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Abstract

Swarm Robotics, which studies collective be-
haviors of large populations of interacting
robots with simple embodied cognition, is an
ideal testbed for studying the cultural evo-
Iution of language. Our goal is to expand
existing simulations in order to explore a
dominant theory in evolutionary linguistics—
the self-domestication hypothesis—which sug-
gests that increased prosociality led to the so-
phistication of the cultural niche, enabling the
complexification of languages. In our model,
robots in multiple nests are engaged in a forag-
ing task (i.e., gathering resources in their envi-
ronment) while playing a language game. Cru-
cially, we include two novel features: (1) robot
individuation: robots have a partner-specific
memory, keeping track of the outcomes of past
interactions with specific robots; (2) parame-
terizable prosociality: robots’ tendency to in-
teract is based on experience: successful com-
munication between robots reduces their ag-
gression toward each other and increases their
chances of interacting again. First, we show
that these manipulations lead to the formation
of a classic “in-group bias” where robots fa-
vor interaction with some robots over others -
a bias which is highly common in social ani-
mals in nature but that was so far absent from
swarm robotics models. Second, we observe
that higher prosociality values result in the col-
lection of more resources, potentially indicat-
ing an evolutionary advantage. Finally, we
show that prosociality modulates the effect of
physical distance on lexical convergence, such
that low values of innate prosocially lead to
more stable sub-swarm divergence, even in rel-
ative proximity (i.e., different nests robustly
converge on different lexical variants despite
being close to each other).

1 Introduction

Swarm robotics is an approach to the study of multi-
robot systems that aims at designing complex col-
lective behaviors by means of relatively simple
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robots. A key factor in the design of robot swarms
is self-organization, which results from the numer-
ous local interactions among robots and between
robots and their environment (Kube and Bonabeau,
2000). These local interactions, along with other
features of robots’ behavior, are often modeled af-
ter natural systems—with animal societies being
the most relevant source of inspiration (Brambilla
et al., 2013).

Beyond simple communication processes, past
experiments in swarm robotics have explored the
potential of language games in an embodied agent
context (Trianni et al., 2016; Cambier et al., 2017,
2018; Miletitch et al., 2019). A language game
is defined as a turn-based game played between
agents/robots with the purpose of mimicking real-
world dynamics leading to the emergence of a
structured language. Previous studies showed that
the naming game, a variation of language games
whereby agents must name topics (Baronchelli
et al., 2008), yields an early explosion of words
followed by an increasingly fast reduction in
word variation, and the ultimate convergence on
one single word throughout the entire population
(Baronchelli et al., 2006). This pattern has also
been observed in dynamic swarms where robots
communicate with a varying set of agents (Trianni
et al., 2016), although collision between robots and
the ensuing clustering led to a reduced interaction
rate in the population and a slower convergence
with respect to simulated agents.

Building on this work, later swarm robotics stud-
ies used the naming game to create a naming sys-
tem that adapts to the features of the environment
as well as to the way in which the task is performed
by the swarm. Such work observed the creation
of words corresponding to local clusters in self-
organized aggregation (Cambier et al., 2017), as
well as food sources for foraging tasks (Miletitch
et al., 2019). In (Cambier et al., 2018), a further
interaction was considered; The parameters of an
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aggregation controller were encoded as words ex-
changed in the naming game, which enabled the
cultural evolution of an aggregation behavior.

The goal of the current project is to expand these
existing simulations in order to explore a dom-
inant theory in evolutionary linguistics, namely,
that the evolution of present-day languages might
have resulted in part from the self-domestication
of the human species (Thomas and Kirby, 2018;
Benitez-Burraco and Progovac, 2020). According
to this human self domestication (HSD) hypothe-
sis, humans’ distinctiveness is, to a large extent,
the outcome of an evolutionary process similar to
animal domestication (Hare, 2017). At the heart
of this view lies the idea that HSD resulted in less
aggressive individuals, who are more prone to in-
teract with others (and particularly, with their kin,
but also with strangers). This increased prosocial-
ity and reduced aggressiveness would have in turn
promoted more social contacts within a commu-
nity, and supported the emergence of more sophisti-
cated forms of language (Tamariz and Kirby, 2016;
Steels, 2017). Our goal is to model this process
of self-domestication and language evolution us-
ing swarm robots, testing the effect of increased
socialization patterns on the formation of language.

Current swarm robotics models, however, lack
several crucial features that are considered prereq-
uisites for this process. Swarm robots are typically
collaborative, but homogeneous, and have little to
no memory, not to mention social memory (who
did what to whom). In order to mimic the effects of
self-domestication properly, an evolutionary advan-
tage for prosociality first needs to be introduced,
and robots need to be treated as distinct individuals.
To this end, we designed a novel version of the
naming game with swarm robots, which includes
two crucial modifications: robot individuation and
procosicality.

Specifically, robots engage in a classic naming
game, but the likelihood of future interactions with
a given robot depends on the prosociality values
associated with each individual: robots with higher
prosociality values toward each other are more
likely to interact again, while robots with low pro-
ciality values toward each other are more likely
to reject the interaction and avoid each other. All
robots start out with a baseline prosociality value,
which they then update on an individual basis for
each robot in the swarm based on their interaction
experience (i.e. previous naming games).

As we are aiming to develop agents that create
a language interwoven with an activity (Wittgen-
stein, 1953), our model involves a foraging task
whereby robots, separated into two sub-swarms,
look for resources to bring back to their nest (one
per sub-swarm). Foraging is a typical animal ac-
tivity, which has been widely studied in the field
of swarm robotics (Bonabeau et al., 1996; Krieger
et al., 2000; Liu et al., 2007; Miletitch et al., 2018),
and is also observed in primates (Garber, 1987; Jan-
son and Goldsmith, 1995). Moreover, such tasks
drive a swarm'’s topology towards segregated com-
munication networks which only interact in a few
points. This ensures that, conversely to the nam-
ing game influencing the swarm behavior (failure
increases aggression, which leads robots to flee),
the latter also influences the former. Finally, re-
source collection constitutes an obvious marker of
evolutionary fitness, which is highly relevant to an
investigation of the HSD, an evolutionary hypothe-
sis.

Our goal is to examine the evolution of commu-
nicative alignment and foraging behavior within
and between nests as a function of prosociality and
geographic distance, which are two key factors ac-
counting for language diversity and impacting on
language complexity (Padilla-Iglesias et al., 2020;
Bickel and Nichols, 2009). First, we ask whether
increased prosociality leads to more efficient for-
aging, and whether this pattern is affected by the
geographical proximity of nests (seeing as closer
nests result in more competition over the same re-
sources). Second, we ask whether our manipulation
of initial prosociality affects classic convergence
patterns (i.e., where all robots end up aligning on
the same word variant), leading to differential di-
vergence depending on nest and past history. That
is, does initial prosociality affect the degree and/or
speed of convergence within and between nests,
and does it result in a distinction between in-group
robots (belonging to the same nest) and out-group
robots (belonging to different nests)?

This investigation thus consists in a first step to-
ward modeling and understanding the potential ef-
fects of self-domestication on language formation,
introducing a novel modification of individuation
to classic swarm robotics models. We discuss sub-
sequent steps and future extensions of this basic
model in the discussion.



2 Model and Implementation

In our setup, the agents are distributed in two nests
(marked on the floor as grey disks). In their environ-
ment, resource items are uniformly distributed. The
robots goal is to search for these items and bring
them back to the nest. Once an item is brought
back to the nest, another one randomly appears in
the environment.

2.1 Foraging

We implemented a probabilistic finite state ma-
chine (PFSM), shown in Figure 1, which guides
the robots’ behavior. This PFSM is composed of
three states:

» Exploring the robot follows a random walk.

¢ Going to nest the robot moves toward the
position of its nest.

* Going to resource the robot moves toward
the position of the last resource item found.

Notably, this PFSM requires the robot to remem-
ber landmark positions and to home in to them.
This can be achieved through odometry with rea-
sonable accuracy, particularly when using social
feedback in a dense swarm (for exemple with social
odometry (Gutiérrez et al., 2009b; Miletitch et al.,
2013)), as we are considering here.

In(Resource area)

AND !'Found(ltem) In(Nest) AND

OR Pretum

Going to
resource

Going to
nest

In(Nest) AND
Knows(Resource)

Figure 1: Probabilistic Finite State Machine which
guides the foraging behavior of our robots.

From a foraging point of view, an exploring
robot has two reasons to go back to the nest: either
because it has found an item and is therefore bring-
ing it back, or because the transition between the
two states was triggered according to a probability
P, cturn = 0.0004. Once the robot has reached its
nest, it can either start to explore again if it does
not know of a resource position, or go directly to
the resource if it knows of one (i.e. it came back

'Knows(Resource)

because it found an item). If the robot encounters a
resource on its path towards the resource position,
it picks it up and immediately brings it back to the
nest. Otherwise, it switches to the exploring state
once it has reached the resource position. In such a
case, the robot also forgets the resource position as
it is no longer relevant.

2.2 Minimal Naming Game

In parallel to foraging, the robots are playing a Min-
imal Naming Game (MNG) (Loreto et al., 2010)
with local neighbours according to a dynamic and
individual prosociality factor.

The MNG is a category of language games,
which are models of the cultural evolution of lan-
guage in populations of agents (Steels, 2011). In
such games, a language is represented as a lexi-
con (a list of words, represented here as a vector
of 8-bit unsigned numbers), which is specific to
each and every agent. The goal of the MNG is to
converge on a single word to name a given topic,
i.e. to reduce the lexicon to a single word, which is
the same for every agent. This topic, as is our case
here, can be purely abstract and does not need to be
a physical object. To reach such an agreement, the
agents take either of two roles: speaker or hearer.

The speaker starts a game by selecting a random
word from its lexicon (if the lexicon is empty, it
creates a word first) and sending it to the hearer.
Upon receiving the word, the hearer compares it
to the content of its lexicon. If the word is already
in the lexicon, the game is won, and the hearer
deletes any other word from the lexicon. If, on
the contrary, the word is not already in the lexicon,
the game is lost, and the hearer simply appends
the word to its lexicon. Finally, the hearer signals
whether the game was won or lost to the hearer
who, in the former case, also deletes all the words
in its lexicon, with the exception of the word it had
selected.

The novelty of our approach in this paper is that
we introduce a prosociality factor, which can mod-
ulate the communications between agents such that
sub-swarms can stop communicating almost en-
tirely, and therefore hinder the potential for conver-
gence between nest populations, as can be observed
in human populations (Bickel and Nichols, 2009).

2.3 Prosociality

Notably, swarm robotics is predicated on homo-
geneity in agents communication (Brambilla et al.,
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Figure 2: Evolution of the prosociality over time. Left: distant nests and low prosociality. Right: distant nests and

high prosociality.

2013) (though not necessarily in the agents them-
selves (Kengyel et al., 2015)). This is very differ-
ent from primate populations (Roberts and Roberts,
2017) which, by the very nature of our goal, we
need to emulate. We therefore introduced two
novel cognitive abilities to our robots, in order to
bring them closer to the primate population we
eventually aim to study. The first feature is robot
individuation: robots have a partner-specific mem-
ory, keeping track of the outcomes of past interac-
tions with specific robots. The second features is
parameterizable prosociality: robots’ tendency to
interact is based on experience, such that success-
ful communication between robots reduces their
aggression toward each other and increases their
chance to interact again.

Formally, we defined prosociality as a probabil-
ity to interact s;;, where ¢ and j are two distinct
robots. Any agent ¢ computes s;; according to
previous interactions with j and Equation 1:

, MNGY

Sij = kyj* 5 win =
MNGwzn + MNGlost

+(1_kij)*5ij

(1
where M N Ggm Jlost is the quantity of games
played between ¢ and j that were won/lost. Equa-
tion 1 requires an initial value s for s;; which is our
initial prosociality parameter. k;; is the weighing
factor and is given by Equation 2:

MNGZJ)ML + MNG%SIE}

MNG,ef @

kij = min{l,

with M NG,y = 10 in our experiments, allowing
for a slow transition from the initial prosociality to
the acquired one.

As MNGY,
) win/lost
and given Equations 1 and 2, s;; = sj;.

The prosociality s;; dictates robot i’s behavior
upon receiving a word from an exploring robot j.

is identical to M NG

win/lost’

With a probability equal to s;; , it hears the word,
plays the naming game normally, and updates s;;
accordingly. Otherwise, it rejects the interaction
and “attacks” robot j to mark its territory, causing
robot j to return to its nest (see Figure 1). Our
hypothesis is that, since robots meet robots from
their own nest more often, their vocabulary will
converge over time and their prosociality will there-
fore increase faster than with robots from the other
nest. This would increase rejections of the latter
and eventually lead to territoriality and a rupture of
contact between nest populations.

2.4 Experimental Setup

In order to test our hypothesis, we set up an arena
of 10x10m with two nests, and manipulated two
parameters: the initial prosociality s and the dis-
tance between the nests d (in meters). We selected
three settings for both of these parameters and
recorded 100 runs for each of the 9 combinations
of settings. The parameter values we selected were
s ={0.1,0.5,0.9} and d = {0, 1.5,3}. As robots
are unable to distinguish between robots from their
nest and from other nests, we expect d = 0 to yield
homogeneous dynamics, whereas, with other set-
tings of d, we expect robots to differentiate their
kin from strangers.

Our experiments were carried out with ARGoS3
(Pinciroli et al., 2012), a physically realistic sim-
ulator made for swarm robotics experimentation,
with a simulation rate of 10 ticks per second. We
simulated 50 e-puck robots (Mondada et al., 2009;
Garattoni et al., 2016), such that 25 robots were at-
tributed to each nest. The e-puck uses a range-and-
bearing system to communicate locally (Gutiérrez
et al., 2009a). 50 resource items were distributed
uniformly in the environment, and reappeared in
a different place after they were consumed (i.e.
brought back to a nest).
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Figure 3: Evolution of the number of interactions (resulting in MNG games or not) over time. Left: distant nests
and low prosociality. Right: distant nests and high prosociality.

3 Results

The resulting dynamics of the swarm can be sep-
arated in three categories. First is the evolution
of prosociality, which is determined by how often
robots interact with each other. Second is social dy-
namics; interactions that lead to a MNG, and how
each robot’s and sub-swarm’s vocabulary evolve
over time. Last is foraging dynamics and is char-
acterized by the reach of the robots, which is im-
pacted by the prosociality and the social dynamics.

3.1 Evolution of Prosociality

As seen in Figure 2, the average prosociality of
robots toward their kin increases over time in a
quicker fashion than it does for robots attached to
the other nest. This is caused by the proximity of
kindred robots: more occasions to communicate
allow for a quicker dynamic. As the sub-swarm’s
vocabulary converges over time, more interactions
are validated and prosociality grows.

Here two dynamics interlock: the evolution of
prosociality and the convergence of the vocabu-
lary. If the former is faster than the latter (right
side of Figure 2), prosociality falls at the begin-
ning of the experiment because few robots in their
sub-swarm agree on a specific vocabulary which
leads to a higher rate of failed interactions. How-
ever, in both cases, robots eventually start having
more successful interactions MNG (because they
are initially forced to remain in/return to the nest as
they receive rejection even from their kin) and the
prosociality within sub-swarms quickly converges
toward 1.

3.2 Social Dynamics

We introduced a social aspect on top of the naming
game in order to generate novel dynamics while
retaining the well mixed population constraint. Fig-
ure 3 is a comparison of that dynamic between

low and high initial prosociality (a prosociality of 1
would be equivalent to discarding the social layer in
the behavior). When the initial prosociality is low,
it slows the language dynamic down (as MNG are
rarely played) at the beginning of the experiment.
Once the prosociality reaches a higher level (or if
it is at such levels from the start), most interactions
result in an MNG, at the cost of a decrease in the
total quantity of contacts within the sub-swarm (as
seen in the decrease of the red curve). This happens
because, as the prosociality increases, the robots
are rejected less and can therefore stray further
away from their nest, in areas were they encounter
less robots.

The evolution of prosociality is determined by
how often the MNG being played results in suc-
cess or failure. Once a sub-swarm converges on a
vocabulary, all interactions between robots within
this sub-swarm increases the prosociality. On the
other hand, as long as the two sub-swarms keep a
different vocabulary, most of their interactions lead
to a decrease in prosociality. Figure 4 displays the
time of convergence both for sub-swarms and for
the global swarm. On the left (d = Om), both the
sub-swarms and the global swarm behave in a sim-
ilar way as they share the same nest. The further
apart the nest are, the less time it takes for the sub-
swarms to agree on a shared vocabulary, except for
s = 0.9. The former phenomenon is explained by
the fact that, as the distance increases, robots from
different sub-swarms interact less, which means
that, as less new words are introduced to a given
sub-swarm, said sub-swarm can converge to a sin-
gle word faster. In the case of s = 0.9, however,
robots continue to play a significant amount of
MNG with the other sub-swarm (around a hundred
per second according to Figure 3), which constantly
introduces new words into the robot’s sub-swarm
and therefore slows the language dynamics down.
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At the global scale, distance predictably increases
the convergence time as sub-swarms have less op-
portunity to play, which creates a bottleneck in the
communication network.

With respect to the prosociality, we observe that
a very low initial prosociality results in a higher
convergence time (both within and between sub-
swarms) but that there is no consistent difference
between medium or high initial prosociality. In
other words, only very low initial prosociality val-
ues can consistently hinder the word convergence.

3.3 Foraging Dynamics

Our results (Figure 5) show that increased proso-
ciality leads to more efficient foraging behav-
ior: across all nest distance configurations, higher
prosociality values were associated with a higher
number of collected resources over time. This is ex-
plained by our rejection mechanism by which lower
prosiocality leads to rejection and forces robots to
return to their nest. Therefore, as prosociality in-
creases, robots become more free to explore far
away from their nest (this is the same dynamic
as the one discussed in Section 3.2) and to find
resources.

When the initial prosociality is high, the rate of
exploitation is constant. A lower initial prosocial-
ity introduces a transitory dynamic, which, as the
individual prosociality increases, approaches (and
eventually overlaps) the collection rate of higher
initial prosociality values.

4 Discussion

In this paper, we introduced a new swarm robotics
framework for the study of linguistics hypotheses,
and more specifically human self-domestication.
This framework consists in two novel features:

robot individuation and parameterizable procosi-
cality. In other words, our robots remember their
history with each individual robot, in the form of
a dynamic prosociality value (whose initial value
can be set), and this value changes the behavior of
the robot towards others.

We devised an experimental setting whereby
robots, which are separated into two nests, must
simultaneously communicate through language
games and find resource items distributed into the
environment. Our goal was to determine whether
prosociality could trigger kin recognition and how
this would affect both the social and foraging dy-
namics.

Our experiments showed an emergence of an
in-group bias, namely, communicating with robots
from the same nest but rejecting others, with proso-
ciality within and between nests having radically
different dynamics (although they might converge
asymptotically). Furthermore, prosociality affects
linguistic convergence as a more agressive behav-
ior (i.e. low prosociality) delays word convergence
on the global scale. With a large geographic dis-
tance, aggressivity can even accelerate between-
nest divergence, amplifying the in-group bias and
promoting word convergence at the nest level rather
than the swarm level, and could therefore be useful
in maintaining name distinction for landmarks in
the continuation of previous works (Cambier et al.,
2017; Miletitch et al., 2019). Conversely, higher
prosociality leads to slightly less contacts within
the nest and a more efficient foraging, which are
both explained by the exploration enabled by a de-
crease in aggressive behaviors (as rejections cause
the robot to return to its nest) from kin and strangers
alike. This difference is more marked as nests get
closer, presumably because of competition over
resources.
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We reckon that our model requires three more
essential components in order to properly test the
self-domestication hypothesis.

First, we aim to create emergent meaning by as-
sociating a word to experiences of the real world.
Robots can experience the environment from dif-
ferent points of view, so that the sensory data they
associate with a shared word is usually not exactly
the same. How to make this association is called
the symbol grounding problem (Harnad, 1990) and
is achievable by the consensus dynamics of lan-
guage games (Steels and Loetzsch, 2012), even if
each robot has its own internal representation of
each word’s meaning. When robots are equipped
with visual and other complex sensors, this mech-
anism can require complex technologies involv-
ing computer vision and sensor aggregation algo-
rithms (Ganz et al., 2014), which are extremely
demanding in terms of computational resource and
therefore, inoperable on most swarm robots. How-
ever, in our model, the only representation of the
world a robot is currently able to perceive is its po-
sition. As a first step, we will therefore attach the
meaning of words to the position of the robot when
playing a MNG, ensuring a straightforward but ef-
ficient grounding of the words in environmental
cues.

Second, prosociality is an important factor in
the development of natural languages because it
enables play and teaching among kin (Benitez-
Burraco and Progovac, 2020). One way to imple-
ment the notion of play in our model is to include
random innovation protocols for new words and/or
slight modifications and tweaks to existing words,
be it in their form or in their associated meaning.
As for teaching, we aim to implement an additional
communication protocol which captures a learning
scenario. For example, a given robot can choose
to only demonstrate its word repertoire to another

robot, without that interaction resulting in a failure.

Finally, in the human self-domestication hy-
pothesis both biological and cultural evolution are
present via niche construction. Genes that have
been positively selected in our species are enriched
in candidates for mammal domestication (Theo-
fanopoulou et al., 2017). We have already gained
some insight to this dynamic by studying differ-
ent values of the innate behaviors (in this case,
prosociality s), yet subsequent improvements of
our model should use food consumption as a fit-
ness evaluator for underlying biological evolution.
As a first step, we intend to use relatively simple
optimization algorithms that will act as an under-
lying "biological evolution" (Lépez-Ibéiez et al.,
2016). Then, we will turn our attention toward ge-
netic algorithms typical of swarm robotics (Trianni,
2008; Bredeche et al., 2018). Notably, new robots
can inherit the mean prosociality value of their an-
cestors, and mutations on innate prosociality can
also be introduced.
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