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Abstract
In this project we used a Variational Encoder De-
coder (VED) to generate images from text. A
VED works identically to the traditional Varia-
tional Auto-Encoder (VAE); it encodes the in-
put to a latent space, samples Gaussian variables
from the latent representation, and decodes the
latent variables into the output. The fundamen-
tal difference between the two models is the fact
that the VED’s output is not necessarily from the
same representation as its input. We used the
MNIST dataset to automatically create different
sets of captions, which include: image labels,
noisy image labels, logical operations, and basic
additions. Our results show that the model is able
to generate correct images on never before seen,
more complex combinations of captions.

1. Literature Review
Deep neural networks have achieved significant successes
in many different tasks such as speech recognition (Hin-
ton et al., 2012), image classification (Krizhevsky et al.,
2012), image captioning (Karpathy & Fei-Fei, 2017), and
machine translation (Bahdanau et al., 2014). However,
most of these past successes have come from discrimina-
tive models, whereas generative models have only recently
risen to the forefront of the Deep Learning community.

There has been a vast amount of Deep Learning research
directed towards the understanding of text and images. The
first of which (the most simple) is the classification setting;
where the model must identify the correct label for each
image. Due to the success of deep discriminative models
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(Krizhevsky et al., 2012), image classification is largely
considered solved. Caption generation is a popular task
that has also achieved great successes (Karpathy & Fei-Fei,
2017). One of the reasons for its recent popularity is due to
the vast amount of available labeled data (e.g the MSCOCO
dataset (Lin et al., 2014)). The approaches to model a joint
distribution over text and images motivated further to work
in the reverse direction: generating an image given its tex-
tual description. This challenging task involves language
modeling and conditional image synthesis.

Image generation from text is a task that conditions a model
to learn a joint distribution between pixel values and a text
description of visual features. The base components that
are present in many modern approaches are the following;
text embeddings that map from text to some latent vector
representation, a Recurrent Neural Network (RNN) to en-
code the embeddings by capturing time dependencies, and
a decoder that maps from latent variables to images. In
general, the word embeddings can be either learned or pre-
trained on some large corpus (e.g word2vec (Mikolov et al.,
2013)), the (RNN) can be either unidirectional or bidirec-
tional, and the decoder can either be a simple feed forward
neural network or a deconvolutional neural network.

One very popular method for image generation is to use
a Variational Auto-Encoder (Kingma & Welling, 2013).
VAEs learn to encode and decode their inputs, while also
approximating the posterior distribution as a mapping from
a standard normal distribution. Thus, the encoders job is
to both help the decoder reconstruct the input distribution
while also minimizing the distance between its encoding
and the normal distribution.

There are several recent works that use VAEs to generate
images from captions. For example, (Pu et al., 2016) used
a Deconvolutional Neural Network to form the mapping
from latent variables to the output image. Another exam-
ple is the work of (Mansimov et al., 2015), where they it-
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eratively generate fragments of the image by using a VAE
combined with a bidirectional RNN as an attention mecha-
nism over the captions.

It is worth mentioning that there exists other popular ap-
proaches in the Deep learning literature to handle these
generative tasks. One particular method is to formulate the
image generation as a minimax problem using Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014).
The main idea of GANs is simple; train a model to gen-
erate data by fooling a second model (the discriminator)
that attempts to discriminate between true samples and the
generated (fake) samples. In the case of image generation
from captions, the generator generates images from both a
gaussian noise vector and a caption. Using GANs in this
context has resulted in fairly sharp generated images (Reed
et al., 2016; Zhang et al., 2016).

However, GANs are notoriously difficult to train due to
mode collapse and non-convergence brought on by the fact
that there are two models to train simultaneously (Goodfel-
low, 2017) (although newer methods claim to alleviate the
problem, e.g WGAN (Arjovsky et al., 2017) ). For this rea-
son, in this paper we will focus mainly on the Variational
Auto-Encoder. We provide a more formal description of
the VAE in the following subsections.

1.1. Variational Auto Encoder Background

In general, a VAE consists of an encoder, parameterized by
θ, that takes in as input x ∈ Rn and projects it to a lower
dimensional space z ∈ Rd and a decoder, parameterized
by φ, that does the inverse operation of the encoder. The
encoder learns an effective compression through this bot-
tleneck projection, qθ (z | x). The distribution qθ is condi-
tioned to be a standard Gaussian that serves as a regularizer
in learning the distribution. The decoder learns pφ (x | z)
to decode x from a sample from qθ. By learning to map
z to a standard Gaussian during training, a sample from a
standard Gaussian can be used as z, input to the decoder, to
decode x, thus learning the distribution over x effectively
in a lower dimensional latent space z.

VAEs are trained by minimizing the negative log-likelihood
regularized with a KL-divergence factor as shown in the
equation below:

L = Ez∼qθ [log pφ (x | z)] +KL [qθ (z | x) || p (z)] (1)

with p (z) specified as a standard Gaussian. The KL loss,
hence, penalizes the encoder if pθ is different from standard
Gaussian thus enabling it to be sufficiently diverse.

1.2. Graphical Model Perspective

A Variational Auto Encoder learns a joint distribution be-
tween the output and the latent variables that factorizes as,

p(x, z) = p(x|z)p(z). The decoder network decodes the
latent variable, zi ∼ p(z), to a vector in the image space
during the generative process.

The goal of a VAE is to infer good values of z that can be
decoded into the right image. By Bayes law,

p(z|x) = p(x|z)p(z)
p(x)

(2)

Computing the posterior requires exponential time as the
denominator p(x) in Equation 2 needs to be computed over
all possible configurations. To avoid this, the model as-
sumes a parameterized distribution qλ(z|x), where λ indi-
cates a family of distributions. We consider the Gaussian
family of distributions which assumes a mean µxi and a
variance σ2

xi for every datapoint and we try to directly min-
imize the KL-Divergence between qλ and p(z|x):

KL (qλ(z)||p(z|x)) = Eq [log qλ(z)]−Eq [log p(x, z)]+log p(x)
(3)

Minimizing KL loss as in Equation 3 requires to compute
the intractable p(x). To get around this, we consider Jensen
inequality on the factorization of p(x),

log p(x) =

∫
z

log p(x, z)

=

∫
z

log p(x, z)
q(z)

q(z)

= logEq

[
p(x, z)

q(z)

]
≥ Eq [log(p(x, z))]− Eq [log q(z)]

This is the Evidence Lower Bound (ELBO). KL loss can
be now re-written as,

KL = −ELBO + log p(x)

As the log p(x) term is independent of q, maximizing
ELBO directly corresponds to minimizing KL. This is the
loss term in training variational models and our proposed
architecture uses this to optimize the image generation task.

2. Model Description
We use an encoder-decoder architecture (see Figure 1) to
model the posterior distribution P (z|x). The encoder (a
Recurrent Neural Network) takes in as input a sequence of
word embeddings (x1:t) and encodes it to a latent space
(z). The variational objective is that the conditional distri-
bution over z is not easy to sample from. Hence, the model
uses a standard Gaussian with identity covariance matrix
and zero mean to model the conditional distribution over
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the latent space. This provides an amenable distribution to
be sampled from during testing.

The model is trained end-to-end using Equation 1. The first
term in the expression tries to minimize the error in recon-
struction from the latent space, and the second term is the
variational lower bound, which approximates the posterior
to standard Gaussian.

Figure 1. Variational Encoder Decoder Model

3. Methodology
In this section we present the data we used and provide
hyper-parameter settings.

3.1. Data description

We used MNIST database for our experiments. MNIST is
a collection of handwritten digit images. Each image is a
28 × 28 binary image with corresponding class label. We
manually defined a variety of captions ranging from easy
to more difficult ones:

1. image label as caption, ie: “<start> five <end>” for
all images.

2. random sentences with one label in it, ie: “<start>
this is a black five on a white background <end>”.
We have a total of 12 different sentences, and for each
image, we sample one of them to be the caption.

3. logical captions with multiple numbers in it, ie:
“<start> min nine five seven <end>” should gener-
ate an image of a five. We considered ‘min’ and ‘max’
operators.

4. operation captions where we write a sum of multiple
numbers that represent the image label, ie: “<start>
three plus two <end>” should generate an image of a
five.

3.2. Implementation details

We started to experiment with simple captions to make
sure our model was bug-free 1 (caption type 1), and subse-
quently tried more and more complex captions. The model
was performing relatively well on all types of captions so
we decided to focus on the operational captions (type 4).
We used Pytorch (Paszke et al., 2017) as our Deep Learn-
ing library.

We divided the MNIST dataset into a training set, valida-
tion set, and test set. We then hand defined 13 different
training and validation captions for each digit class. In par-
ticular we considered only one operation between two dig-
its for each number to generate (‘x plus y’), the actual num-
ber to generate (‘x’), and the decomposition of that number
into sums of ‘one’s (‘one plus one ... plus one’). At test
time the captions were much more complex and longer. For
the model to perform well in this more complex setting, it
needed to learn the “compositionallity” of simple addition
or subtraction.

In order to better evaluate our generative model we also
trained a classic Convolutional Neural Network to predict
the digit label given an MNIST image. We trained on origi-
nal MNIST images up to an accuracy of 99%. We report, in
the section below, the accuracy of this classifier (keeping it
fixed) on the task of labeling generated images. We expect
to see an increase in its accuracy as the VED model learns
to generated better and better images.

The final model that we used for our experiments was quite
small: fixed word embeddings of dimension 5 were chosen,
a simple uni-directional Gated Recurrent Network (Chung
et al., 2014) as the encoder and 10 gaussian distributions
were sampled before getting decoded by a one-layer feed-
forward neural network. We trained the model up until
there was no improvement in the reconstruction loss on the
validation set.

4. Results
We present several preliminary results in this section. First
if we consider Figure 2, what we see is that both the training
reconstruction error and the validation reconstruction error
decreases monotonically over time. This can be expected
since both the training and validation set use the same dis-
tribution over captions. The training time for this experi-
ment was around 10 minutes on a system equipped with a
Titan X.

The result of feeding our model’s generated images into
a pre-trained discriminator (described in the previous sec-
tion) is provided in Figure 3. Here we see both a positive

1The code is available at
https://github.com/ppartha03/PGM-Project
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and a negative result. On the positive side, it is clear that
the discriminator improves over the course of training (def-
initely better than random (10%)). On the negative side,
however, the final accuracy is far from optimal. The nega-
tive result can be explained by the fact that we pre-trained
the classifier on clear and crisp images from the original
data-set, whereas our model generates admittedly noisy im-
ages.

Finally, we present the result of our model’s capacity to
generalize to unseen captions in Figure 4. Each row rep-
resents one caption from the test set. The left most col-
umn is the caption and the subsequent columns are differ-
ent samples from our model. We recall that our model only
ever trained on captions with a single arithmetic operation.
While not perfect, the samples are mostly discriminable for
humans, although we can see that are model has some trou-
ble generating 7s that look like 1s and 5s that look like 3s.

Figure 2. Variational Encoder Decoder reconstruction loss

Figure 3. Pre-trained MNIST classifier accuracy on generated im-
ages

Figure 4. Generated images from test set captions

5. Discussion
In this paper we explored using a form of VAE for caption
to image generation. In order to highlight its generative
power, we created our very own variant of MNIST that in-
volved generating images from captions that were based
on simple arithmetic operations. We were able to show that
using a very simple architecture for our VED (an RNN as
the encoder and a fully connected network as the decoder),
we can successfully generalize to unseen captions.

After conducting our experiment we found some similar
tasks to our arithmetic image generation in the literature.
(Hoshen & Peleg, 2015) defined a task where the goal was
to do some arithmetic operation on two images that each
contained a sequence of several hand-written MNIST dig-
its. As well, (Jaderberg et al., 2015) conducted an experi-
ment, in their appendix, where the model sees two MNIST
images and must output the numeric sum (not as text but
as an integer). This is fairly close to the inversion of our
experiment.

As future work we would like to experiment with using de-
convolution layers instead of fully connected layers, as in
(Pu et al., 2016). We would also be interested in utilizing
the attention mechanism over captions to iteratively build
up our image, that was introduced in (Mansimov et al.,
2015). It would also be interesting to try more complex
arithmetic operations to see how well our model scales on
that front.
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