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Abstract. We develop an algebraic modal logic that combines epistemicand dy-
namic modalities with a view to modelling information acquisition (learning) by
automated agents in a changing world. Unlike most treatments of dynamic epis-
temic logic, we have transitions that “change the state” of the underlying system
and not just the state of knowledge of the agents. The key novel feature that
emerges is the need to have a way of “inverting transitions” and distinguishing
between transitions that “really happen” and transitions that are possible.

Our approach is algebraic, rather than being based on a Kripke-style semantics.
The semantics are given in terms of quantales. We study a class of quantales
with the appropriate inverse operations and prove properties of the setting. We
illustrate the ideas with toy robot-navigation problems. These illustrate how an
agent learns information by taking actions.

1 Introduction

Epistemic logic has proved very important in the analysis ofprotocols in distributed
systems (see, for example, [FHMV95]) and, more generally inany situation where
there is some notion of cooperation or “agreement” between agents. The original work
in distributed systems, by Halpern and Moses [HM84,HM90] and several others mod-
elled the knowledge of agents using Kripke-style [Kri63] models. In these models there
are a set of states (often called “possible worlds”) in whichthe agent could be and, for
each agent, an equivalence relation on the states. If two states are equivalent to an agent
then that agent cannot “tell them apart”. An agent “knows” a fact φ in the states if,
in all statest that the agent “thinks” is equivalent tos, the factφ holds. The quoted
words in the preceding sentences are, of course, unnecessary anthropomorphisms that
are intended to give an intuition for the definitions.

A vital part of any analysis is how processes “learn” as they participate in the proto-
col. The bulk of papers in the distributed systems communitytreat this as a change
in the Kripke equivalence relations and argue about these changesonly in the seman-
tics. The logic itself does not have the “dynamic” modalities that refer to updating
of the state of knowledge. On the other hand, dynamic epistemic logic has indeed
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been studied; see, for example the recent book [vDvdHK08]. In the second author’s
doctoral dissertation an algebraic approach to dynamic epistemic logic was studied in
depth [BCS07,Sad06].

The advantage of working in the algebraic setting is that it abstracts over the details
of the Kripke structures and showcases the high level structure of the actions and their
updates. As a result, one can relate the structure of epistemic actions and their updates
to the other areas of computer science, e.g. reasoning aboutcorrectness of programs
and observational logics, e.g. of Abramsky and Vickers [AV93]. In particular, it turns
out that the epistemic update is the action of the quantale ofprograms/actions on the
module of propositions (factual and epistemic), hence it isthe left adjoint to the dynamic
modality which encodes the weakest precondition of Hoare Logic. Secondly (and in a
novel attempt), epistemic modalities (too) are encoded as an adjoint pair: the belief
modality is the right adjoint of the appearance map, which isthe lifting (to subsets) of
the accessibility relation of the Kripke structure. Apart from the conceptual novelty and
the charm of this adjoint-based approach, it offers a very simple method of reasoning
about knowledge acquisition after an action, i.e. by uniform unfolding of epistemic and
dynamic adjunctions. This method simplifies, to a great extent, the proofs of complex
protocols and puzzles, such as the muddy children, even the versions with dishonest
children, for details see [BCS07,Sad06].

The bulk of the work in this area (algebraic and relational),concerns situations where
the state of knowledgeis changed by broadcasts but not situations where thestate of
the systemis changed. An illuminating and concrete example of such situations arise
in, but are not limited to, robot navigation in AI. The general features of these protocols
is that an agent is given the description of a place, but cannot determine where it is;
however, it can move and as a result may acquire information that allows it to infer
where it is. Consider a robot is given the map of a small computing laboratory with 5
rooms accessible via 3 actions, as follows:

s2
b //

a

��

s3
c // s5

s1
a

//

b

>>||||||||
s4

c

>>||||||||

Since the robot can do the same actions in the pairss1, s2 ands3, s4, it cannot tell them
apart. Once ins1 (similarly for s2), it thinks that it could be ins1 or s2, and once ins3

(similarly for s4), it thinks that it could be ins3 or s4. But if once ins1 it performs ana
action, then it reachess4 and learns where it is and where it was before moving.

A deeper investigation of such situations reveals that it isnot a question of “patching
up” the theory. There are some interesting fundamental changes that need to be made.
First of all, one has to distinguish between transitions that exist in the agent’s “mental
model” of the system and actions thatactually occur. Second, one has to introduce
a converse dynamic modality in order to correctly formulatethe axioms for updating
knowledge. To see why, let us reason as we think the robot should: when it reachess4,
it checks with its map and reasons that the only way it could have reacheds4 would
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be that it was originally ins1. It rules outs3 from its uncertainty set abouts4, because,
according to the map, it could not have reacheds3 via ana action. We have two types of
data here, the locations and actions described on the map versus the ones in reality. The
data on the map are hard-coded in the robot and there is no uncertainty about it, the map
fully describes the system. But the real locations and actions are only partially known.
The robot is uncertain about locations and the actions it takes change its uncertainties.
The other issue is that to be able to encode what actionscould haveled the robot to
where it is, it needs to look back, so we need a converse operation to reason about the
past. Now by moving froms1 to s4, the robot has changed its uncertainty, acquired
information, and learned where it is located. This is exactly the manner in which our
newuncertainty reductionaxiom formalizes the elimination of past uncertainties: after
performing a certain move in the real world, the robot consults its description, considers
its possibilities and eliminates the ones that could not have been reached as a result of
the action it just performed. Furthermore with this converse operation, we can also
derive information about past, that the robot was ins1 before doing actiona.

This paper presents an algebraic theory with these features. The algebra of previous
work, e.g. [BCS07] fails for such situations. The reason is that its reduction axiom re-
sponsible for changing the uncertainty after an action, is only geared towards epistemic
actions and is not powerful enough for fact-changing actions. It requires that the uncer-
tainty about (possible states of) a location after an actionto be included in the result of
applying the action to the uncertainty about the location beforehand, a property similar
to perfect recallin protocol models of [HM84,HM90]. This fails here, since after per-
forming ana ats1 one ends up ins4, hence uncertainty abouts1 after ana is the same
as uncertainty abouts4, consisting ofs3 ands4. But performinga on the set of uncer-
tainties abouts1, consisting ofs1 ands2, results in boths4 ands1. However,{s4, s1}
is not included in{s3, s4}. Moreover, after the robot moved tos4, it can conclude that
it wasin s1 before moving; the language of [BCS07] simply cannot express thesepast
tenseproperties.

Finally, regarding related work, dynamic epistemic logic has been extended withas-
signmentsandpost-conditions, e.g. see [vanDit05], to be able to reason about learning
after fact-changing actions. Although the protocols we areinterested in can be modeled
in the relational models of [vanDit05] (these being transition systems with uncertainty
as well as action transitions), the reduction axiom thereofcannot derive the knowledge
properties we are interested in. This may be because their approach has different kinds
of fact-changing actions in mind, e.g. the ones that change the status of a child in the
muddy children puzzle from dirty to clean via washing (and not our location-changing
actions). Nevertheless, they do not discuss or specify whatkind of actions their reduc-
tion axiom targets. So there is indeed a gap in modeling and reasoning about the proto-
cols we deal with here. Also, since we use converse actions, there might be connections
to a DEL with converse actions, e.g. see [Auch07]. However, apreliminary study seems
to indicate that our reduction axiom is still very differentfrom the one developed there.
A further exploration of these connections constitutes future work.

We develop an algebraic setting to formalize information acquisition from such navi-
gation protocols. We study special cases of the past and future deterministic action and
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converse action operations of the algebra and prove some of their axiomatic properties.
We use these to establish connections with temporal algebras of von Karger [vK98],
applied to model program evolution. We apply our algebra to model a grid and a map-
based navigation protocol and use the axioms to prove that the agent learns where he
is and was after moving about. Further applications of our setting are to AI, mobile
communication, security, and control theory. We show that our algebraic structure gen-
eralizes that of previous work [BCS07], by proving that the latter faithfully embeds in
ours. Hence our setting is also strong enough to reason aboutlearning as a result of
communication actions.

2 The Algebra of di-Systems

We need to model “actions” and “formulas”. The actions are modelled by a quantale
while the propositions are a module over the quantale; i.e. actions modify propositions.

Definition 1. A quantale (Q,
∨

, •, 1) is a sup-lattice equipped with a unital monoid
structure satisfyingq •

∨

i qi =
∨

i(q • qi) and
∨

i qi • q =
∨

i(qi • q). Instead of an
arbitrary sup-lattice we take it to be acompletely distributive prime-algebraic lattice.

Recall that a prime element, or simply “prime”,p in lattice has the property that for
any x, y in the lattice,p ≤ x ∨ y implies thatp ≤ x or p ≤ y; “prime algebraic”
means that every element is the supremum of the primes below it. The restriction to
prime algebraic lattices is not a serious restriction for the logical applications that we
are considering; it would be a restriction for extensions toprobabilistic systems; we will
address such issues in future work. The use of algebraicity is to be able to use simple
set-theoretic arguments via the representation theorem for such lattices [Win09]. For
finite distributive lattices it is not a restriction at all because of Birkhoff’s classical
representation theorem. Henceforth, we will not explicitly state that we are working
with (completely) distributive prime-algebraic lattices.

Definition 2. A right-module over Q is a sup-latticeM with an action ofQ on M ,
− · − : M × Q −→ M satisfying

(m·q)·q′ = m·(q•q′) m·
∨

i

qi =
∨

i

(m·qi)
∨

i

mi·q =
∨

i

(mi·q) m·1 = m

We call the collection of actions and propositions asystem.

Definition 3. A system is a pair consisting of a quantaleQ and a right-moduleM over
Q. We write(M, Q, ·) for a system.

This is closely related to the definition of Abramsky and Vickers who have also argued
for the application to Computer Science of quantales of actions, see [AV93]. Like it
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is usually done, we interpret elements of the module aspropositionsand the order as
entailment, thusm ∨ m′ is the logical disjunction and⊥ is the falsum. The elements
of the quantale are interpreted as actions and the order is the order of non-determinism,
thusq ∨ q′ is the non-deterministic choice and⊥ is crash, monoid multiplicationq • q′

is sequential composition, and its unit 1 is the action that does nothing.

Example 1.Consider the following transition system

x
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~~
~~

~~

z1 z2

We model it as a system(L(S),M(A∗), ·), whereA∗ is the free monoid generated
from the setA = {a} with the multiplication being juxtaposition and its unit the empty
string.M(A∗) is the quantale generated on that monoid andL(S) is the sup-lattice
generated from the setS = {x, y, z1, z2}. The most concrete examples ofL(S) and
M(A∗) areP(S) andP(A∗). The action on atoms is given byx · a = z1 ∨ z2 and
y · a = z2, whereasz1 · a = z2 · a = ⊥. This is extended to juxtaposition and choice
(subsets of actions), as well as subsets of states pointwisely.

Example 2.The powersetP(S) of a setS is the right module of the quantale of all the
relations thereonP(S × S). Relational composition is the monoid multiplication, the
diagonal relation is its unit, and the join is set union. The action is the pointwise image
of the relation, i.e. forW ⊆ S and R ⊆ S × S

W · R =
⋃

w∈W

R[w] = {z ∈ W | ∃w ∈ W, (w, z) ∈ R}

Since the action preserves all the joins of its module, the map−·q : M −→ M , obtained
by fixing the quantale argument, has a Galois right adjoint that preserves all the meets.
This is denoted by− · q ⊣ [q]− and defined in the canonical way, as follows:

[q]m :=
∨

{m′ | m′ · q ≤ m}

The right adjoints stand for the “dynamic modality” of Hoarelogic, encoding the “weak-
est preconditions” of programs. Each of[q]m is read as “after doing actionq or running
programq, propositionm holds”. This is, in effect, all the propositions that shouldbe
true at the input ofq such that at its outputm holds. One gets very nice logical proper-
ties, relating the action and its adjoint to each other and tothe∨ and∧ operators of the
lattice and their units⊥ and⊤. Some examples are as follows:

Proposition 1. The following inequalities hold in any system(M, Q, ·):
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(1) ([q]m) · q ≤ m (2) m ≤ [q](m · q)
(3) (m ∧ m′) · q ≤ m · q ∧ m′ · q (4) m · (q ∧ q′) ≤ m · q ∧ m · q′

(5) [q](m ∨ m′) ≥ [q]m ∨ [q]m′

(6) q ≤ q′ =⇒ [q′]m ≤ [q]m (7) [⊥]m = ⊤
(8) [q ∨ q′]m = [q]m ∧ [q′]m (9) [q ∨ q′]m ≤ [q]m ∨ [q′]m
(10) [q ∧ q′]m ≥ [q]m ∨ [q′]m (11) [q ∧ q′]m ≥ [q]m ∧ [q′]m
(12) [

∨

i qi]m =
∧

i[qi]m

Proof. The proofs are easy but pedagogical, for reasons of space we do not give them
here and refer the reader to the full version of the paper [PS10].

Definition 4. A sup latticeM is a right di-module of the quantaleQ whenever there
are two right actions− · − : M × Q −→ M and− × − : M × Q −→ M . We call the
pair of a quantale and its di-module(M, Q, ·,×) a di-System.

Definition 5. Whenever the two actions – written·and·c for the purposes of this defi-
nition – of a di-system are related by the following three axioms

(i) m · q ≤ m′ =⇒ m ≤ m′ ·c q wheneverm · q 6= ⊥

(ii) m ·c q ≤ m′ =⇒ m ≤ m′ · q wheneverm ·c q 6= ⊥

(iii) m ·c (q • q′) = (m ·c q′) ·c q

then we refer to the di-system as aconverse di-System and denote it by(M, Q, ·, ·c).

Proposition 2. A converse di-System satisfies

m ≤ (m · q) ·c q whenever m · q 6= ⊥

m ≤ (m ·c q) · q whenever m ·c q 6= ⊥

Definition 6. A converse di-System is past-deterministic iffm ≤ m′ · q =⇒ m ·c q ≤
m′, for m′ · q 6= ⊥. It is future-deterministic iffm ≤ m′ ·c q =⇒ m · q ≤ m′, for
m′ ·c q 6= ⊥.

Proposition 3. In a past-deterministic converse di-System we havem ≤ m′ · q ⇐⇒
m ·c q ≤ m′ for m′ · q, m ·c q 6= ⊥. In a future-deterministic converse di-System we
havem ≤ m′ ·c q ⇐⇒ m · q ≤ m′ for m′ ·c q, m · q 6= ⊥.

Example 3.Consider the transition system of example 1, this is moreover an example
of a converse di-System(L(S),M(A∗), ·, ·c), where the converse action is given by
z1 ·

c a = x, andz2 ·
c a = x ∨ y. It is easy to check that these satisfy the inequalities of

definition 5, but not their converses: the transition systemis neither past-deterministic
nor future-deterministic. A counterexample for the converse of part(i) is x ≤ z2 ·c a
but x · a � z2. If we eliminate the leftmost edge, then the system becomes future-
deterministic and the converse of(i) holds. A counterexample for the converse of part
(ii) is z2 ≤ y · a but z2 ·c a � y. If we eliminate the rightmost edge, then the system
becomes past-deterministic and the converse of(i) holds.

6



Example 4.The transition system of the introduction is a future-deterministic converse
di-System, in the same way as the above example, whereS = {s1, . . . , s5} andA =
{a, b, c}. It is not past-deterministic, sinces3 ·

c b = s1 ∨ s2, alsos5 ·
c c = s3 ∨ s4.

Example 5.Consider the setting of example 2, this is also an example of aconverse
di-System, where the converse action is the point wise imageof the converse relation,
i.e. forW ⊆ S and Rc ⊆ S × S converse ofR, we have:

W ·c R =
⋃

w∈W

Rc[w] = {z ∈ W | ∃w ∈ W, (w, z) ∈ Rc}

It is easy to see thatW ·c R = W ·Rc. If Rc is a singleton then this di-system becomes
a past-deterministic one, ifR is a singleton, it becomes future-deterministic.

The converse action preserves all the joins of the module, thus similar to the action,
it has a Galois right adjoint denoted by− ·c q ⊣ [q]c−, defined in the canonical way.
Similar to [q]m, we read[q]cm as “before doing actionq, propositionm held”.

We end this section by proving some logical properties that relate the action and its
converse to their adjoints. These are of particular interest, since it turns out that in the
presence of a Boolean negation on the module, the de Morgan dual of the right adjoint
to the action is the converse action, and the de Morgan dual ofthe right adjoint to
the converse action is the action. In other words− · q and[q]c− are de Morgan duals
and so are− ·c q and[q]−. Our modules need not necessary be Boolean, nevertheless,
these connections can be expressed using the following properties, which axiomatize
de Morgan duality in the absence of negation.

Proposition 4. In any converse di-System we have[q](l ∨ l′) ≤ [q]l ∨ l′ ·c q and
[q]c(l ∨ l′) ≤ [q]cl ∨ l′ · q. If it is future-deterministic, we also havel ·c q ∧ [q]l′ ≤
(l ∧ l′) ·c q. If its past-deterministic, we also havel · q ∧ [q]cl′ ≤ (l ∧ l′) · q.

Proposition 5. If the module of a past and future deterministic converse di-System is
a Boolean algebra with negation operator¬− : M −→ M , we havem · q = ¬[q]c¬m
andm ·c q = ¬[q]¬m.

For details of this, we refer the reader to [PS10]. We have also defined a Kleene star
for iteration and shown that it preserves the adjunctions. In the Boolean setting of von
Karger [vK98], these iteration operators model modalitiesof temporal logic.

3 Navigation di-Systems

To distinguish the “potential” actions that happen in the mind of the agent, e.g. actions
described by a map, from the “real” actions that take place inthe real world, we go
higher order. We make real actions act on the di-system that describes potential actions.
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Definition 7. A second order converse di-System ((M, Q, ·, ·c), Q,⊙,⊙c) is a con-
verse di-System whose module is itself a converse di-System, given by

−⊙− : (M, Q, ·, ·c) × Q −→ (M, Q, ·, ·c), for −⊙− : M × Q −→ M

−⊙c − : (M, Q, ·, ·c) × Q −→ (M, Q, ·, ·c), for −⊙c− : M × Q −→ M

Potential and real actions have the same labels and both livein the quantaleQ. Potential
actions change the state of the map via the actions· and ·c, real actions change the
state of the world via the actions⊙ and⊙c. The reason potential and real actions are
distinguished from one another is that their targets have different uncertainties. For
example, consider the scenario of the introduction, modeled as a converse di-system
in example 4. There, the uncertainty ofs1 · a is s3 ∨ s4, whereas the uncertainty of
s1 ⊙ a is only s4. So the real actions have an extra significance: they also change the
uncertainty of the states. Since real actions cannot be reversed, their converse actions
⊙c is taken to be the same as the converse of the potential action·c. The former, i.e.⊙c,
is introduced for reasons of symmetry with the real action, so that we can uniformly use
the right adjoints to the second order actions to express thelogical properties of “after”
and “before”; as we shall see in the sequel section.

To encode the uncertainties, we uselax endomorphisms of the system. The reason these
are calledlax is that we require them to satisfy axiomatic inequalities (rather than equal-
ities). These axioms encode the change of uncertainty; the reason they are inequalities
has been motivated in [Sad06]. In a nutshell, they are so to beable to encode the process
of learning as a decrease in the uncertainty (hence an increase in information).

Definition 8. A lax endomorphism u of a second order converse di-System consists of
a pair of endomorphismsu = (uM : M −→ M, uQ : Q −→ Q), whereuM preserves
joins ofM anduQ preserves joins ofQ, moreover we have

uM (m ⊙ q) ≤
∨ {

m′ ∈ M | m′ ≤ uM (m · q), m′ ·c uQ(q) 6= ⊥
}

(1)
uQ(q • q′) ≤ uQ(q) • uQ(q′) (2)

1 ≤ uQ(1) (3)

We readuM (m) as the uncertainty about propositionm, the join of all propositions that
are possibly true when in realitym is true. For exampleuM (m) = m ∨ m′, says that
in reality m is true, but agent considers it possible that eitherm or m′ might be true.
Similarly, we readuQ(q) is the uncertainty about actionq, the join of all actions that
are possibly happening when in reality actionq is happening. E.g.uQ(q) = q ∨ q′ says
that in reality actionq is happening but the agent considers it possible that eitherq or q′

is.

Putting it all together, we define:

Definition 9. A Navigation di-System (Nav-diSys) is a second order converse di-System
((M, Q, ·, ·c),⊙,⊙c, u) endowed with a di-System lax endomorphismu = (uM , uQ).
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The real action− ⊙ q changes the uncertainty of a propositionm via inequalities of
definition 8. We refer to it as theuncertainty reductionaxiom. The intuition behind it
is as follows: when one does actions in reality, they change our uncertainty. In navi-
gation systems this change is as follows: the uncertainty after performing an action in
reality uM (m ⊙ q) is the uncertainty of performing a potential action according to the
description of the system, i.e.uM (m ·q) minus the choices to which one could not have
reached via aq action (according to the description). For example,uM (m · q) can be a
choice ofm′ ∨ m′′ and it is not possible to reachm′ via a q action, i.e.m′ ·c q = ⊥.
Hencem′ is removed from the choices inuM (m ⊙ q), henceuM (m ⊙ q) = m′′. The
other two inequalities are for coherence of uncertainty with regard to composition, the
motivations for these are as in [BCS07].

Example 6.The transition system of the introduction, i.e. example 4, can be modeled
in the following Nav-diSys

((P(Σ),P(A∗), ·, ·c) ,P(A∗),⊙,⊙c, u)

Here,Σ is obtained by closing the set of statesS under product withA, i.e. Σ :=
S∪ (S×A)∪ (S×A×A)∪ . . . . So it contains statess ∈ S, pairs of states and actions
(s, a) ∈ S × A, pairs of pairs of states and actions((s, a), b) ∈ (S × A) × A) and
so on. The first order action on statess · a is given by the transitions. This is extended
to pairs by consecutive application of the action, i.e.(s, a) · b is given by(s · a) · b
and so on. The states action pairs encode the second order actions, i.e. we define the
second order action bys⊙ a := (s, a), (s ⊙ a) ⊙ b := ((s, a), b), . . . for the atoms and
extend it to all the other elements pointwisely, e.g.s ⊙ (a ∨ b) := (s ⊙ a) ∨ (s ⊙ b)
ands ⊙ (a • b) := ((s, a), b). As for ⊙c, for all actionsa and statess, we have that
s ⊙c a = s ·c a.

The lax di-System endomorphism on the moduleuM are determined by indistinguisha-
bility of states as follows:s, s′ are indistinguishable iff the same actiona can be per-
formed on them. In formal terms

uM (s) := {s′ ∈ M | ∀a ∈ A, s · a 6= ⊥ iff s′ · a 6= ⊥}

TheuM of the states updated by potential actions is theuM of the image, i.e. for the
transition system of the introduction, we haveuM (s1 · a) = uM (s4) = s4 ∨ s4. The
uM of states updated by the real action is determined by inequality (1) of definition 8,
e.g.uM (s1 ⊙ a) = uM (s1, a) ≤ s4. The uncertainties of actions, i.e.uQ can be set
similar to that of states: by indistinguishability under application to states. Since for
our navigation applications these do not play a crucial role, we assume them to be the
identity, i.e.uQ(q) = q for all q ∈ P(A∗). We refer to Nav-diSys’ described in this
example asconcrete Nav-diSys’and use them to model scenarios of navigation in the
sequel section.

Finally, recall that since each projection ofu is join preserving, it has a Galois right
adjoint, we focus on the right adjoint ofuM , which we denote by the epistemic modality
2. This is canonically defined as follows

2m :=
∨

{m′ ∈ M | uM (m′) ≤ m}
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We read2m as ‘according to the information availablem holds in reality’. Alterna-
tively, one can use the belief modality of doxastic logic andread it as ‘it is believed
that, or the (sole) agent believes that,m holds in reality’. Putting these modalities to-
gether with the dynamic ones, we can express properties suchas[q]2m, read as “after
actionq the agent believes thatm holds”, and such as[q]2[q]cm, read as “after action
q the agent believes that before actionq propositionm held”, and so on.

4 Applications to Navigation

The scenarios of this section are modeled using the concreteNav-diSys of example 6.

4.1 Map-based Navigation

For these navigation scenarios, we quotient the concrete Nav-diSys’ of map-based nav-
igation protocols over the following property, referred toasΘ:

∀l ∈ S, if ∃a ∈ Ac, s.t. Ra[l] 6= ∅ then uM (l) ⊃ {l} .

This is to rule out the scenarios which are based on the maps that do not have this
property. That is, we assume that all our maps have the property that, all locations in
which some action can be done have a non-singleton uncertainty. In other words, if the
agent can do some action at a location, then it cannot know that it is actually at that
location. The intuition behind this property is that, in theprotocols we are interested in
agents move to be able to find out where they are, if they already know where they are,
then there would be no point in moving and following a protocol.

Consider the navigation protocol of introduction, we encode it in a concrete Nav-diSys
with the set of locationsS = {s1, s2, s3, s4, s5}, the set of actionsAc = {a, b, c}, and
applicability of actions and uncertainty of states as described there. After quotienting
this overΘ, we show that after doing ana action ons1, the robot knows where it is and
where it was before moving.

Proposition 6. The following hold in a concreteN/Θ based on the above data.

s1 ≤ [a]2s4 s1 ≤ [a]2[a]cs1

Proof. Consider the first one: by the adjunction−⊙a ⊣ [a]−, it is equivalent tos1⊙a ≤
2s4. By the adjunctionuM ⊣ 2, this is equivalent touM (s1 ⊙ a) ≤ s4. Now by the
uncertainty reduction inequality, it is enough to show that

∨

{si ∈ S | si ≤ uM (s1 · a), si ·
c a 6= ⊥} ≤ s4

Sinces1 ·a = s4, anduM (s4) = s3∨s4, buts3 ·ca = ⊥ where ass4 ·ca 6= ⊥, hence the
lhs of the above is equal tos4, which is≤ s4. Consider the second inequality, it becomes
equivalent touM (s1 ⊙ a) ⊙c a ≤ s1, by a series of 3 unfoldings of adjunctions. We
have shown thatuM (s1 ⊙ a) ≤ s4, so it suffices to shows4 ⊙c a ≤ s1, which is true
sinces4 ⊙c a = s4 ·c a = s1 ≤ s1.

10



For an example of a protocol based on the partial map of a city,see [PS10]

4.2 Staircase Navigation

Navigating on the staircase is one of the simplest cases of robot navigation: if the robot
is anywhere except for the first and last floor, it does not knowwhere it is. But if it
moves to any of these location, it learns where it is and was before moving. We model
the n-floor stair case asn ∈ N locationsS = {fn | n ∈ N}. The atomic actions
available to the robot areAc = {up, down}.

f1

up
))
f2

up
**

down

oo · · ·
up

++

down

oo fn−1

up
**

down

oo fn
down

oo

The floorsf2 tofn−1 are indistinguishable from one another, i.e. for1 < i < n, we have
uM (fi) =

∨

1<i<n fi, the first and last floor and the actions have no uncertainty.

Proposition 7. The following hold in a concreteN based on the above data

fk ≤ [upn−k]2fn fk ≤ [upn−k]2[upn−k]cfk

fk ≤ [dnk−1]2f1 fk ≤ [dnk−1]2[dnk−1]cfk

fk ≤ [upn−k]2[dnn−k]fk fk ≤ [dnk−1]2[upk−1]fk

for 1<n<k, upn−k = up • · · · • up
︸ ︷︷ ︸

n−k

, upk−1 = down • · · · • down
︸ ︷︷ ︸

k−1

, and similarly for

dnk−n anddnk−1.

For the proof see [PS10].

4.3 Grid Navigation

A more complex robot navigation protocol happens on the grid: a robot is in a grid with
n rows andm columns, it can go up, down, left, and right and is supposed tomove
about and find out where it is. The grid cells look alike to it aslong as it can do the
same movements in them, hence it knows where it is iff it ends up in one of the four
corner cells. We model this protocol in a concrete Nav-diSysand show that no matter
where the robot is, there is always some sequence of movements that it can do to get it
to one of the corners. After doing either of these it learns where it is and where it was
beforehand.

Each grid cell is modeled by a statesij in thei’th row andj’th column. Uncertainty of
corner statess11, s1m, sn1, snm is identity, i.e.

uM (s11) = s11 uM (s1m) = s1m uM (sn1) = sn1 uM (snm) = snm

11



For the non-corner cells of the first row and first column, we have

uM (s1j) =
∨

1<y<m

s1y uM (si1) =
∨

1<x<n

sx1

For the non-corner cells of last rown and last columnm , we have

uM (snj) =
∨

1<y<m

sny uM (sim) =
∨

1<x<n

sxm

For the rest of the cells we haveuM (sij) =
∨

1 < x < n

1 < y < m

sxy. The set of actions is

Ac = {u, d, l, r}, their non-applicability is as follows

s1j · u = s1j ·
c d = si1 · l = si1 ·

c r = snj · d = snj ·
c u = sim · r = sim ·c l = ⊥

All the other actions are applicable in all the other states.

Proposition 8. The following hold in a concreteN based on the above data.

sij ≤ [α]2(s11 ∨ s1m ∨ sn1 ∨ snm) sij ≤ [α]2[α]csij

for 1 < i < n, 1 < j < m andα the following choices of sequences of movements

(ui−1 ∨ dn−i) • (lj−1 ∨ rm−j) ∨ (lj−1 ∨ rm−j) • (ui−1 ∨ dn−i)

For the proof see [PS10].

5 Embedding Epistemic Systems

An algebraic semantics for information learning from communication has been pre-
sented in previous work [BCS07], referred to asEpistemic Systems. In this section we
make the connection between Epistemic Systems and Nav-diSys formal.

Definition 10. A (mono-modal)Epistemic System(M, Q,−⊗−, f) as defined in [BCS07]
is a quantaleQ acting on its right moduleM via the action− ⊗ − : M × Q −→ M ,
wheref = (fM : M −→ M, fQ : Q −→ Q) is a lax system endomorsphism of the
setting satisfying the following three inequalities

fM (m ⊗ q) ≤ fM (m) ⊗ fQ(q) (1)

fQ(q • q′) ≤ fQ(q) • fQ(q′) (2)

1 ≤ fQ(1) (3)

Moreover every element of the quantaleq ∈ Q has a kernel,ker(q) =
∨
{m ∈ M |

m ⊗ q = ⊥} and the module has a special subsetFact ⊆ M , defined asΦ = {p ∈
M | ∀q ∈ Q, p ⊗ q ≤ p}. The module and quantale have a set of atomsAt(M) and
At(Q) and we have thatAt(M) ⊆ Φ.

12



Inequality number (1) is referred to as theappearance-updateinequality. The kernel of
each action encodes the propositions to which the action cannot apply, i.e. if you update
those propositions with this action, you will get the⊥. Kernels are the opposite of the
preconditionsof actions, as used in the DEL literature, as propositions towhich the
action can be applied. The facts represent states, and the reason they are stable under
updates here is that epistemic actions do not change the state of the world, but only the
state of information of agents.

Definition 11. Anatomic Nav-diSys, similarly atomic Epistemic System, is one that
has an atomic module with set of atomsAt(M) and an atomic quantale with a set of
atomsAt(Q).

Definition 12. Aweak reflexive Nav-diSysis an atomic one in which fors ∈ At(M), π ∈
At(Q) we haves ≤ uM (s) and π ≤ uQ(π)3.

Theorem 1. Given a weak reflexive atomic Nav-diSysN , the structure

N σ = (Mσ, Qσ,−⊗−, f)Φ

obtained by settingMσ to M , Qσ to Q, f to u, Φ to At(M), andm⊗ q to m⊙ q, is an
atomic Epistemic System.

Proof. We need to show thatN σ satisfies theappearance-updateaxiom. We do so
by deriving it from theuncertainty reductionaxiom of N . In an atomic setting the
uncertainty reductionaxiom becomes equivalent to the following

(I) uM (m ⊙ q) ≤
∨

{si ∈ At(M) | si ≤ uM (m · q), si ·
c uQ(q) 6= ⊥}

In the atomic Epistemic SystemN σ, theappearance-updateaxiom becomes equivalent
to the following

(II) uM (m ⊙ q) ≤
∨

{tj ∈ At(M) | tj ≤ uM (m), tj ⊙ uQ(q) 6= ⊥}

This is a result of atoms becoming facts, that is sincetj ∈ Φ we obtaintj ⊗uQ(q) ≤ tj .
We show(I) ≤ (II). Takesi ≤ (I), that issi ≤ uM (m · q) wheresi ·c uQ(q) 6= ⊥.
We analyzeuM (m · q) by analyzingm · q, which is the same asm ⊙ q in N σ, and is
thus equivalent to

m ⊙ q =
∨

{wk ∈ At(M) | wk ≤ m, wk ⊙ q 6= ⊥}

From this by monotonicity ofuM , we obtain

uM (m ⊙ q) =
∨

{uM(wk) ∈ At(M) | wk ≤ m, wk ⊙ q 6= ⊥}

From the above andsi ≤ uM (m ·q) = uM (m⊙ q) in N σ we obtain thatsi ≤ uM (wk)
wherewk ⊙ q 6= ⊥. Sincewk ≤ m thenuM (wk) ≤ uM (m), thussi ≤ uM (m). Since
wk ⊙ q 6= ⊥ and by weak reflexivity fromwk ≤ uM (wk) andq ≤ uQ(wk), we have
wk ⊙ q ≤ uM (wk) ⊙ uQ(q), we obtain thatuM (wk) ⊙ uQ(q) 6= ⊥, hencesi ≤ (II).

3 Concrete systems that arise from applications have this property.
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Weak reflexive and transitive Nav-diSys’s and Epistemic Systems form a pair of cat-
egories with morphisms of each being its corresponding lax endomorphisms. In this
setting, the above construction becomes a forgetful functor from the latter to the for-
mer, most likely having a right adjoint.

6 Conclusions and future work

We have developed an algebraic framework for dynamic epistemic logic in which the
dynamic and epistemic modalities appear as right adjoints.The key new feature in the
present work relative to previous work [Sad06,BCS07] is thepresence of converse ac-
tions and the algebraic laws that govern uncertainty reduction. Robot navigation pro-
tocols, as well as the three-player game in Phillips’s thesis [Phi09], give examples in
which the old learning inequality was violated, showing that there were new subtleties
that arise when there are actions that really change the state of the world.

A number of directions for future work naturally suggest themselves. On the purely
theoretical side, we would like to relate boolean converse di-Systems to Kleene alge-
bras with test and converse. To develop a logic for Nav-diSys, we need to first de-
velop a logic for the algebra of di-Systems. The latter must be similar to the positive
fragment of Propositional Dynamic Logic with converse [Par78]. It seems routine to
add epistemic modalities to this, the challenge would be to come up with a logical
form of the uncertainty reduction axiom. Establishing closer connections to other DEL
logics [Auch07,vanDit05] are also worth investigating. Weare also particularly inter-
ested in extending this work to apply to examples that involve security protocols where
“knowledge” and “learning” play evident roles. A fundamental extension, and one in
which we have begun preliminary investigations, is the extension to the probabilistic
case. Here knowledge and information theory may well merge in an interesting and not
obvious way.
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