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Abstract

Readability of documents is generally estimated as a function of the
features of the document such as average sentence length and average
word syllable length. While documents have such readability estimates
associated with them, words can also be associated with a quantity that
approximates the ease of understanding them e.g., age of acquisition of
words. Here we discuss a novel approach to estimate a word’s difficulty.
Our methodology does not require extensive external knowledge like ac-
curate frequency estimates of the words and instead, bootstraps from
co-occurrences of the word in the documents of a corpus.

1 Introduction

Why do we need word-difficulty estimates? The acquisition of words
by a human is built upon his/her existing knowledge about other words. This
results from the amount of inherent ‘knowledge’ contained in a word. Such con-
tained knowledge in a word can be considered to be an estimate of the word’s
difficulty. The relevance of estimating it is two-fold. Firstly, there are many
educational domains in which the vocabulary of growing children is enriched by
exposure to banks of words at various ages. Knowing the difficulty of a word
helps us fit the word into appropriate banks. Secondly, word-level estimates
of readability can themselves be used in refining the estimates of readability
of documents.For the sake of simplicity, we use the term difficulty of words in
contrast to readability of documents, though both ‘difficulty’ and ‘readability’
essentially refer to similar ideas.

In this work, we present a method for estimating word difficulties using only
a corpus as a knowledge base. Our method does not require external informa-
tion about the number of syllables or the semantics of the words. We show
on synthetic data that our algorithm works significantly better than a baseline
approach that merely estimates word difficulties from the frequency of the word
in the given corpus.

The circularity Examining the context words of the term funds in a
corpus will yield us equally ‘heavy’ phrases like share market, equity and
investment. Assuming we know how difficult such context words are, can we
approximately pin-point the difficulty of the word funds? By thus knowing the
difficulty of funds, In this case, we may note that the size of the word funds
is misleading - it is as short as star, yet requires more insight to understand.
Thus, contextual words may provide such missing information.

Let us further motivate the situation with the following examples. Consider
the following extract from the scholarly journal Diacritics (1997) written by Ju-
dith Butler, professor of rhetoric and comparative literature at the University



of California at Berkeley [I]:

“ The move from a structuralist account in which capital is understood to
structure social relations in relatively homologous ways to a view of hegemony
in which power relations ... ”

The word structuralist, here, will almost never occur without knowledge-
heavy words due to its conceptual richness. The following is a line from a Science
news article:

“ As per researchers, this works better by placing the nanostructures in a
quasi-random pattern on the solar cells. ”

Intuitively, we expect the difficulty estimate of the word solar to be skewed
up, for it seems to occur with denser words like quasi-random. Consider the
following weather report:

“ Buffalo weather has since become an internet meme, since residents were
amazed by how bad the weather actually got this time of year. ”

The lack of words that require expertise to understand must indicate that
words like weather are not as knowledge-rich as words like structuralist
which are always accompanied by heavy contexts.

One could also recall the kinds of words used in poems and stories that are
meant for children. One major inference from that above is that documents that
are easy to read, use easier words. Thus, easier words tend to occur together.
Therefore, when such texts are together considered as a corpus without infor-
mation about the difficulty of the words themselves, we will be able to order
these words across the spectrum of difficulty. For example,

Limitation? It is logical to suspect that the context might not always
favour this: what if weather also occurs with words of meteorological depth?
Our assumption is that we allow the values to be limited by the distribution of
the documents in the corpus, for that is how well we can do. A corpus where
weather occurs only in academic documents on meteorology will misguide the
difficulty value of the word. However, for the given situation, this is acceptable.
The burden lies on the corpus acquisition stage to retrieve a corpus that reflects
average knowledge.

2 Literature Survey

Readability estimation discusses about how difficult a document is, for under-
standing. To extract this the difficulty level of words and other textual features
are considered. There have been several publications in readability estimation



of documents in the last decade. Researchers have come up with readability
estimation parameters like coh-metrics [6]. The public version of this gives 56
varied scores based on different textual indices. People have also experimented
with several other parameters[2] like word length, syllables, syntax etc., as a
candidate for the formula.

The problem has been approached as a search for features[d] to be extracted
from the documents, on which one can learn a model to predict the readability
scores of the document. Usual experimentation is like identifying 'n’ subjects
and asking them to read through a document to rate its difficulty. The docu-
ments are represented as a vector of features. Later, the problem is solved as a
regression over the features to estimate the difficulty level. [8] [9] [7] discusses
these statistical methods. Having come up with different metrics for the estima-
tion of readbility of documents people have also worked on something similar to
voting or committee machines that combine more than one measure have also
been looked at [3]. Also, few models [9] have considered the combination of lan-
guage models and surface level features. We also looked at (Age of Acquisition)
AoA [B] of a word that gives the expected age at which a person is likely to
acquire the meaning of the word. This is directly proportional to the difficulty
of the word.

2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a generative model. This assumes a topic
distribution over the documents with the hyper parameter o and each docu-
ment has a individual parameter # which is a distribution over infinite topics.
Further, each of the word has a distribution over the topics which is governed
B. Learning the parameters 6, a and 8 is a problem of bayesian inference.

P(W,Z,0,0,8) = II P(W|Z,0,8,0).P(Z]0 &).P(6]a).P(a).P(B)

7 is a vector of documents’ topic. W is the words’ topic.

3 Methodology

We first propose a simple generative model for the corpus, which describes our
assumptions about how the difficult words in the corpus are distributed. This
procedure is quite akin to Latent Dirichlet Allocation, as discussed earlier.We
will assume that the difficulty of a word belongs to R for theoretical purposes.
Practically, we will impose bounds.

For every document d € D:

e Sample ng from Poisson(n). This defines the length of the document.



e Sample g from N(A) that is a normal distribution. Here A consists of
two parameters, the mean and the standard deviation. This defines the
expected difficulty of any word in the document.

e Sample o4 from N () that is also a normal distribution.
e Sample o4 from

e Sample ng values from the distribution N (®) where ® = (uq4,04). For
each value, sample a word from the mapping defined by ©.

The graphical model is shown below.

]
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Figure 1: A directed factor graph for the normal generative model

Practical Issues and Assumptions First of all, all assumptions like ex-
changeability under the LDA model hold good here i.e., the joint distribution
over the words are invariant to the ordering of the words.

In this model, further, we have assumed that every real value sampled from
® corresponds to a single word in an infinite vocabulary. Practically during
generation, we firstly curtail the ends of the normal distribution - any value
sampled in the tail is mapped to the ends of the distribution. Furthermore, we
discretize the support interval of this curtailed distribution in order to produce
a corpus over a finite vocabulary with words repeating naturally.

We also assume that the readability of a document is an aggregate of the dif-
ficulty levels of all the words contained in it. The readability of any document in
the corpus is expected to be around pa and the deviation from this is expected
to be around oa. Further, within the documents, the difficulty of the words



can vary widely. This variation is dictated by an expectation of pugigma with
a deviation of oy. observed in the difficulty of the words seen in the document
is expected to be ¥. When puy is high, the documents contain words that vary
highly with respect to difficulty.

Alternative Model We also consider a model where the words in a docu-
ment are sampled from an exponential distribution. We find this more intuitive
because we rarely expect documents to contain only hard words. A text is usu-
ally ‘supported’ by many easy words and has interspersed harder words that
contain the crux of the information. An exponential distribution, that theoret-
ically assumes difficulty levels in the range R* can model this behaviour. The
appropriate figure can be found below.

Exponential

VdGDJ

Figure 2: A directed factor graph for the exponential model

Here, @ defines the parameter of the exponential distribution. Note that, we
could use a Gamma distribution if we needed a greater degree of freedom.

3.1 Inference

Given the words T of all the documents, we are primarily interested in the pa-
rameters of ©. These are respectively the difficulty ‘level’ that maps to a word.
A harder word corresponds to a greater magnitude.

With T observed, we can define the likelihood as

L(2,6;T) = dl;[DP(Md|A)P(Ud|E) l;[dP(W\Md,od,@)



Our aim is to find parameter settings that can maximize likelihood. To
solve this maximization problem, we will find ML estimates for the parameters
alternatingly.

3.1.1 Document Readability Estimation Step

In this step, the hyperparameter © is given i.e., we know how difficult the words
are. We are required to estimate the difficulty levels of the document. Since
O is known, we can replace w with the real number that it corresponds to, 6,,.
Then, the maximization for a single document boils to maximizing:

P(1,916,8) T P(oal)P(uald) IT Plwlps,o,0)
o P(ualA)Ploul®) T POulpa-o)

Estimating pug : We first fix 04 while estimating ug. Now, notice that
P(ug|A) is a normal prior and P (6, |u4, 04) is a normal distribution with known
variance. Since these are conjugate, we can state that the maximum likelihood
estimate of pg is:

HA Zwed O
2T
A
1 ng
52 2
OA g

Estimating o4 : We do not discuss this here because an assumption we
will further make about o will void the need for this.

3.1.2 Word Difficulty Estimation step

Here we assume that the parameters ® are known. We have t rediscover the
values of ©. Considering a specific word w,

P(T,0|2,A) x [ Plw|lga,o4,0)
dED,,

X H P(9w|,ud70-d)
d€D,y,

Here D,, refers to the multi-set of documents corresponding to every oc-
curence of w. This is a simple MLE estimate, where in we need to find 6,,, the
difficulty corresponding to w. The product of the probabilities will be an expo-
nential with the power equal to (6, — pa)?. The value of 6, that maximizes

Dy
this is:
>
Dw
|Dw|



Practical Issues An important question we have to address is the assign-
ment of values to A and ¥. Should we infer them? Should we assume them as
constants? It is possible to do inference. However, the process gets complicated
with having to estimate many parameters. Instead we assume that the value is
given. A further assumption is that the corpus difficulty distribution is uniform
i.e, oo = 0o . Therefore, we will be estimating pg as:

Zwed Qw

Nq

The EM interpretation The above iterative estimation algorithm can
be seen as an expectation-maximization process. We can compare the difficulty
levels of documents to the cluster assignments of points in k-means. The dif-
ficulty levels of words are the cluster centroids. In the expectation step, we
estimate the difficulty of the documents as an average of the difficulty levels of
words. In the maximization step, we estimate the difficulty of the words as an
average of the difficulty of the documents in which it occurs.

The eigen-value interpretation Determining the © is akin to determin-
ing the eigenvector of a matrix. We will define D as a document-term matrix
with as many rows as there are documents and as many columns as there are
words in the vocabulary. Now, define D as the row-stochastic document-term
matrix where each row is proportional to the corresponding row in D. Next,
let G be a row-stochastic term-document matrix that is equivalent to DT. Let
¢; and 6; be column vectors corresponding to the document readabilities and
word difficulties in the ith iteration of our algorithm.

The document readability estimation step can be rewritten as:

pi = D¢
The word difficulty estimation step can be rewritten as:
@i = G’Hi
The above equations imply that ¢; = C~¥1~)¢i,1. That is, on convergence:
¢ =GD¢
In other words, ¢ is an eigenvector of GD!

3.2 Exponential distribution

For the exponential distribution, we do not have a neat prior that returns an-
other exponential distribution. Thus, we limit ourselves to assuming again that
A is uniform distribution across all values. In such a case, estimating the mean
document difficulty given by £y boils down to maximizing:



P(T,(I)|@,A) S8 Hdp(ew‘ﬁd)
we

The ML estimate is equal to :

> b

wed

nq

To estimate word difficulties, we will be maximizing:

P(T,®0,A) « ][] P(0ulBa)

deD., ,
o L e
deDa B

However, minimizing that would be equivalent to setting all 8,, to 0. We would
like to avoid this trivial solution. Instead we will aim to maximize the whole

equation:
1
P(T,®|0,A) H exp (—Ow Z )
weT d€D,, ﬁd
1
< en(-x 03 )
weT d€eD,, d
Now, we can add an additional constraint that > 62 is constant which

will ensure a non-zero assignment to all the word-difficulties. The above opti-
mization can now be seen as maximizing the dot-product between 6 and another

vector defined by the Y ﬁl—d sums. We can thus specify f to be a unit-vector
d€Dy,
along the second vector.

Note If we do not want to use a continuous distribution such as ® in gener-
ating the words, a parameterzied geometric distribution that can be considered
is the hyper-geometric distribution.

4 Experiments and Results

We run experiments on synthetically generated corpora. More specifically, we
assume there are as many buckets as there words in the assumed vocabulary.
The real-value returned by the normal distribution is mapped to one of these
buckets with the tail ends mapping to the end buckets. We could have alterna-
tively mapped the tail ends to one of the buckets uniformly. Another practical
issue we have to consider here is the unboundedness of the difficulties as they
are being operated on by the matrices. This could cause computational issues
with underflows/overflows. We overcome this by rescaling the difficulty values



to fit between 0 and 1 during the algorithm. However, is this still equivalent
to converging to the dominant eigenvector?

We perform inference on the corpus and also compare it against the eigen-
vectors for the normal distribution model.

While generating documents, we assume that difficulty levels for words can
take integer values from 0 uptil |V|—1 where V is the vocabulary. All parameters
are presented at this scale. The mean of the poisson distribution is set at 40.

Evaluation We determine the correlation (p) between the inferred diffi-
culty values for the words and the actual difficulty values that were assumed
while generating. p refers to the correlation of the eigenvector that is the best.
The n. denotes the position of the eigenvector as ordered by the eigenvalues, e.
Also, we report the magnitude of the correlation because it might converge to
—1 or 1 depending on the direction of the eigenvector.

Baseline The baseline measure (p,) that we use is the frequency count of
the words in the synthetic corpus i.e., more frequent words are easier. However,
this is not a true baseline when we do not assume an exponential distribution.

Effect of increasing o (document-level variance)

D) VI | pa | oa | po p P | e e
10000 | 1000 | 500 | 10 | 0.013 - 0.013 | 2 (1)
10000 | 1000 | 500 | 50 | 0.005 | 0.974 | 0.974 | 2 | (1,0.08)
10000 | 1000 | 500 | 100 | 0.005 | 0.993 | 0.993 | 2 (1,0.22)
10000 | 1000 | 500 | 300 | 0.002 | 0.998 | 0.998 | 2 | (1, 0.67)

® p > pp is surprising. We would expect p, to be much better. We cross-
verified this by computing a similar baseline on Rueters corpus in NLTK
and assuming that AoA values are the actual estimates of the difficulty
of the words. Computing baseline frequency correlation with AoA yields
0.0147 which seems to follow the general trend of a near-zero correlation.

e The fact that the performance becomes better with more oA can be ex-
plained by the fact that the corpus becomes more uniform in distribution.
That is, the corpus has both as many easy documents as there as difficult
documents with a greater o and this helps the inference. Our algorithm
has been suited to infer from such situations better.

¢ Why does the algorithm converge to the second dominant eigen-
value? We suspected that this could probably be because of the rescaling
that we do after every step. However, even if that operation weren’t there
the algorithm converges to the second dominant eigenvector.
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Effect of increasing document count

100 | 1000 | 500 | 200 | 0.0031 | 0.0089 | 0.79 | 2 | (1, 0.67)
1000 | 1000 | 500 | 200 | 0.021 | 0.983 | 0.983 | 2 | (1, 0.51)
2
2

2000 | 1000 | 500 | 200 | 0.0029 | 0.991 | 0.991 (1, 0.5)
10000 | 1000 | 500 | 200 | 0.003 | 0.998 | 0.998 (1, 0.51)

As expected an increase in the corpus size helps the inference. However, for
a small corpus size the matrices still have information about the difficulty level
which doesn’t manifest in the inference though.

Effect of increasing vocabulary size

D \4 pa | oa Pb p P | ne e
10000 400 200 80 0.000092 | 0.977 | 0977 | 2 | (1, 0.14)
10000 | 1000 500 200 0.0016 0.998 | 0998 | 2 | (1, 0.51)
10000 | 2000 1000 400 0.241 0.5852 | 0.76 1] (1,0.67)
10000 | 10000 | 5000 | 2000 0.38 0.658 | 0.658 | 1 | (1, 0.85)
10000 | 20000 | 10000 | 4000 0.300 0.48 0.48 2 | (1, 0.89)

A number of interesting phenomena occur here.

e Firstly, the performance of our model declines. This is expected as our
model would do better when there are more samples. This follows from
the central limit theorem.

e The baseline performance increases! This is probably because when the
vocabulary is small and a relatively large number of samples are made all
the words appear with seemingly random frequency not correlated with the
difficulty. This will happen due to documents of various difficulties being
sampled. When the number of samples is relatively small, the pattern that
encourages easier words to occur more

On the whole, we see encouraging results on the synthetic data generated
by our modelE]

4.1 Experiments on Real Dataset

Our initial experimentations involved a merge of the Rueters, Gutenberg and
Brown corpora available on NLTK. Due to computational difficulties in provid-
ing an exhaustive comparision of results, we present only results for Rueters
here. In Rueters, we consider each paragraph as a standalone document and
we removed the stopwords ﬂ

1 We are currently working on the results of the exponential model. Despite an error in
our coding, we seem to be getting really good results. We are investigating this and hence
avoiding presenting them here.

2Perhaps, not removing it would have given better values.
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As discussed previously we use AoA values normalized between 0 and 1 as
the correct difficulty estimates. Our first observations is that our models do
not perform well. Some of our initial heuristics gave, at the best, an increase
of 0.01 in the correlation. But our initial heuristics (which involved using mo-
mentum variables) used to proceed in the positive direction for the first few
iterations and the progressively start worsening. The lack of convergence was a
concern which eventually drove us to producing a rigorous mathematical model.

The average number of words in a document is around 10.5 with standard
deviation 38. There are 11887 documents and 28714 words. The average corpus
difficulty when scaled to the vocabulary size comes to 8619 with a standard devi-
ation of 1076. From a sample of 100 such documents we estimated uy, = 36179.
Running the algorithm on this dataset doesn’t converge at all! Simulation with
these parameters on a synthetic dataset generated by our model gives a poor
converged correlation of 0.364 but with a baseline of 0.25. This bloated base-
line implies that our model does not represent the dataset very well, and hence
cannot be compared. (The baseline of Rueters is less than 0.02!)

However, using occurences of just 10 words from Rueters which are the most
frequent in the corpus yields a correlation of 0.3658: but this doesn’t compare
against the 0.72 baseline that corresponds to these words. E|

An analysis for the first 10 eigenvectors (of the matrices corresponding to the
normal distribution model) for Rueters corpus shows the 4th principal eigenvec-
tor to have a correlation of 0.22 which is the highest. Interestingly, in some ways
it is very close to the second principal eigenvector - 1,0.677,0.65,0.611,0.48 are
the eigenvalues in order.

5 Conclusions

We summarize our discussion until here.

e We have proposed two generative model and two inference techniques to
handle the same. However, we make strong assumptions in the models
- such as a uniform distribution in the difficulty of the documents. This
may not be true, as for example, Rueters has a normal distribution
over the document difficulties computed from AoA.

3Tt is likely that the exponential model will work better here.

12



6

Reuters Document Difficulty

80

Distribution

Y 0.1 0.2 0.3 0.4 0.5
Difficulty

Figure 3: Document Readability Distribution

We have proposed a two kinds of distributions: a normal distribution and
an exponential. We expected the exponential distribution to be valid as
most documents usually have many stop words which are “easy”. How-
ever, removing the stop words in the Rueters dataset and plotting these
distributions often showed a single mode around which the words’ diffi-
culty levels were centered.

We have provided an eigenvector representation of the solution for the
approximate form of our algorithm

Our inference algorithms work very well on synthetic data despite them
being generated from a non-uniform prior (A < 00), which is against our
assumption.

One of the eigenvectors of the complete Rueters dataset has a correlation
of 0.22 with AoA. This is promising. The poor performance of the conver-
gence mechanism can be attributed to the presence of many eigenvectors
with similar eigenvalues. Moreover, the dataset has a very low variance
with respect to document difficulty. This could explain the poor perfor-
mance too.

Conclusions and Future Work

The results indicate that our inference technique is rigorous enough. The con-
cern however is that the hypothetical model may not reflect real datasets. Our
effort must be in engineering this model for practical relevance. The following

13



are some of the ideas we wish to explore further based on the results we have
seen.

e We have assumed a generic model over the distribution of difficulty over
words. It would be interesting to see how this changes when we assume
different topics. Each topic must induce a diffirent distribution over the
words, coupled with the difficulty.

e We have not used a hypergeometric distribution to model the discrete
distribution over the words. It might be a more rigorous approach.

e We could consider acquiring a dataset which presents a uniform distribu-
tion over the difficulty of documents, as our proposed methodology works
on that assumption.

e We could also consider updating the hyperparameter for the distribution
of the corpus difficulty instead assuming a fixed value.

e It would be useful to understand how the power iteration method con-
verges to vectors other than the second dominant eigenvalue.

7 Some Ideas on Readability Estimation

We report below other ideas that we included in our initial proposal for the
project.

7.1 Inverse Readablility Estimation

Is it possible to determine the age or at least, the category to which a user
belongs, with the knowledge of the kind of texts that the person reads or writes
comfortably, or based on the readability score that the person gives to various
texts? This might be helpful in recommendation systems, where one could
suggest, say, blog articles to the user based on the kind of language that is used
in the blogs that they usually read.

7.2 Incorporating User Expertise

Readability is often blind to the user’s familiarity with words. It gives a gener-
alized idea of how difficult the document might be for a second language learner
to read. What if we want to estimate how difficult an article on biology seems
to a computer engineer? And an article on networking is to a doctor? Can
we somehow model this user knowledge and bias the results of the readability
accordingly?

14
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