. The reasomé its reduction axiom re-
sponsible for changing the uncertainty after an actionnig geared towards epistemic
actions and is not powerful enough for fact-changing astitirequires that the uncer-
tainty about (possible states of) a location after an adtidre included in the result of
applying the action to the uncertainty about the locatidiofehand, a property similar
to perfect recallin protocol models of [HM84,HM90]. This fails here, sinceeafper-
forming ana at s; one ends up iB4, hence uncertainty about after ana is the same
as uncertainty about,, consisting ofss ands,. But performinga on the set of uncer-
tainties about, consisting ofs; ands,, results in boths, ands;. However {s4, s1}

is not included in{s3, s4 }. Moreover, after the robot moved #q, it can conclude that
it wasin s; before moving; the language 6f [BCS07] simply cannot exptheseast
tenseproperties.

Finally, regarding related work, dynamic epistemic logastbeen extended withs-
signment@ndpost-conditionse.g. see [vanDit05], to be able to reason about learning
after fact-changing actions. Although the protocols weirterested in can be modeled
in the relational models of [vanDit05] (these being trapsitsystems with uncertainty
as well as action transitions), the reduction axiom thecaoiot derive the knowledge
properties we are interested in. This may be because thgioagh has different kinds
of fact-changing actions in mind, e.g. the ones that chahgetatus of a child in the
muddy children puzzle from dirty to clean via washing (and our location-changing
actions). Nevertheless, they do not discuss or specify Wihdtof actions their reduc-
tion axiom targets. So there is indeed a gap in modeling aambréng about the proto-
cols we deal with here. Also, since we use converse actibass might be connections
to a DEL with converse actions, e.g. see [Audh07]. Howevpreliminary study seems
to indicate that our reduction axiom is still very differérdm the one developed there.
A further exploration of these connections constitutesritvork.

We develop an algebraic setting to formalize informatioquasition from such navi-
gation protocols. We study special cases of the past antefdeterministic action and



converse action operations of the algebra and prove sonheiofixiomatic properties.
We use these to establish connections with temporal algedfraon Karger|[[vK93],
applied to model program evolution. We apply our algebra taleha grid and a map-
based navigation protocol and use the axioms to prove teaagent learns where he
is and was after moving about. Further applications of ottirgeare to Al, mobile
communication, security, and control theory. We show thatadgebraic structure gen-
eralizes that of previous work [BCS07], by proving that thedr faithfully embeds in
ours. Hence our setting is also strong enough to reason &muing as a result of
communication actions.

2 The Algebra of di-Systems

We need to model “actions” and “formulas”. The actions araleled by a quantale
while the propositions are a module over the quantale;¢#o@s modify propositions.

Definition 1. A quantale (Q,\/,e, 1) is a sup-lattice equipped with a unital monoid
structure satisfying e \/,¢; = \/,(¢®¢;) and \/,¢; e ¢ = \/,(¢; ® ¢). Instead of an
arbitrary sup-lattice we take it to be @mpletely distributive prime-algebraic lattice

Recall that a prime element, or simply “primeJ,in lattice has the property that for
any z,y in the lattice,p < x Vv y implies thatp < z orp < y; “prime algebraic”
means that every element is the supremum of the primes béldweé restriction to
prime algebraic lattices is not a serious restriction fer litgical applications that we
are considering; it would be a restriction for extensiongrtababilistic systems; we will
address such issues in future work. The use of algebratity be able to use simple
set-theoretic arguments via the representation theorersuith lattices[[Win09]. For
finite distributive lattices it is not a restriction at all dsuse of Birkhoff’s classical
representation theorem. Henceforth, we will not explctitate that we are working
with (completely) distributive prime-algebraic lattices

Definition 2. A right-module over @ is a sup-latticeM with an action of@ on M,
—-—: M x Q — M satisfying

(m-q)-¢" = m-(qeq’) m-\/ g = \/(m-q) \/mi~q = \/(mi~q) m1=m

[
We call the collection of actions and propositionsygtem

Definition 3. A system s a pair consisting of a quantal@ and a right-modulé\f over
Q. We write(M, @, -) for a system.

This is closely related to the definition of Abramsky and \dckwho have also argued
for the application to Computer Science of quantales obasti see[[AVI3]. Like it



is usually done, we interpret elements of the modulprapositionsand the order as
entailment, thusn v m/ is the logical disjunction and. is the falsum. The elements
of the quantale are interpreted as actions and the ordes izrtter of non-determinism,
thusgq V ¢’ is the non-deterministic choice addis crash, monoid multiplication e ¢’

is sequential composition, and its unit 1 is the action tloetschothing.

Example 1.Consider the following transition system

x Y
a
a a
z1 Z9

We model it as a systerf(S), M(A*),-), where A* is the free monoid generated
from the setd = {a} with the multiplication being juxtaposition and its unietempty
string. M(A*) is the quantale generated on that monoid &@fd) is the sup-lattice
generated from the s& = {z,y, 21, 22}. The most concrete examples 6{S) and
M(A*) areP(S) andP(A*). The action on atoms is given by- a = 21 V 23 and
y-a = zo, Whereas; - a = 29 - a = L. This is extended to juxtaposition and choice
(subsets of actions), as well as subsets of states poitywise

Example 2.The powerseP(5) of a setS is the right module of the quantale of all the
relations thereoP(S x S). Relational composition is the monoid multiplication, the
diagonal relation is its unit, and the join is set union. Thiam is the pointwise image
of the relation, i.e. fol# C S and RC S x §

W-R= | Rlw]={z€W|3weW,(wz2) e R}
weW

Since the action preserves all the joins of its module, the may: M — M, obtained
by fixing the quantale argument, has a Galois right adjoiat pineserves all the meets.
This is denoted by- - ¢ 4 [¢]— and defined in the canonical way, as follows:

[am = \/{m" | m" - ¢ < m}

The right adjoints stand for the “dynamic modality” of Hoéwgic, encoding the “weak-
est preconditions” of programs. Each|gfim is read as “after doing actianor running
programg, propositionm holds”. This is, in effect, all the propositions that shobll
true at the input of such that at its output: holds. One gets very nice logical proper-
ties, relating the action and its adjoint to each other arttlée andA operators of the
lattice and their units. andT. Some examples are as follows:

Proposition 1. The following inequalities hold in any systéi/, @, -):



1) E[Q]m) g<m (2) m <[g](m - q)

@) (mAm')-g<m-qgAm -q (4) m-(gNg)<m-qgAm-q
(5) [g](m Vv m') > [glm V [g]m’

6) ¢<q¢ = [¢Im<[gm (7) [Ljm=T

®8) [gV dTm=[gm A [¢'Im 9) [gVdIm <[gm V [¢'Im
(10){ gNq'Im > [glm V [¢'|m (A1) [g A g'lm > [glm A [g'Im

(12) [V, gilm = \;[a:lm

Proof. The proofs are easy but pedagogical, for reasons of space wetdjive them
here and refer the reader to the full version of the paperQpS1

Definition 4. A sup latticeM is a right di-module of the quantal@ whenever there
are two right actions— - —: M x Q — M and— x —: M x Q@ — M. We call the
pair of a quantale and its di-modulé/, Q, -, x) a di-System.

Definition 5. Whenever the two actions — writteind-© for the purposes of this defi-
nition — of a di-system are related by the following threeoaxs

(i) m-gq<m’ = m<m'-°q whenevein - g # L
(#5) m-q<m’ = m<m -q whenevern -©q # L
(iti) m-“(qeq)=(m-“q)“q
then we refer to the di-system as@nverse di-System and denote it by M, Q, -, -©).

Proposition 2. A converse di-System satisfies

m<(m-q)-q whenever m-q# L
m<(m-“q)-q whenever m-“q# 1

Definition 6. A converse di-System is past-deterministieifk m’-q = m ¢ ¢ <
m/, form’ - ¢ # L. Itis future-deterministic iffn < m’ <¢ = m.-q¢ < m/, for
m' Cq# L.

Proposition 3. In a past-deterministic converse di-System we have m’ - ¢ <~
m-¢q < m'form’-q,m-¢q # L. In a future-deterministic converse di-System we
havem <m'-©q <= m-q<m'form’ -q,m-q# L.

Example 3.Consider the transition system of examiple 1, this is moneanexample

of a converse di-SysterfC(.S), M(A*),-,-¢), where the converse action is given by
z1-“a = x,andz; -a = x V y. Itis easy to check that these satisfy the inequalities of
definition[3, but not their converses: the transition sysiemeither past-deterministic
nor future-deterministic. A counterexample for the coseenf part(i) isz < 22 -“a
butz - a £ 2. If we eliminate the leftmost edge, then the system becomese-
deterministic and the converse @j holds. A counterexample for the converse of part
(ii) is 22 < y-abutzy - a £ y. If we eliminate the rightmost edge, then the system
becomes past-deterministic and the conversg)dfolds.



Example 4.The transition system of the introduction is a future-deiaistic converse
di-System, in the same way as the above example, whiere{s;,...,s5} andA =
{a, b, c}. Itis not past-deterministic, sineg - b = s1 V s, als0ss -“ ¢ = s3 V s4.

Example 5.Consider the setting of examglé 2, this is also an exampleaninaerse
di-System, where the converse action is the point wise inoédiee converse relation,
i.e.for C S and R° C S x S converse ok, we have:

W-R= ] Rw]={z€W|3weW,(wz) e R}
weWw

Itis easy to see thal’ - R = W - R°. If R is a singleton then this di-system becomes
a past-deterministic one, R is a singleton, it becomes future-deterministic.

The converse action preserves all the joins of the modulis, #imilar to the action,
it has a Galois right adjoint denoted by-© ¢ 1 [¢]°—, defined in the canonical way.
Similar to[¢]m, we readg]°m as “before doing action, propositionmn held”.

We end this section by proving some logical properties thkte the action and its
converse to their adjoints. These are of particular inteséisce it turns out that in the
presence of a Boolean negation on the module, the de Morgamofithe right adjoint

to the action is the converse action, and the de Morgan dutieofight adjoint to

the converse action is the action. In other wordsq and[q]°— are de Morgan duals
and so are- - ¢ and[g]—. Our modules need not necessary be Boolean, nevertheless,
these connections can be expressed using the followingepiep, which axiomatize

de Morgan duality in the absence of negation.

Proposition 4. In any converse di-System we haygl v I') < [g]l Vv I’ -© g and
[qc(tv ) < [q]°l Vv I q.Ifitis future-deterministic, we also have® g A [¢]I’ <
(I A1) € q. If its past-deterministic, we also haleq A [¢]l < (IAl) - q.

Proposition 5. If the module of a past and future deterministic convers8yditem is
a Boolean algebra with negation operater-: M — M, we haven - ¢ = —[g|—m
andm -¢ ¢ = —[g]—m.

For details of this, we refer the reader fo [P510]. We have défined a Kleene star
for iteration and shown that it preserves the adjunctiomshé Boolean setting of von
Karger [vK98], these iteration operators model modalitie'emporal logic.

3 Navigation di-Systems

To distinguish the “potential” actions that happen in thednof the agent, e.g. actions
described by a map, from the “real” actions that take placthéreal world, we go
higher order. We make real actions act on the di-system #satribes potential actions.



Definition 7. A second order converse di-System ((M, @, -, ), Q,®,®¢) is a con-
verse di-System whose module is itself a converse di-Sygitesn by

A (M,Q’-7-c)XQ—>(]\/,[7Q’-’-C)7 for _G_ZN[XQ_)]\/[
-0 —: (MaQa'a'c) XQ_>(]\/[7QV1'C)7 for —©°—: ]\/[XQ_>J\/[

Potential and real actions have the same labels and botin like quantalé). Potential
actions change the state of the map via the actiomsd -<, real actions change the
state of the world via the actiors and©°¢. The reason potential and real actions are
distinguished from one another is that their targets hafferdnt uncertainties. For
example, consider the scenario of the introduction, matlatea converse di-system
in exampld¥. There, the uncertainty of - a is s3 V s4, whereas the uncertainty of
s1 @ a is only s4. So the real actions have an extra significance: they alsogehthe
uncertainty of the states. Since real actions cannot besesietheir converse actions
©¢ is taken to be the same as the converse of the potential attibhe former, i.e®°,

is introduced for reasons of symmetry with the real actiorthat we can uniformly use
the right adjoints to the second order actions to expres®tieal properties of “after”
and “before”; as we shall see in the sequel section.

To encode the uncertainties, we lseendomorphisms of the system. The reason these
are calledax s that we require them to satisfy axiomatic inequalitiesier than equal-
ities). These axioms encode the change of uncertaintygthson they are inequalities
has been motivated in [Sad06]. In a nutshell, they are so &blezo encode the process
of learning as a decrease in the uncertainty (hence an semeanformation).

Definition 8. Alax endomorphism v of a second order converse di-System consists of
a pair of endomorphismg = (uv™: M — M,u%: Q — Q), whereu™ preserves
joins of M andu® preserves joins af), moreover we have

WM(m©q) <V {m' € M |m <uM(m-q), m <ul(q) £ 1) (1)
u®(geq) <u(q)eu(q) )
1 <u®(1) (3)

We readu™ (m) as the uncertainty about proposition the join of all propositions that
are possibly true when in reality, is true. For example™ (m) = m v m/, says that
in reality m is true, but agent considers it possible that eitleor m’ might be true.
Similarly, we readu®(q) is the uncertainty about actian the join of all actions that
are possibly happening when in reality actipis happening. E.g:%(q) = q V ¢’ says
that in reality actiory is happening but the agent considers it possible that ejtbeq’
is.

Putting it all together, we define:

Definition 9. A Navigation di-System (Nav-diSys) is a second order converse di-System
(M, Q,-,-°),®,®¢,u) endowed with a di-System lax endomorphism (v, u?).



The real action—- ©® ¢ changes the uncertainty of a propositienvia inequalities of
definition[8. We refer to it as thencertainty reductioraxiom. The intuition behind it
is as follows: when one does actions in reality, they changeuocertainty. In navi-
gation systems this change is as follows: the uncertaintéy aerforming an action in
reality u™ (m © ¢) is the uncertainty of performing a potential action accogdio the
description of the system, i.e (m - ¢) minus the choices to which one could not have
reached via g action (according to the description). For exampt¥,(m - ¢) can be a
choice ofm’ v m/ and it is not possible to reach’ via aq action, i.e.m’ - q = L.
Hencem’ is removed from the choices i (m © q), henceu™ (m © ¢) = m”. The
other two inequalities are for coherence of uncertaintywéigard to composition, the
motivations for these are as in [BCS07].

Example 6.The transition system of the introduction, i.e. exanipleaty be modeled
in the following Nav-diSys

((P(E),P(A*), ) 'c) 77)("4*)7 ©, ®cv u)

Here, X' is obtained by closing the set of statésunder product with4, i.e. X :=
SU(SxA)U(Sx Ax A)U....Soitcontains statese S, pairs of states and actions
(s,a) € S x A, pairs of pairs of states and actiof(s, a),b) € (S x A) x A) and
so on. The first order action on statesa is given by the transitions. This is extended
to pairs by consecutive application of the action, {€.a) - b is given by(s - a) - b
and so on. The states action pairs encode the second ordersadéte. we define the
second order action by® a := (s,a), (s ® a) ©b := ((s,a),b), ... for the atoms and
extend it to all the other elements pointwisely, &g (a V b) := (s ©® a) V (s ® b)
ands © (a e b) := ((s,a),b). As for ©¢, for all actionsa and states, we have that
sO°a=s-°a.

The lax di-System endomorphism on the modulé are determined by indistinguisha-
bility of states as followss, s’ are indistinguishable iff the same actiarcan be per-
formed on them. In formal terms

uM(s):={s' e M |Va€ A, s-a# 1 iff s -a# L1}

The v of the states updated by potential actions isdhe of the image, i.e. for the
transition system of the introduction, we hav¥ (s, - a) = u™(s4) = s4 V s4. The

u™ of states updated by the real action is determined by inéy &) of definition[8,
e.g.uM(s; ®a) = uM(s1,a) < s4. The uncertainties of actions, i.%¥ can be set
similar to that of states: by indistinguishability undempégation to states. Since for
our navigation applications these do not play a crucial, ke assume them to be the
identity, i.e.u®(q) = ¢ for all ¢ € P(A*). We refer to Nav-diSys’ described in this
example agoncrete Nav-diSysind use them to model scenarios of navigation in the
sequel section.

Finally, recall that since each projection @fis join preserving, it has a Galois right
adjoint, we focus on the right adjoint @/, which we denote by the epistemic modality
O. This is canonically defined as follows

Om := \/{m' € M | u™(m’) < m}

9



We readdm as ‘according to the information available holds in reality’. Alterna-
tively, one can use the belief modality of doxastic logic aedd it as ‘it is believed
that, or the (sole) agent believes thait,holds in reality’. Putting these modalities to-
gether with the dynamic ones, we can express propertiesasjgltim, read as “after
actiong the agent believes that holds”, and such afg|0[¢|°m, read as “after action
q the agent believes that before actippropositionm held”, and so on.

4 Applications to Navigation

The scenarios of this section are modeled using the cordestaliSys of exampleg 6.

4.1 Map-based Navigation

For these navigation scenarios, we quotient the concretedi&ys’ of map-based nav-
igation protocols over the following property, referrechiso:

VieS, if JacAc, st RyI|#0 then ™) > {i}.

This is to rule out the scenarios which are based on the mapthnot have this
property. That is, we assume that all our maps have the protbet, all locations in
which some action can be done have a non-singleton undgrtiirother words, if the
agent can do some action at a location, then it cannot knotittiactually at that
location. The intuition behind this property is that, in r@tocols we are interested in
agents move to be able to find out where they are, if they ajrkadw where they are,
then there would be no point in moving and following a protoco

Consider the navigation protocol of introduction, we ereddn a concrete Nav-diSys
with the set of location$ = {s1, s2, s3, 84, 5}, the set of actionslc = {a, b, ¢}, and
applicability of actions and uncertainty of states as dbedrthere. After quotienting
this over®, we show that after doing anaction ons;, the robot knows where it is and
where it was before moving.

Proposition 6. The following hold in a concret&’/© based on the above data.

51 < [a]Osy s1 < [a]Olalsy

Proof. Consider the first one: by the adjunctiet®a - [a]—, itis equivalentt®; ®a <
Os,. By the adjunctions™ H 0O, this is equivalent ta: (s; ® a) < s4. Now by the
uncertainty reduction inequality, it is enough to show that

\/{siES|si§uM(31-a), si-‘a# 1} < 84

Sinces; -a = s4, andu™ (s4) = 53V sy, buts3-“a = L where as,-“a # L, hence the
Ihs of the above is equal tq, which is< s4. Consider the second inequality, it becomes
equivalent tou™ (s; ® a) ®¢ a < s1, by a series of 3 unfoldings of adjunctions. We
have shown that? (s; ® a) < s4, S0 it suffices to show, ©¢ a < s, which is true
sincesy ©°a =54 -a = s1 < s7.

10



For an example of a protocol based on the partial map of asag/[PS10]

4.2 Staircase Navigation

Navigating on the staircase is one of the simplest casesot ravigation: if the robot
is anywhere except for the first and last floor, it does not kmdwere it is. But if it
moves to any of these location, it learns where it is and wésréenoving. We model
the n-floor stair case as € N locationsS = {f, | n € N}. The atomic actions
available to the robot aréc = {up, down}.

up up up up
A —A — —

down

h

down 2 down down

The floorsf, to f,,_; are indistinguishable from one another, i.e.fot i < n, we have
uM(f;) = V1<icn fir thefirstand last floor and the actions have no uncertainty.

Proposition 7. The following hold in a concret&” based on the above data

fx < [up™~¥)Of, fe < [up™*]10[up™ ¥ fi
fi < [dn*Of fi < [dn*10[dn* e
fr < Jup"*10[dn" ] fi fr < [dn™ 1) Oupt1] £

for l<n<k,up” % = upe---eup,up*' = down e --- e down, and similarly for
—_———
n—k k—1
dn*—" anddn®—1.

For the proof see [PS110].

4.3 Grid Navigation

A more complex robot navigation protocol happens on the gridbot is in a grid with
n rows andm columns, it can go up, down, left, and right and is supposetidge
about and find out where it is. The grid cells look alike to itl@sg as it can do the
same movements in them, hence it knows where it is iff it er@swone of the four
corner cells. We model this protocol in a concrete Nav-di&@ys show that no matter
where the robot is, there is always some sequence of moverthentt can do to get it
to one of the corners. After doing either of these it learngemgtit is and where it was
beforehand.

Each grid cell is modeled by a statg in thei’th row and;’th column. Uncertainty of
corner statesi1, S1m, Sn1, Snm 1S identity, i.e.

uM(s11) =511 uM(s1m) = s1m M (sn1) = 501 uM (Spm) = Snm
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For the non-corner cells of the first row and first column, weeha

uM(s1) = \/ S1y uM(sn) = \/ Sz1

1<y<m 1<z<n

For the non-corner cells of last rowand last colummn , we have

uM(snj): \/ Sny uM (sim) = \/ Szm

1<y<m 1<z<n
For the rest of the cells we have”(s;;) = \/ 1 < » < n Szy- The set of actions is
I<y<m
Ac = {u,d,l,r}, their non-applicability is as follows
slj-u:slj 'Cd:Sﬂ'l:Sil 'C’I’:Snj'd:Snj 'CU:Sim'T:Sim'Cl:J_

All the other actions are applicable in all the other states.

Proposition 8. The following hold in a concret&” based on the above data.
Sij < [a]D(sll VSim V Sn1 V Snm) Sij < [a]D[a]csij
forl < i< n,1 < j < manda the following choices of sequences of movements

(ui_l Vdi e (lj_l v rm_j) v (l-j_1 Vi rm_-j) ° (ui_1 \Y; d"_i)

For the proof see [PS10].

5 Embedding Epistemic Systems

An algebraic semantics for information learning from conmication has been pre-
sented in previous work [BCSD7], referred toEFsistemic System#n this section we
make the connection between Epistemic Systems and Na-fh@yal.

Definition 10. A (mono-modallepistemic System M, Q, —®—, f) as defined in[BCS07]
is a quantaleR acting on its right modulé/ via the action— ® —: M x Q — M,
wheref = (fM: M — M, f?: Q — Q) is a lax system endomorsphism of the
setting satisfying the following three inequalities

Mmeq) < fM(m) @ f9(q) (1)
fCgeq) < f2q) e f(d) (2
1< f91) 3)

Moreover every element of the quantale @ has a kernelker(q) = \/{m € M |
m ® ¢ = L} and the module has a special subsetct C M, defined a2 = {p €
M | Vq € Q,p® q < p}. The module and quantale have a set of atotng\/) and
At(Q) and we have thatit(M) C &.

12



Inequality number (1) is referred to as thppearance-updaieequality. The kernel of
each action encodes the propositions to which the actiomatapply, i.e. if you update
those propositions with this action, you will get the Kernels are the opposite of the
preconditionsof actions, as used in the DEL literature, as propositionshah the
action can be applied. The facts represent states, anddberr¢hey are stable under
updates here is that epistemic actions do not change tleecsttte world, but only the
state of information of agents.

Definition 11. Anatomic Nav-diSys similarly atomic Epistemic Systemis one that
has an atomic module with set of atoms(A/) and an atomic quantale with a set of
atomsAt(Q).

Definition 12. Aweak reflexive Nav-diSyss an atomic one in which for € At(M),n €
At(Q) we haves < uM(s) and m < u@(r .
Theorem 1. Given a weak reflexive atomic Nav-diSys the structure

NU = (J\/‘[UaQUa_Q@_af)@

obtained by setting/? to M, Q° to Q, f tou, ® to At(M), andm @ gtom ® g, is an
atomic Epistemic System.

Proof. We need to show that/° satisfies theappearance-updataxiom. We do so
by deriving it from theuncertainty reductioraxiom of AV. In an atomic setting the
uncertainty reductiomxiom becomes equivalent to the following

() uM(moq) <\/{si € A(M)|s; <uM(m-q),s-“u(q) # L}

In the atomic Epistemic Systeii?, theappearance-updatexiom becomes equivalent
to the following

(1) uM(moq) < \/{t; € At(M) | t; < u™(m),t; ©u(q) # L}

This is a result of atoms becoming facts, that is sijoe ® we obtaint; @ u®(q) < t;.
We show(I) < (I1). Takes; < (I), that iss; < uM (m - q) wheres; -© u®(q) # L.
We analyzeu* (m - ¢) by analyzingm - ¢, which is the same as © ¢ in N7, and is
thus equivalent to

m©q=\/{wr € AL(M) [ wy <m,wp ©q# L}
From this by monotonicity ofi, we obtain
uM(m o q) = \/{u (wi) € AL(M) [ wy < m,wp ©q# L)

From the above ang < u* (m-q) = u™(m®q) in N7 we obtain that; < u™ (wy,)
wherewy, ® ¢ # L. Sincewy, < m thenu™ (wy) < u™ (m), thuss; < u*(m). Since
wy, ® ¢ # 1 and by weak reflexivity fromo;, < v (wy) andg < u®(wy,), we have
wy, ® ¢ < uM(wy) ©u?(q), we obtain that: (wy) ® u®(q) # L, hences; < (II).

3 Concrete systems that arise from applications have thjseptyp
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Weak reflexive and transitive Nav-diSys’s and Epistemict@ys form a pair of cat-
egories with morphisms of each being its corresponding fedomorphisms. In this
setting, the above construction becomes a forgetful furfobon the latter to the for-
mer, most likely having a right adjoint.

6 Conclusions and future work

We have developed an algebraic framework for dynamic epistéogic in which the
dynamic and epistemic modalities appear as right adjoliits.key new feature in the
present work relative to previous work [Sad06,BCiS07] isgtesence of converse ac-
tions and the algebraic laws that govern uncertainty rédmcRobot navigation pro-
tocols, as well as the three-player game in Phillips’'s ;gn@hi09], give examples in
which the old learning inequality was violated, showingtttmere were new subtleties
that arise when there are actions that really change treecitétte world.

A number of directions for future work naturally suggestriselves. On the purely
theoretical side, we would like to relate boolean conveisgsydtems to Kleene alge-
bras with test and converse. To develop a logic for Nav-diSses need to first de-
velop a logic for the algebra of di-Systems. The latter m@ssimilar to the positive

fragment of Propositional Dynamic Logic with converse [Rr It seems routine to
add epistemic modalities to this, the challenge would becme up with a logical

form of the uncertainty reduction axiom. Establishing elosonnections to other DEL
logics [AuchO7,vanDit05] are also worth investigating. Afe also particularly inter-
ested in extending this work to apply to examples that ingskcurity protocols where
“knowledge” and “learning” play evident roles. A fundamehnéxtension, and one in
which we have begun preliminary investigations, is the msiten to the probabilistic
case. Here knowledge and information theory may well margaiinteresting and not
obvious way.
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