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Abstract

A well studied and general setting for prediction and decision making is
regret minimization in games. Recently the design of algorithms in this set-
ting has been influenced by tools from convex optimization. In this chapter
we describe the recent framework of online convex optimization which nat-
urally merges optimization and regret minimization. We describe the basic
algorithms and tools at the heart of this framework, which have led to the
resolution of fundamental questions of learning in games.
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1 Introduction

In the online decision making scenario, a player has to choose from a pool of
available decisions and then incurs a loss corresponding to the quality of decision
made. The regret minimization paradigm suggests the goal of incurring an average
loss which approaches that of the best fixed decision in hindsight. Recently tools
from convex optimization have given rise to algorithms which are more general,
unifying previous results, and many times giving new and improved regret bounds.

In this chapter we survey some of the recent developments in this exciting
merger of optimization and learning. We start by describing two general templates
for producing algorithms and proving regret bounds. The templates are very sim-
ple, and unify the analysis of many previous well-known and used algorithms (i.e.
multiplicative weights and gradient descent). For the setting of online linear opti-
mization, we also prove that the two templates are equivalent.

After describing the framework and algorithmic templates, we describe some
successful applications: characterization of regret bounds in terms of convexity of
loss functions, bandit linear optimization and variational regret bounds.

1.1 The online convex optimization model

In online convex optimization, an online player iteratively chooses a point from a
set in Euclidean space denoted K ⊆ Rn. Following [Zin03], we assume that the
set K is non-empty, bounded and closed. For algorithmic-efficiency reasons that
will be apparent later, we also assume the set K to be convex.

We denote the number of iterations by T (which is unknown to the online
player). At iteration t, the online player chooses xt ∈ K . After committing to this
choice, a convex cost function ft : K 7→ R is revealed. The cost incurred to the
online player is the value of the cost function at the point she committed to ft(xt).
Henceforth we consider mostly linear cost functions, and abuse notation to write
ft(x) = f>t x.

The feedback available to the player falls into two main categories: in the full
information model, all information about the function ft is observable by the player
(after incurring the loss). In the “bandit” model, the player only observes the loss
ft(xt) itself.

The regret of the online player using algorithmA at time T , is defined to be the
total cost minus the cost of the best fixed single decision, where the best is chosen
with the benefit of hindsight. We are usually interested in an upper bound on the
worst case guaranteed regret, denoted
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RegretT (A) = sup
{f1,...,ft}

{
E[
∑T

t=1ft(xt)]−min
x∈K

∑T
t=1ft(x)

}
.

Regret is the de-facto standard in measuring performance of learning algo-
rithms. 1

Intuitively, an algorithm performs well if its regret is sublinear as a function of
T , i.e. RegretT (A) = o(T ), since this implies that “on the average” the algorithm
performs as well as the best fixed strategy in hindsight.

The running time of an algorithm for online game playing is defined to be the
worst-case expected time to produce xt, for an iteration t ∈ [T ] 2 in a T iteration
repeated game. Typically, the running time will depend on n, T and the parameters
of the cost functions and underlying convex set.

1.2 Examples

1.2.1 Prediction from experts advice

Perhaps the most well known problem in prediction theory is the so-called “experts
problem”. The decision maker has to choose from the advice of n given experts.
After choosing one, a loss between zero and one is incurred. This scenario is re-
peated iteratively, and at each iteration the costs of the various experts are arbitrary.
The goal is to do as well as the best expert in hindsight.

The online convex optimization problem captures this problem as a special
case: the set of decisions is the set of all distributions over n elements (experts),
i.e. the n-dimensional simplex K = ∆n = {x ∈ Rn,

∑
i xi = 1 ,xi ≥ 0}. Let the

cost to the i’th expert at iteration t be denoted by ft(i). Then the cost functions are
given by ft(x) = f>t x - this is the expected cost of choosing an expert according
to distribution x, and happens to be linear.

1.2.2 Online shortest paths

In the online shortest path problem the decision maker is given a directed graph
G = (V,E) and a source-sink pair s, t ∈ V . At each iteration t ∈ [T ], the decision
maker chooses a path pt ∈ Ps,t, where Ps,t ⊆ {E}|V | is the set of all s − t-
paths in the graph. The adversary independently chooses weights on the edges of
the graph, given by a function from the edges to the reals ft : E 7→ R, which
can be represented as a vector in m-dimensional space (for m = |E|): ft ∈ Rm.

1For some problems it is more natural to talk of the “payoff” given to the online player rather than
the cost she incurs. If so, the payoff functions need to be concave and regret is defined analogously.

2Here and henceforth we denote by [n] the set of integers {1, ..., n}
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The decision maker suffers and observes loss, which is the weighted length of the
chosen path

∑
e∈pt ft(e).

The discrete description of this problem as an experts problem, where we have
an expert for every path, presents an efficiency challenge: there are potentially ex-
ponentially many paths in terms of the graph representation size. Much work has
been devoted to resolve this efficiency issue, and efficient algorithms have been
found in this discrete formulation, e.g. [TW03, KV05, AK08]. However, the op-
timal regret bound for the bandit version of this problem eluded researchers for
some time, and was finally resolved only within the online convex optimization
framework [AHR08, DHK08].

The online shortest path problem can be cast in the online convex optimization
framework as follows. Recall the standard description of the set of all distributions
over paths (flows) in graph as a convex set in Rm, with O(m + |V |) constraints.
Denote this flow polytope by K. The expected cost of a given flow x ∈ K (distri-
bution over paths) is then a linear function, given by f>t x, where ft(e) is the length
of the edge e ∈ E. This succinct formulation inherently leads to computationally
efficient algorithms.

1.2.3 Portfolio selection

The universal portfolio selection problem which we briefly describe henceforth is
due to [Cov91]. At each iteration t = 1 to T , the decision maker chooses a distri-
bution of her wealth over n assets xt ∈ ∆n. The adversary independently chooses
market returns for the assets, i.e. a vector rt ∈ Rn+ such that each coordinate rt(i)
is the price ratio for the i’th asset between the iterations t and t + 1. The ratio
between the wealth of the investor at iterations t + 1 and t is r>t xt, and hence the
gain in this setting is defined to be the logarithm of this change ratio in wealth
log(r>t xt). Notice that since xt is the distribution of the investor’s wealth, even if
xt+1 = xt, the investor may still need to trade to adjust for price changes.

The goal of regret minimization, which in this case corresponds to minimizing
the difference maxx∈∆n

∑T
t=1 log(r>t x)−

∑T
t=1 log(r>t xt), has an intuitive inter-

pretation. The first term is the logarithm of the wealth accumulated by the distribu-
tion x∗. Since this distribution is fixed, it corresponds to a strategy of rebalancing
the position after every trading period, and hence called a constant rebalanced
portfolio. The second expression is the logarithm of the wealth accumulated by the
online decision maker. Hence regret minimization corresponds to maximizing the
ratio of investor wealth vs. wealth of the best benchmark from a pool of investing
strategies.

A universal portfolio selection algorithm is defined to be one that attains regret
converging to zero in this setting. Such an algorithm, albeit requiring exponen-
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tial time, was first described in [Cov91]. The online convex optimization frame-
work has given rise to much more efficient algorithms based on Newton’s method
[HAK07].

1.3 Algorithms for online convex optimization

Algorithms for online convex optimization can be derived from rich algorithmic
techniques developed for prediction in various statistical and machine learning set-
tings. Henceforth we describe two general algorithmic frameworks from which
many previous algorithms can be derived as special cases.

Perhaps the most straightforward approach is for the online player to use what-
ever decision (point in the convex set) that would have been optimal. Formally,
let

xt = arg min
x∈K

t−1∑
i=1

fi(x)

This flavor of strategy is known as “fictitious play” in economics, and was
named “Follow the Leader” (FTL) by [KV05]. As the latter paper points out, this
strategy fails miserably in a worst-case sense. That is, it’s regret can be linear in the
number of iterations, as the following example shows: Consider K to be the real
line segment between minus one and one, and f1 = 1

2x, and let fi alternate between
−x or x. The FTL strategy will keep shifting between −1 and +1, always making
the wrong choice.

Kalai and Vempala proceed to analyze a modification of FTL with added noise
to “stabilize” the decision (this modification is originally due to [Han57]). Simi-
larly, much more general and varied twists on this basic FTL strategy can be con-
jured, and as we shall show also analyzed successfully. This is the essence of the
meta-algorithm defined in this section.

Another natural approach for online convex optimization is an iterative ap-
proach: start with some decision x ∈ K, and iteratively modify it according to the
cost functions that are encountered. Some natural update rules include the gradient
update, updates based on a multiplicative rule, on Newton’s method, and so forth.
Indeed, all of these suggestions make for useful algorithms. But as we shall show,
they can all be seen as special cases of the general methodology we analyze next!

2 The RFTL algorithm and its analysis

Recall the caveat with straightforward use of follow-the-leader: as in the bad exam-
ple we have considered, the prediction of FTL may vary wildly from one iteration
to the next. This motivates the modification of the basic FTL strategy in order
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to stabilize the prediction. By adding a regularization term, we obtain the RFTL
(Regularized Follow the Leader) algorithm.

We proceed to formally describe the RFTL algorithmic template, and analyze
it. While the analysis given is optimal asymptotically, we do not give the best
constants possible in order to simplify presentation.

In this section we consider only linear cost functions, f(x) = fTx. The case of
convex cost functions can be reduced to the linear case via the inequality ft(xt)−
ft(x

∗) ≤ ∇ft(xt)(xt − x∗), and considering the function f̂t(x) = ∇ft(xt)>x,
which is now linear.

2.1 Algorithm definition

The generic RFTL meta-algorithm is defined in figure 1 below. The regulariza-
tion function R is assumed to be strongly convex and smooth such that it has a
continuous second derivative.

Algorithm 1 RFTL
1: Input: η > 0, strongly convex regularizer function R, and a convex compact

set K.
2: Let x1 = arg minx∈K [R(x)].
3: for t = 1 to T do
4: Predict xt.
5: Observe the payoff function ft.
6: Update

xt+1 = arg min
x∈K

[
η

t∑
s=1

fTs x +R(x)

]
︸ ︷︷ ︸

Φt(x)

(1)

7: end for

2.2 Special cases: multiplicative updates and gradient descent

Two famous algorithms which are captured by the above algorithm are so called
the “multiplicative update” algorithm and the gradient descent method. If K =
∆n = {x ≥ 0 ,

∑
i x(i) = 1}, then taking R(x) = x logx gives a multiplicative

update algorithm, in which

xt+1(i) =
xt(i) · eηft(i)∑n
i=1 xt(i) · eηft(i)
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If K is the unit ball and R(x) = ‖x‖22, we get the gradient descent algorithm, in
which

xt+1 =
xt − ηft
‖xt − ηft‖2

It is possible to derive these special cases by the KKT optimality conditions of
Equation 1. However, we give an easier proof of these facts in the next section, in
which we give an equivalent definition of RFTL for the case of linear cost func-
tions.

2.3 The regret bound

Henceforth we make use of general matrix norms. A PSD matrix A � 0 gives rise
to the norm ‖x‖A =

√
xTAx. The dual norm of this matrix norm is ‖x‖A−1 =

‖x‖∗A. The generalized Cauchy-Schwartz theorem asserts x · y ≤ ‖x‖A‖y‖∗A.
We usually take A to be the Hessian of the regularization function R(x), denoted
∇2R(x). In this case, we shorthand the notation to be ‖x‖∇2R(y) = ‖x‖y, and
similarly ‖x‖∇−2R(y) = ‖x‖∗y. Denote

λ = max
t,x∈K

fTt [∇2R(x)]−1ft , D = max
u∈K
R(u)−R(x1)

Notice that both λ and D depend on the regularization function, the convex de-
cision set, and the magnitude of the cost functions. Intuitively, the term D cor-
responds to the diameter of the set K as measured by the regularization R, while
the term λ corresponds to the (squared) magnitude of the cost functions, measured
according to a norm which is derived from the regularization.

Theorem 1. The algorithm above achieves for every u ∈ K the following bound
on the regret:

RegretT =

T∑
t=1

f>t (xt − u) ≤ 2
√

2λDT .

Consider the expert problem for example: the convex set is the simplex, take
R to be the negative entropy function (which corresponds to the multiplicative
update algorithm), and the costs are bounded by one in each coordinate. Then
fT[∇2R(x)]−1f =

∑
i f(i)

2x(i) ≤
∑

i x(i) = 1 which implies λ ≤ 1. The
parameter D in this case is bounded by maxu∈∆

∑
i u(i) log 1

u(i) ≤ log n. This
gives a regret bound of O(

√
T log n), which is known to be tight. 3

3In the case of multiplicative updates, as well as in other regularization functions of inter-
est, it is possible to obtain a tighter bound in Theorem 1: the term λ can be redefined as λ =
maxt f

T
t [∇2R(xt)]

−1ft. The derivation is not in the scope of this survey, see [AHR08] for more
details.
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To prove Theorem 1, we first relate the regret to the “stability” in prediction.
This is formally captured by the FTL-BTL lemma below, which holds in the afore-
mentioned general scenario.

Lemma 1 (FTL-BTL Lemma). For every u ∈ K, the algorithm defined by (1)
enjoys the following regret guarantee

T∑
t=1

fTt (xt − u) ≤
T∑
t=1

fTt (xt − xt+1) +
1

η
[R(u)−R(x1)]

We defer the proof of this simple lemma to the appendix, and proceed with the
(short) proof of the main theorem.

Proof of Main Theorem. Recall that R(x) is a convex function and K is convex.
Then by Taylor expansion (with its explicit remainder term via the mean-value
theorem) at xt+1, there exists a zt ∈ [xt+1,xt] for which

Φt(xt) = Φt(xt+1) + (xt − xt+1)T∇Φt(xt+1) +
1

2
‖xt − xt+1‖2zt

≥ Φt(xt+1) +
1

2
‖xt − xt+1‖2zt

Recall our notation ‖y‖2z = yT∇2Φt(z)y and it follows that ‖y‖2z = yT∇2R(z)y.
The inequality above is true because xt+1 is a minimum of Φt over K. Thus,

‖xt − xt+1‖2zt ≤ 2 Φt(xt)− 2 Φt(xt+1)

= 2 (Φt−1(xt)− Φt−1(xt+1)) + 2ηfTt (xt − xt+1)

≤ 2 η fTt (xt − xt+1) .

By the generalized Cauchy-Schwartz inequality,

fTt (xt − xt+1) ≤ ‖ft‖∗zt · ‖xt − xt+1‖zt general CS (2)

≤ ‖ft‖∗zt ·
√

2 η fTt (xt − xt+1)

Shifting sides and squaring we get

fTt (xt − xt+1) ≤ 2 η ‖ft‖∗ 2
zt ≤ 2 η λ .

This together with the FTL-BTL Lemma, summing over T periods we obtain the
Theorem. Choosing the optimal η, we obtain

RT ≤ min
η

{
2 ηλT +

1

η
[R(u)−R(x1)]

}
≤ 2
√

2DλT .
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3 The “primal-dual” approach

The other approach for proving regret bounds, which we call “primal-dual”, orig-
inates from the so called “link-function methodology”, as introduced in [GLS01,
KW01], and related to the “mirrored descent” paradigm in the optimization com-
munity. A central concept useful for this method are Bregman divergences, for-
mally defined by,

Definition 1. Denote by BR(x||y) the Bregman divergence with respect to the
functionR, defined as

BR(x||y) = R(x)−R(y)− (x− y)T∇R(y) .

The primal-dual algorithm is an iterative algorithm, which computes the next
prediction using a simple update rule and the previous prediction. The generality
of the method stems from the update being carried out in a “dual” space, where the
duality notion is defined by the choice of regularization.

Algorithm 2 Primal-dual
1: Let K be a convex set
2: Input: parameter η > 0, regularizer functionR(x).
3: for t = 1 to T do
4: If t = 1, choose y1 such that∇R(y1) = 0.
5: If t > 1, choose yt such that:

Lazy version: ∇R(yt) = ∇R(yt−1)− η ft−1.

Active version: ∇R(yt) = ∇R(xt−1)− η ft−1.

6: Project according to BR:

xt = arg min
x∈K

BR(x||yt)

7: end for

3.1 Equivalence to RFTL in the linear setting

For the special case of linear cost functions, the algorithm above (lazy version) and
RFTL are identical, as we show now. The primal-dual algorithm, however, can
be analyzed in a very different way, which is extremely useful in certain online
scenarios.
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Lemma 2. For linear cost functions, the lazy primal-dual and RFTL algorithms
produce identical predictions, i.e.,

arg min
x∈K

(
fTt x +

1

η
R(x)

)
= arg min

x∈K
BR(x||yt) .

Proof. First, observe that the unconstrained minimum

x∗t ≡ arg min
x∈Rn

{ t−1∑
s=1

fTs x +
1

η
R(x)

}
satisfies

t−1∑
s=1

fs +
1

η
∇R(x∗t ) = 0 .

SinceR(x) is strictly convex, there is only one solution for the above equation
and thus yt = x∗t . Hence,

BR(x||yt) = R(x)−R(yt)− (∇R(yt))
T(x− yt)

= R(x)−R(yt) + η

t−1∑
s=1

fTs (x− yt) .

Since R(yt) and
∑t−1

s=1 f
T
s yt are independent of x, it follows that BR(x||yt) is

minimized at the point x that minimizes R(x) + η
∑t−1

s=1 f
T
s x over K which, in

turn, implies that

arg min
x∈K

BR(x||yt) = arg min
x∈K

{ t−1∑
s=1

fTs x +
1

η
R(x)

}
.

3.2 Regret bounds for the primal-dual algorithm

Theorem 2. Suppose that R is such that BR(x,y) ≥ 1
2‖x − y‖2 for some norm

‖ · ‖. Let ‖∇ft(xt)‖∗ ≤ G∗ for all t, and ∀x ∈ K BR(x,x1) ≤ D2. Applying the
primal-dual algorithm (active version) with η = D

2G∗
√
T

, we have

RegretT ≤ DG∗
√
T
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Proof. Since the functions ft are convex, for any x∗ ∈ K,

ft(xt)− ft(x
∗) ≤ ∇ft(xt)>(xt − x∗).

The following property of Bregman divergences follows easily from the definition:
for any vectors x,y, z,

(x− y)>(∇R(z)−∇R(y)) = BR(x,y)−BR(x, z) +BR(y, z).

Combining both observations,

2(ft(xt)− ft(x
∗)) ≤ 2∇ft(xt)>(xt − x∗)

=
1

η
(∇R(yt+1)−∇R(xt))

>(x∗ − xt)

=
1

η
[BR(x∗,xt)−BR(x∗,yt+1) +BR(xt,yt+1)]

≤ 1

η
[BR(x∗,xt)−BR(x∗,xt+1) +BR(xt,yt+1)]

where the last inequality follows from the generalized Pythagorean inequality (see
[CBL06] Lemma 11.3), as xt+1 is the projection w.r.t the Bregman divergence of
yt+1 and x∗ ∈ K is in the convex set. Summing over all iterations,

2Regret ≤ 1

η
[BR(x∗,x1)−BR(x∗,xT )] +

T∑
t=1

1

η
BR(xt,yt+1)

≤ 1

η
D2 +

T∑
t=1

1

η
BR(xt,yt+1) (3)

We proceed to boundBR(xt,yt+1). By definition of Bregman divergence, and
the generalized Cauchy-Schwartz inequality,

BR(xt,yt+1) +BR(yt+1,xt) = (∇R(xt)−∇R(yt+1))>(xt − yt+1)

= η∇ft(xt)>(xt − yt+1)

≤ η‖∇ft(xt)‖∗‖xt − yt+1‖

≤ 1

2
η2G2

∗ +
1

2
‖xt − yt+1‖2.

where in the last inequality follows from (a − b)2 ≥ 0. Thus, by our assumption
BR(x,y) ≥ 1

2‖x− y‖2, we have

BR(xt,yt+1) ≤ 1

2
η2G2

∗ +
1

2
‖xt − yt+1‖2 −BR(yt+1,xt) ≤

1

2
η2G2

∗.
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Plugging back into Equation (3), and by non-negativity of the Bregman diver-
gence, we get

Regret ≤ 1

2
[
1

η
D2 +

1

2
ηTG2

∗] ≤ DG∗
√
T ,

by taking η = D
2
√
TG∗

3.3 Deriving the multiplicative update and gradient descent algorithms

We have stated in the previous section that by taking R to be the negative en-
tropy function over the simplex, the RFTL template specializes to become a mul-
tiplicative updates algorithm. Since we have proved that RFTL is equivalent to the
primal-dual algorithm, the same is true for the latter, and the same regret bound
applies.

IfR(x) = x logx is the negative entropy function, then ∇R(x) = 1 + logx,
and hence the update rule for the primal-dual algorithm 2 (the lazy and adaptive
versions are identical in this case) becomes:

logyt = logxt−1 − ηft−1

or, yt(i) = xt−1(i) · e−ηft−1(i). Since the entropy projection corresponds to scal-
ing by the `1 norm, it follows that xt+1(i) = xt(i)·eηft(i)∑n

i=1 xt(i)·eηft(i)
. The regret of the

multiplicative updates algorithm can be bounded as in section 2.3 byO(
√
T log n).

To derive the online gradient descent algorithm, takeR = 1
2‖x‖

2
2. In this case,

∇R(x) = x, and hence the update rule for the primal-dual algorithm 2 becomes:

yt = yt−1 − ηft−1

and hence when K is the unit ball xt+1 =
x1−η

∑t
τ=2 fτ

‖x1−η
∑t
τ=2 fτ‖2

= xt−ηft
‖xt−ηft‖2 .

4 Convexity of loss functions

In this section we review one of the first consequences of the convex optimization
approach to decision making. Namely, the characterization of attainable regret
bounds in terms of convexity of loss functions. It has long been known that special
kinds of loss functions permit tighter regret bounds than other loss functions. For
example, in the portfolio selection problem Cover’s algorithm attained regret which
depends on the number of iterations T as O(log T ). This is in contrast to online
linear optimization, or the experts problem, in which Θ(

√
T ) is known to be tight.
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In this section we give a simple gradient-descent based algorithm which at-
tains logarithmic regret if the loss functions are strongly convex. Interestingly, the
naive fictitious play (FTL) algorithm attains essentially the same regret bounds in
this special case. Similar bounds are attainable under weaker conditions on the
loss functions, which capture the portfolio selection problem, and have led to the
aforementioned efficient algorithm for Cover’s problem [HAK07].

We say that a function is α-strongly convex if its second derivative is strictly
bounded away from zero. In higher dimensions this corresponds to the matrix
inequality∇2f(x) � α · I, where∇2f(x) is the hessian of the function and A � B
denotes that the matrix A − B is positive semi-definite. For example, the squared
loss, i.e. f(x) = ‖x− a‖22, is 1-strongly convex.

Algorithm 3 Online gradient descent
1: Input: convex set K, initial point x0 ∈ K, learning rates η1, ..., ηt.
2: for t = 1 to T do
3: Let yt = xt−1 − ηt−1∇ft−1(xt−1).
4: Project onto K:

xt = arg min
x∈K
‖x− yt‖2

5: end for

The following theorem, proved in [HAK07], establishes logarithmic bounds on
the regret if the cost functions are strongly convex. Denote by G an upper bound
on the Euclidean norm of the gradients.

Theorem 3. The online gradient descent algorithm with step sizes ηt = 1
αt achieves

the following guarantee, for all T ≥ 1.

RegretT (OGD) ≤ G2

2α
(1 + log T )

Proof. Let x∗ ∈ arg minx∈P
∑T

t=1 ft(x). Recall the definition of regret:

RegretT (OGD) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗)

Denote∇t , ∇ft(xt). By α-strong convexity, we have,

ft(x
∗) ≥ ft(xt) +∇>t (x∗ − xt) +

α

2
‖x∗ − xt‖2

2(ft(xt)− ft(x∗)) ≤ 2∇>t (xt − x∗)− α‖x∗ − xt‖2 (4)
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Following Zinkevich’s analysis, we upper-bound ∇>t (xt − x∗). Using the update
rule for xt+1 and the generalized Pythagorian inequality ([CBL06] Lemma 11.3),
we get

‖xt+1 − x∗‖2 = ‖Π(xt − ηt∇t)− x∗‖2 ≤ ‖xt − ηt∇t − x∗‖2.

Hence,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2
t ‖∇t‖2 − 2ηt∇>t (xt − x∗)

Shifting sides,

2∇>t (xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ ηtG

2 (5)

Sum up (5) from t = 1 to T . Set ηt = 1/(αt), and using (4), we have:

2
T∑
t=1

ft(xt)− ft(x
∗) ≤

T∑
t=1

‖xt − x∗‖2
(

1

ηt
− 1

ηt−1
− α

)
+G2

T∑
t=1

ηt

= G2
T∑
t=1

1

αt
≤ G2

α
(1 + log T )

5 Recent Applications

In this section we describe to recent applications of the convex optimization view
to regret minimization which have resolved open questions in the field.

5.1 Bandit linear optimization

The first application is to the bandit linear optimization problem: online linear opti-
mization is a special case of online convex optimization in which the loss functions
are linear (such as analyzed for the RFTL algorithm). In the bandit version, called
bandit linear optimization, the only feedback available to the decision maker is the
loss (rather than the entire loss function), and the knowledge that some unknown
linear function generated this loss. This general framework naturally captures im-
portant problems such as online routing and online ad-placement for search engine
results.

This generalization was put forth by [AK08] in the context of the online short-
est path problem described previously. [AK08] gave an efficient algorithm for the
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problem with a suboptimal regret bound, and conjectured the existence of an effi-
cient and optimal-regret algorithm.

The problem attracted much attention in the machine learning community [FKM05,
DH06, DHK07, BDH+], until this question was finally resolved in [AHR08] where
an efficient and optimal expected regret algorithm was described. Later [AR09]
gave an efficient algorithm which also attains this optimal regret bound with high
probability. The paper introduced the use of self-concordant barrier functions as
a regularization in the RFTL framework. Self-concordant barriers are a powerful
tool from optimization which has enabled researchers in operations research to de-
velop efficient polynomial-time algorithms for (offline) convex optimization. The
scope of this deep technical issue is beyond this survey, but the resolution of this
open question is an excellent example of how the convex optimization approach to
regret minimization led to the discovery of powerful tools which in turn resolved
fundamental questions in machine learning.

5.2 Variational regret bounds

A cornerstone of modern machine learning are algorithms for prediction from ex-
pert advice, the first example of regret minimization we have described. It is al-
ready well established that there exists algorithms that, under fully adversarial cost
sequences, attain average cost approaching that of the best expert in hindsight.
More precisely, there exist efficient algorithms which attain regret of O(

√
T log n)

in the setting of prediction from expert advice with n experts.
However, a priori it is not clear why online learning algorithms should have

high regret (growing with the number of iterations) in an unchanging environment.
As an extreme example, consider a setting in which there are only two experts.
Suppose that the first expert always incurs cost 1, whereas the second expert always
incurs cost 1

2 . One would expect to “figure out” this pattern quickly, and focus
on the second expert, thus incurring a total cost that is at most T

2 plus at most
a constant extra cost (irrespective of the number of rounds T ), thus having only
constant regret. However, for a long time all analyses of expert learning algorithms
only gave a regret bound of Θ(

√
T ) in this simple case (or very simple variations

of it).
More generally, the natural bound on the regret of a “good” learning algorithm

should depend on variation in the sequence of costs, rather than purely on the num-
ber of iterations. If the cost sequence has low variation, we expect our algorithm
to be able to perform better.

This intuition has a direct analog in the stochastic setting: here, the sequence
of experts’ costs are independently sampled from a distribution. In this situation, a
natural bound on the rate of convergence to the optimal expert is controlled by the
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variance of the distribution (low variance should imply faster convergence). This
conjecture was formalized by Cesa-Bianchi, Mansour and Stoltz (henceforth the
“CMS conjecture”) in [CBMS07].

The CMS conjecture was proved in the more general case of online linear op-
timization in [HK10]. Again, the convex optimization view was instrumental in
the solution, and taken the general linear optimization view it was found that a
simple geometric argument implies the result. Further work on variational bounds
included an extension to the bandit linear optimization setting [HK09a] and to exp-
concave loss functions including the problem of portfolio selection [HK09b].
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A The FTL-BTL Lemma

The following proof is essentially due to [KV05]

proof of Lemma 1. For convenience, denote by f0 = 1
ηR, and assume we start the

algorithm from t = 0 with an arbitrary x0. The lemma is now proved by induction
on T .
Induction base: Note that by definition, we have that x1 = arg minx{R(x)}, and
thus f0(x1) ≤ f0(u) for all u, thus f0(x0)− f0(u) ≤ f0(x0)− f0(x1).
Induction step: Assume that that for T , we have

T∑
t=0

ft(xt)− ft(u) ≤
T∑
t=0

ft(xt)− ft(xt+1)

and let us prove for T + 1. Since xT+2 = arg minx{
∑T+1

t=0 ft(x)} we have:

T+1∑
t=0

ft(xt)−
T+1∑
t=0

ft(u) ≤
T+1∑
t=0

ft(xt)−
T+1∑
t=0

ft(xT+2)

=
T∑
t=0

(ft(xt)− ft(xT+2)) + fT+1(xT+1)− fT+1(xT+2)

≤
T∑
t=0

(ft(xt)− ft(xt+1)) + fT+1(xT+1)− fT+1(xT+2)

=
T+1∑
t=0

ft(xt)− ft(xt+1)
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Where in the third line we used the induction hypothesis for u = xT+2. We
conclude that

T∑
t=1

ft(xt)− ft(u) ≤
T∑
t=1

ft(xt)− ft(xt+1) + [−f0(x0) + f0(u) + f0(x0)− f0(x1)]

=

T∑
t=1

ft(xt)− ft(xt+1) +
1

η
[R(u)−R(x1)]
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