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Abstract

Language-guided robots performing home and
office tasks must navigate in and interact
with the world. Grounding language instruc-
tions against visual observations and actions to
take in an environment is an open challenge.
We present Embodied BERT (EmBERT),
a transformer-based model which can at-
tend to high-dimensional, multi-modal inputs
across long temporal horizons for language-
conditioned task completion.Additionally, we
bridge the gap between successful object-
centric navigation models used for non-
interactive agents and the language-guided vi-
sual task completion benchmark, ALFRED,
by introducing object navigation targets for
EmBERT training. EmBERT achieves com-
petitive performance on the ALFRED bench-
mark, and is the first model to use a full,
pretrained BERT stack while handling the
long-horizon, dense, multi-modal histories of
ALFRED. Model code is available at the
following link: https://github.com/
amazon-research/embert

1 Introduction

Language is grounded in agent experience based
on interactions with the world and other actors
in it (Bisk et al., 2020; Bender and Koller, 2020).
Task-oriented, instructional language focuses on
objects and interactions between objects and ac-
tors, as seen in instructional datasets (Damen et al.,
2020; Koupaee and Wang, 2018), as a function
of the inextricable relationship between language
and objects (Quine, 1960). That focus yields lan-
guage descriptions of object targets for manipu-
lation such as put the strawberries on the cutting
board and slice them into pieces (Chai et al., 2018).
We demonstrate that predicting navigational object
landmarks in addition to manipulation object tar-
gets improves the performance of an instruction
following agent in a rich, 3D simulated home en-
vironment. We posit that object-centric navigation

is a key piece of semantic and topological naviga-
tion (Kuipers and Byun, 1991) for Embodied AI
(EAI) agents generally.

Substantial modeling (Majumdar et al., 2020)
and benchmark (Qi et al., 2020b) efforts in
EAI navigation focus on identifying object land-
marks (Blukis et al., 2018) and destinations (Batra
et al., 2020b). However, for agent task completion,
where agents must navigate an environment and
manipulate objects towards a specified goal (Gor-
don et al., 2017; Shridhar et al., 2020), modeling
efforts thus far have predicted movement actions
without explicitly identifying navigation object tar-
gets (Singh et al., 2020; Pashevich et al., 2021;
Nguyen et al., 2021; Abramson et al., 2020). We
address this gap, grounding navigation instructions
like Head to the sink in the corner by predicting the
spatial locations of the goal sink object at each
timestep (Figure 1).

Transformer-based models in EAI score the
alignment between a language instruction and an
already-completed path (Majumdar et al., 2020) or
introduce recurrence by propagating part of the hid-
den state to the next timestep (Hong et al., 2020).
The former requires beam search over sequences
of environment actions, which is not feasible when
actions cannot be undone, such as slicing an
apple. The latter introduces a heavy memory
requirement, and is feasible only with short trajec-
tories of four to six steps. We overcome both limi-
tations by decoupling the embedding of language
and visual features from the prediction of what
action to take next in the environment. We first
embed language and visual observations at single
timesteps using a multi-modal transformer archi-
tecture, then train a transformer decoder model to
consume sequences of such embeddings to decode
actions (Figure 3).

We introduce Embodied BERT (EmBERT),
which implements these two key insights:

1. Object-centric Navigation unifies the dis-
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Figure 1: Embodied BERT. EmBERT attends to object detections in a panoramic view around an agent, then
predicts an action and both a target object and target object parent for both navigation and manipulation actions.
For example, at timesteps t = 0, 1 above, the model must predict the sink object target and its parent, the
countertop, while at t = 6 it predicts both the object potato to pick up and the sink on which it rests.

joint navigation and interaction action se-
quences in ALFRED, giving navigation ac-
tions per-step object landmarks.

2. Decoupled Multimodal Transformers en-
able extending transformer based multimodal
embeddings and sequence-to-sequence pre-
diction to the fifty average steps present in
ALFRED trajectories.

2 Related Work

Natural language guidance of robots (Tellex et al.,
2020) has been explored in contexts from furniture
assembly (Tellex et al., 2011) to quadcoptor flight
control (Blukis et al., 2019).

Embodied AI. For task completion benchmarks,
actions like pickup must be coupled with ob-
ject targets in the visual world, with specifica-
tion ranging from mask prediction only (Shridhar
et al., 2020) to proposals for full low level grip-
per control (Batra et al., 2020a). Similarly, navi-
gation benchmarks incorporate objects as targets
in tasks like object navigation (Qi et al., 2020b;
Batra et al., 2020b; Kurenkov et al., 2020), and
explicitly modeling those objects assists generally
at navigation success (Shrivastava et al., 2021; Qi
et al., 2020a, 2021). Many successful modeling
approaches for navigation benchmarks incorporate
multimodal transformer models that require large
memory from recurrence (Hong et al., 2020), beam
search over potential action sequences (Majum-
dar et al., 2020), or shallow layers without large-
scale pretraining to encode long histories (Pashe-
vich et al., 2021; Magassouba et al., 2021). In this
work, we incorporate navigation object targets into
the ALFRED task completion benchmark (Shridhar

et al., 2020), and decouple transformer-based mul-
timodal state embedding from transformer-based
translation of state embeddings to action and ob-
ject target predictions. In addition, differently from
other approaches that train from scratch their lan-
guage encoder, we successfully exploit the BERT
stack in our multi-modal architecture. In this way,
EmBERT can be applied to other language-guided
tasks such as VLN and Cooperative Vision-and-
Dialog Navigation (Thomason et al., 2019).

Language-Guided Task Completion. Table 1
summarizes how EmBERT compares to current
ALFRED modeling approaches. ALFRED lan-
guage instructions are given as both a single high
level goal and a sequence of step-by-step instruc-
tions (Figure 2). At each timestep, we encode the
goal instruction and a predicted current step-by-
step instruction. We train EmBERT to predict when
to advance to the next instruction, a technique in-
troduced by LWIT (Nguyen et al., 2021).

EmBERT uses a panoramic view space to see
all around the agent. Rather than processing dense,
single vector representations (Shridhar et al., 2020;
Singh et al., 2020; Pashevich et al., 2021; Kim
et al., 2021; Blukis et al., 2021), EmBERT attends
directly over object bounding box predictions em-
bedded with their spatial relations to the agent, in-
spired by LWIT (Nguyen et al., 2021) and a recur-
rent VLN BERT model (Hong et al., 2020). We
similarly follow prior work (Singh et al., 2020; Pa-
shevich et al., 2021; Nguyen et al., 2021; Kim et al.,
2021; Zhang and Chai, 2021) in predicting these
bounding boxes as object targets for actions like
Pickup, rather than directly predicting a dense
object segmentation mask (Shridhar et al., 2020).

Consider the step heat the mug of water in the



Language Obs. Visual Obs. Historical Obs. Inference
Goal Inst. Inst. Views Features As Hidden Mask Nav Obj.
Structure Split Inputs States Pred. Pred.

SEQ2SEQ (Shridhar et al., 2020) 7 7 Single Dense 7 LSTM Direct 7
MOCA (Singh et al., 2020) 3 7 Single Dense 7 LSTM BBox 7
ET (Pashevich et al., 2021) 7 7 Single Dense TF 7 BBox 7
LWIT (Nguyen et al., 2021) 3 3 Multi BBox 7 LSTM BBox 7
ABP (Kim et al., 2021) 3 7 Multi Dense 7 LSTM BBox 7
HITUT (Zhang and Chai, 2021) 3 3 Single BBox SG 7 BBox 7
HLSM (Blukis et al., 2021) 3 - Single Dense SG+Map 7 Direct 7

EmBERT 3 3 Multi BBox 7 TF BBox 3

Table 1: Model comparison. EmBERT uses a multimodal transformer (TF) to embed language instructions and
detected objects in a panoramic view, and a transformer decoder to produce action and object predictions. Ours is
the first ALFRED model to add object prediction to navigation steps. Other methods maintain history by taking
previous transformer states (TF) (Pashevich et al., 2021), subgoal prediction structures (SG) (Zhang and Chai,
2021; Blukis et al., 2021), or maintained voxel maps (Blukis et al., 2021) as input.

microwave, where the visual observation before
turning the microwave on and after turning the
microwave off are identical. Transformer encod-
ings of ALFRED’s large observation history are
possible only with shallow networks (Pashevich
et al., 2021) that cannot take advantage of large
scale, pretrained language models used on shorter
horizons (Hong et al., 2020). We decouple multi-
modal transformer state encoding from sequence to
sequence state to action prediction, drawing inspira-
tion from the AllenNLP SQuAD (Rajpurkar et al.,
2016) training procedure (Gardner et al., 2017).

Our EmBERT model is the first to utilize an
auxiliary, object-centric navigation prediction loss
during joint navigation and manipulation tasks,
building on prior work that predicted only the di-
rection of the target object (Storks et al., 2021)
or honed in on landmarks during navigation-only
tasks (Shrivastava et al., 2021). While mapping
environments during inference has shown promise
on both VLN (Fang et al., 2019; Chen et al., 2021)
and ALFRED (Blukis et al., 2021), we leave the
incorporation of mapping to future work.

3 The ALFRED Benchmark

The ALFRED benchmark (Shridhar et al., 2020)
pairs household task demonstrations with written
English instructions in 3d simulated rooms (Kolve
et al., 2017). ALFRED tasks are from seven cat-
egories: PICK & PLACE, STACK & PLACE, PICK

TWO & PLACE, CLEAN & PLACE, HEAT & PLACE,
COOL & PLACE, and EXAMINE IN LIGHT. Each
task involves one or more objects that need to be
manipulated, for example an apple, and a final re-
ceptacle on which they should come to rest, for ex-
ample a plate. Many tasks involve intermediate

state changes, for example HEAT & PLACE requires
cooking the target object in a microwave.

Supervision Data. Each ALFRED episode
comprises an initial state for a simulated room,
language instructions, planning goals, and an ex-
pert demonstration trajectory. The language in-
structions are given as a high-level goal instruc-
tion Ig, for example Put a cooked egg in the sink,
together with a sequence of step-by-step instruc-
tions ~I, for example Turn right and go to the
sink, Pick up the egg on the counter to the right
of the sink, . . . The planning goals P (or sub-
goals) are tuples of goals and arguments, such as
(SliceObject, Apple) that unpack to low-
level sequences of actions like picking up a knife,
performing a slice action on an apple, and
putting the knife down on a countertop. The
expert demonstration trajectory T is a sequence of
action and object mask pairs, where Tj = (aj ,Mj).
Each step-by-step instruction Ii corresponds to
a sub-sequence of the expert demonstration, Tj:k
given by alignment lookup ma(i) = (j, k) and to a
planning goal Pb by alignment lookup mp(i) = b.
For example, in Figure 2, instruction I0 corre-
sponds to a GotoLocation navigation goal, as
well as a sequence of turning and movement API
actions that a model must predict.

Model Observations. At the beginning of each
episode in timestep t = 0, an ALFRED agent re-
ceives the high-level and step-by-step language in-
structions Ig, ~I. At every timestep t, the agent
receives a 2d, RGB visual observation representing
the front-facing agent camera view, VF . ALFRED
models produce an action at from among 5 naviga-
tion (e.g., Turn Left, Move Forward, Look
Up) and 7 manipulation actions (e.g., Pickup,
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Figure 2: EmBERT Auxiliary Predictions. ALFRED provides goal and step-by-step language instructions that
are aligned with planner goals and sequences of trajectory actions in an expert demonstration (top). EmBERT
additionally identifies navigational object targets in a panoramic view (bottom). EmBERT predicts an object
target and its higher visibility parent receptacle, such as the table on which the box rests.

ToggleOn, Slice), as well as an object mask
Mt. Predicted action at and mask Mt are executed
in the ALFRED environment to yield the next vi-
sual observation. For navigation actions, prediction
Mt is ignored, and there is no training supervision
for objects associated with navigation actions.

EmBERT Predictions. EmBERT gathers addi-
tional visual data (Figure 2). After every naviga-
tion action, we turn the agent in place to obtain left,
backwards, and right visual frames VL, VB, VR.
Following prior work (Singh et al., 2020), we run
a pretrained Mask-RCNN (He et al., 2017) model
to extract bounding boxes from our visual observa-
tions at each view. We train EmBERT to select the
bounding box which has the highest intersection-
over-union with Mt (more details in Section 4).

We define a navigation object target for naviga-
tion actions. For navigation actions taken during
language instruction Ii, we examine the frame VFk

at time k for Tk; ma(i) = (j, k). We identify the
object instance O of the class specified in the plan-
ning goal Pmb(i) in VFk. We define this object O
as the navigation object target for all navigation
actions in Tj:k by pairing those actions with ob-
ject mask MO to be predicted during training. We
also add a training objective to predict the parent
receptacle P (O) of O. Parent prediction enables
navigating to landmarks such as the table for in-
structions like Turn around and head to the box on
the table, where the box compared to the table on
which it rests (Figure 2).

4 Embodied BERT

EmBERT uses a transformer encoder for jointly
embedding language and visual tokens and an
transformer decoder for long-horizon planning and
object-centric navigation predictions (Figure 3).

4.1 Multimodal encoder

We use OSCAR (Li et al., 2020) as a backbone
transformer module to fuse language and visual
features at each ALFRED trajectory step. We
obtain subword tokens for the goal instruction
Ig = {g1, g2, . . . , gn} and the step-by-step instruc-
tion Ij = {i1, i2, . . . , im} using the WordPiece to-
kenizer (Wu et al., 2016) and process the sequence
as: [CLS] Ig [SEP] Ij [SEP], using token type
ids to distinguish the goal and step instructions. We
derive token embeddings L ∈ R(m+n+3)×de using
the BERT (Devlin et al., 2019) embedding layer,
where de is the embedding dimensionality.

We provide EmBERT with object-centric repre-
sentations by using MaskRCNN (He et al., 2017)
features to represent detected objects in every
frame of the panorama view. We freeze the weights
of a MaskRCNN model fine-tuned for AI2-THOR
frames (Singh et al., 2020). We fix the number
of object detections in the front view VF to 36,
while limiting those in the side views to 18. We
represent each object o ∈ O as an embedding
o ∈ Rdo , which is a concatenation of: 1) detec-
tion ResNet (He et al., 2016) features; 2) bounding
box coordinates; 3) bounding box relative area; and
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[SEP]
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Figure 3: Proposed Embodied BERT model. A multimodal encoder embeds goal- and step-level instructions
alongside object detections from a panoramic view around the agent. This encoder produces a temporally indepen-
dent hidden state ht. A sequence of such hidden states are attended by a segment-level recurrent action decoder
to produce time-dependent states h̃t. EmBERT is trained in segments si to balance gradient flow over time with
memory constraints, and previous segments are cached to be attended over in future timesteps. Time-dependent
state h̃t is used to predict the next action, whether to start attending to the next step-by-step instruction, what object
to target in the environment, that object’s parent receptacle, and detected object classes.

4) vertical and horizontal heading of the object re-
lated to the current agent position, following prior
work (Storks et al., 2021). These representations
make up the observed object embeddings O. We
use a one layer MLP to map object embeddings
of dimensionality do to size de.1 The multi-modal
transformer backbone consumes the token and ob-
ject embeddings to produce multi-modal hidden
states H ∈ Rm+n+|O|×de . We obtain these state
representations, ht, for each timestep t by com-
puting an element-wise product between H0 and
Hm+n, the hidden state of the [CLS] token and
the last [SEP] token placed between language to-
kens and objects, similar in spirit to the approach
described in (Zhou et al., 2020). In this way, we
can generate temporally independent agent states
for an entire trajectory resulting in a sequence of
states {h1,h2, . . . ,h|T |}.

4.2 Segment-Level Recurrent Action Decoder

The ALFRED challenge requires models to learn
to complete action sequences averaging 50 steps
and spanning multiple navigation and manipula-

1In our experiments, in order to reuse the visual embed-
ding available in the OSCAR checkpoint, we use an additional
one layer MLP to adapt our visual features to the visual em-
beddings space learned by OSCAR.

tion sub-goals. However, due to the quadratic com-
plexity of the self-attention mechanism, feeding
long sequences to transformers is computationally
expensive (Beltagy et al., 2020). Inspired by the
TransformerXL model (Dai et al., 2019), we design
the Segment-Level Recurrent Action Decoder ar-
chitecture that models long trajectories with recur-
rent segment-level state reuse. At training time we
divide trajectories into temporal segments of size
s. Given two consecutive segments, si and si+1,
EmBERT caches the representations generated for
segment si. The computed gradient does not flow
from si+1 to si, but cached representations are used
as extended context. When predicting the next ac-
tion, the model can still perform self-attention over
the previous segment representations, effectively in-
corporating additional contextual information that
spans an high number of previous timesteps.

The TransformerXL model is intended as an
encoder-only architecture which is not able to
perform cross-attention with some encoder hid-
den states. Therefore, we introduce two novel
elements to its architecture: 1) encoder hidden
states cache; 2) cross-attention over encoder states.
First, our extended context is composed of both
agent state representations and hidden states from
the previous segment si. In addition, to perform



cross-attention between decoder and encoder hid-
den states, we modify the TransformerXL self-
attention mechanism following common practice
in designing transformer decoders (Vaswani et al.,
2017). EmBERT encodes the previous actions for
the current timestep at−1 and extracts an action
embedding at from a learnable embedding matrix
A ∈ R|A|×da . In the TransformerXL’s multi-head
self-attention layers, we generate keys and values
from the agent state representations (encoder) and
queries from the action embeddings (decoder). We
obtain time-dependent agent state representations
{h̃1, h̃2, . . . , h̃|T |} as output.

Given time-dependent hidden states, the model
predicts action and object mask outputs. We learn
a probability distribution over the agent actions A
by using a two layer feedforward network (FFN)
with dropout and GeLU (Hendrycks and Gimpel,
2016) activation receiving the hidden state h̃t for
the timestep t:

h̃1
t = GeLU(h̃tW

1) P (at|h̃t) = softmax(h̃1
tW

2), (1)

where W1 ∈ Rde×de and W2 ∈ Rde×|A| are two
weight matrices. We use sequence-based cross-
entropy loss (Sutskever et al., 2014), LA, to su-
pervise the action prediction task. In addition, we
derive time-dependent fine-grained representations
of token and object embeddings. We use condi-
tional scaling (Dumoulin et al., 2018) to fuse the
decoder hidden state h̃t with the embedding H to
produce the time-dependent embeddings H̃:

c̃ = Wth̃ H̃i = c̃ ·Hi,i={1,...,(m+n+|O|)} , (2)

where Wt ∈ Rde×de is a weight matrix used to
adapt the representation of the original decoder
hidden state h̃. We predict target objects by se-
lecting one bounding box among the detections in
VF for manipulation actions, or any view for nav-
igation actions. We treat object mask prediction
as a classification task where the model first ex-
tracts time-dependent object embeddings Õ = H̃i,
i = {(m+ n), . . . , (m+ n+ |O|)}, and then gen-
erates logits for each object as follows:

õ1
i = GeLU(ÕW1

o) P (oi|Õi) = softmax(õ1
iW

2
o), (3)

where W1
o ∈ Rde×de and W2

o ∈ Rde×1 are two
weight matrices. At training time, we determine the
target object by using the Intersection-Over-Union
score between the predicted object masks generated
by MaskRCNN for each object and the gold object
mask. To supervise this classification task, we use
sequence-based cross-entropy loss, LO.

4.3 Auxiliary tasks

During the EmBERT training, we jointly optimize
LA, LO, and several auxiliary tasks.

Next Instruction Prediction. Several existing
models for ALFRED encode the sequence of lan-
guage instructions I together with the goal (Ta-
ble 1), or concatenate step-by-step instructions.
These simplifications can prevent the model from
carefully attending to relevant parts of the visual
scene. EmBERT takes the first instruction at time
t = 0, and performs add an auxiliary prediction
task to advance from instruction Ij to instruction
Ij+1. To supervise the next-instruction decision,
we create a binary label for each step of the tra-
jectory that indicates whether that step is the last
step for a specific sub-goal, as obtained by ma(i).
We use a similar FNN as Equation 1to model a
Bernoulli variable used to decide when to advance
to the next instruction. We denote the binary cross-
entropy loss used to supervise this task as LINST .

Object Target Predictions. EmBERT predicts
a target object for navigation actions, together with
the receptacle object containing the target, for ex-
ample a table on which a box sits (Figure 2).
For these tasks, we use an equivalent prediction
layer to the one used for object prediction. We
denote the cross-entropy loss associated with these
task by LNAV and LRECP .

Visual Region Classification. Class-
conditioned representations are useful for
agent manipulation, especially when combined
with hand-crafted procedures for object selec-
tions (Singh et al., 2020). Inspired by masked
region modeling tasks (Chen et al., 2020b;
Shrivastava et al., 2021), we select with %15
probability some objects part of the agent view in
a given timestep t and we ask the model to predict
their classes. Given the instruction Turn around
and walk to the book on the desk, at the very first
timestep of the trajectory it is likely that none
of the mentioned objects are visible. Thus, we
assume that at the last step of a sub-goal the agent
will have in view the objects associated with the
instruction. For the prediction task, we directly
use the time-dependent object embeddings Õ and
use an FFN (similar to Equation 1) to estimate a
probability distribution over the ALFRED object
labels. We use a cross-entropy loss denoted by
LV RC as supervision for this task.



Leaderboard Test Fold Performance
Seen Unseen

Model Task (PLW) GC (PLW) Task (PLW) GC (PLW)
SEQ2SEQ (Shridhar et al., 2020) 3.98 ( 2.02) 9.42 ( 6.27) .39 ( 0.08) 7.03 ( 4.26)
HITUT (Zhang and Chai, 2021) 21.27 (11.10) 29.97 (17.41) 13.87 ( 5.86) 20.31 (11.51)
MOCA (Singh et al., 2020) 22.05 (15.10) 28.29 (22.05) 5.30 ( 2.72) 14.28 ( 9.99)
HLSM (Blukis et al., 2021) 25.11 ( 6.69) 35.79 (11.53) 16.29 ( 4.34) 27.24 ( 8.45)
LWIT (Nguyen et al., 2021) 30.92 (25.90) 40.53 (36.76) 9.42 ( 5.60) 20.91 (16.34)
EMBERT 31.77 (23.41) 39.27 (31.32) 7.52 ( 3.58) 16.33 (10.42)
ET (Pashevich et al., 2021) 38.42 (27.78) 45.44 (34.93) 8.57 ( 4.10) 18.56 (11.46)
ABP (Kim et al., 2021) 44.55 ( 3.88) 51.13 ( 4.92) 15.43 ( 1.08) 24.76 ( 2.22)

Table 2: Test Fold Performance. Path weighted metrics are given in parentheses.

5 Experiments and Results

EmBERT achieves competitive performance with
state of the art models on the ALFRED leaderboard
test sets (Table 2), surpassing all but ET (Pashevich
et al., 2021) and ABP (Kim et al., 2021) on Seen
test fold performance (Table 3) at the time of writ-
ing. Notably, EmBERT achieves this performance
without augmenting ALFRED data with additional
language instructions, as is done in ET (Pashe-
vich et al., 2021), or visual distortion as used in
ABP (Kim et al., 2021).

Implementation Details. EmBERT is im-
plemented using AllenNLP (Gardner et al.,
2017), PyTorch-Lightning,2 and Huggingface-
Transformers (Wolf et al., 2019). We train using the
Adam optimizer with weight fix (Loshchilov and
Hutter, 2017), learning rate 2e−5, and linear rate
scheduler without warmup steps. We use dropout
of 0.1 for the hidden layers of the FFN modules
and gradient clipping of 1.0 for the overall model
weights. Our TransformerXL-based decoder is
composed of 2 layers, 8 attention heads, and uses
a memory cache of 200 slots. At training time,
we segment the trajectory into 10 timesteps. In
order to optimize memory consumption, we use
bucketing based on the trajectory length. We use
teacher forcing (Williams and Zipser, 1989) to su-
pervise EmBERT during the training process. To
decide when to stop training, we monitor the aver-
age between action and object selection accuracy
for every timestep based on gold trajectories. The
best epoch according to that metric computed on
the validation seen set is used for evaluation. The
total time for each epoch is about 1 hour for a to-
tal of 20 hours for each model configuration using
EC2 instances p3.8xlarge using 1 GPU.

Action Recovery Module. For obstacle avoid-
ance, if a navigation action fails, for example the

2https://www.pytorchlightning.ai/

agent choosing MoveAhead when facing a wall,
we take the next most confident navigation action at
the following timestep, as in MOCA (Singh et al.,
2020). We introduce an analogous object interac-
tion recovery procedure. When the agent chooses
an interaction action such as Slice, we first se-
lect the bounding box of highest confidence to re-
trieve an object interaction mask. If the resulting
API action fails, for example if the agent attempts
to Slice a Kettle object, we choose the next
highest confidence bounding box at the following
timestep. The ALFRED challenge ends an episode
when an agent causes 10 such API action failures.

Comparison to Other Models. Table 2 gives
EmBERT performance against top and baseline
models on the ALFRED leaderboard at the time
of writing. Seen and Unseen sets refer to tasks
in rooms that were or were not seen by the agent
at training time. We report Task success rate and
Goal Conditioned (GC) success rate. Task success
rate is the average number of episodes completed
successfully. Goal conditioned success rate is more
forgiving; each episode is scored in [0, 1] based
on the number of subgoals satisfied, for example,
in a STACK & PLACE task if one of two mugs
are put on a table, the GC score is 0.5 (Shrid-
har et al., 2020). Path weighted success penalizes
taking more than the number of expert actions nec-
essary for the task.

EmBERT outperforms MOCA (Singh et al.,
2020) on Unseen scenes, and several models on
Seen scenes. The primary leaderboard metric is
Unseen success rate, measuring models’ general-
ization abilities. Among competitive models, Em-
BERT outperforms only MOCA at Unseen gen-
eralization success. Notably, EmBERT remains
competitive on Unseen path-weighted metrics, be-
cause it does not perform any kind of exploration
or mapping as in HLSM (Blukis et al., 2021) and

https://www.pytorchlightning.ai/


Validation Fold Performance
EMBERT Seen Unseen

Init Weights #SB Mem Nav O P (O) VRC Task GC Task GC
OSCAR 18 200 3 3 3 28.54 (22.88) 38.69 (31.28) 1.46 ( .72) 10.19 ( 6.25)
OSCAR 18 200 3 3 34.76 (28.46) 41.30 (35.50) 3.66 ( 1.55) 12.61 ( 7.49)
OSCAR 18 200 3 3 36.22 (27.05) 44.57 (35.23) 4.39 ( 2.21) 13.03 ( 7.54)
OSCAR 18 200 3 37.44 (28.81) 44.62 (36.41) 5.73 ( 3.09) 15.91 ( 9.33)
OSCAR 18 200 23.66 (17.62) 29.97 (24.16) 2.31 ( 1.24) 12.08 ( 7.62)
BERT 18 200 3 3 26.46 (19.41) 35.70 (27.04) 3.53 ( 1.77) 13.02 ( 7.57)

OSCAR 9 200 3 3 3 29.30 (20.14) 36.28 (27.21) 3.06 ( 1.13) 12.17 ( 6.69)
OSCAR 9 200 3 3 31.75 (23.52) 38.80 (32.21) 2.56 ( 1.28) 12.97 ( 8.24)
OSCAR 9 200 3 3 20.37 (16.30) 28.64 (23.11) 1.46 ( 0.75) 10.47 ( 6.26)
OSCAR 9 200 3 28.33 (20.77) 36.83 (28.03) 2.68 ( 1.18) 11.60 ( 6.78)
OSCAR 9 200 27.84 (20.66) 36.59 (27.97) 2.44 ( 1.06) 11.46 ( 6.76)
OSCAR 0 200 3 3 25.31 (18.79) 34.27 (26.09) 3.42 ( 1.49) 12.25 ( 7.34)
OSCAR 9 1 3 3 20.98 (13.98) 33.33 (22.74) 1.10 ( 0.60) 10.33 ( 4.69)
OSCAR 18 1 3 3 21.95 (12.99) 35.04 (22.31) 1.58 ( .54) 11.08 ( 6.18)

MOCA (Singh et al., 2020) 18.90 (13.20) 28.02 (21.81) 3.65 ( 1.94) 13.63 ( 8.50)

Table 3: Validation Fold Performance. We present ablations adjusting the number of side-view bounding boxes,
attended memory length, with and without predicting navigation target O, target parent object P (O), and visual
region classification (VRC) loss. We also explore initializing our multi-modal encoder with BERT versus OSCAR
initialization. The highest values per fold and metric are shown in blue. Path weighted metrics are given in
parenthesis.

ABP (Kim et al., 2021).
We do not utilize the MOCA Instance Associ-

ation in Time module (Singh et al., 2020) that is
mimicked by ET (Pashevich et al., 2021). That
module is conditioned based on the object class of
the target object selected across timesteps. Because
we directly predict object instances without condi-
tioning on a predicted object class, our model must
learn instance associations temporally in an im-
plicit manner, rather than using such an inference
time “fix”.

EmBERT Ablations. Removing the object-
centric navigation prediction unique to EmBERT
decreases performance on all metrics (Table 3). We
show that limiting memory for the action decoder to
a single previous timestep, initializing with BERT
rather than OSCAR weights, and limiting vision
to the front view all decrease performance in both
Seen and Unseen folds.

We find that our parent prediction and visual re-
gion classification losses, however, do not improve
performance. To investigate whether a smaller
model would benefit more from these two auxil-
iary losses, we ran EmBERT with only 9 bounding
boxes per side view, which enables fitting longer
training segments in memory (we use 14 timesteps,
rather than 10). We found that those losses im-
proved EmBERT performance on the Unseen envi-
ronment via both success rate and goal conditions
metrics, and improved success rate alone in Seen

environments when the non-frontal views were lim-
ited to 9, rather than 18, bounding boxes. Given
the similar performance of EmBERT with all three
auxiliary losses at 18 and 9 side views, we believe
EmBERT is over-parameterized with the additional
losses and 18 side view bounding boxes. It is pos-
sible that data augmentation efforts to increase the
volume of ALFRED training data, such as those in
ET (Pashevich et al., 2021), would enable us to take
advantage of the larger EmBERT configuration.

6 Conclusions

We apply the insight that object-centric naviga-
tion is helpful for language-guided Embodied AI
to a benchmark of tasks in home environments.
Our proposed Embodied BERT (EmBERT) model
adapts the pretrained language model transformer
OSCAR (Li et al., 2020), and we introduce a de-
coupled transformer embedding and decoder step
to enable attending over many features per timestep
as well as a history of previous embedded states
(Figure 1). EmBERT is the first to bring object-
centric navigation to bear on language-guided, ma-
nipulation and navigation-based task completion.
We find that EmBERT’s object-centric navigation
and ability to attend across a long time horizon
both contribute to its competitive performance with
state-of-the-art ALFRED models (Table 3).

Moving forward, we will apply EmBERT to
other benchmarks involving multimodal input



through time, such as vision and audio data (Chen
et al., 2020a), as well as wider arrays of tasks
to accomplish (Puig et al., 2018). To further im-
prove performance on the ALFRED benchmark,
we could conceivably continue training the Mask
RCNN model from MOCA (Singh et al., 2020) for-
ever by randomizing scenes in AI2THOR (Kolve
et al., 2017) and having the agent view the
scene from randomized vantage points with gold-
standard segmentation masks available from the
simulator. For language supervision, we could train
and apply a speaker model for ALFRED to gener-
ate additional training data for new expert demon-
strations, providing an initial multimodal alignment
for EmBERT, a strategy shown effective in VLN
tasks (Fried et al., 2018).

7 Implications and Impact

We evaluated EmBERT only on ALFRED, whose
language directives are provided as a one-sided
“recipe” accomplishing a task. The EmBERT ar-
chitecture is applicable to single-instruction tasks
like VLN, as long as auxiliary navigation object
targets can be derived from the data as we have
done here for ALFRED, by treating the “recipe”
of step-by-step instructions as empty. In future
work, we would like to incorporate our model
on navigation tasks involving dialogue (Thoma-
son et al., 2019; de Vries et al., 2018) and real
robot platforms (Banerjee et al., 2020) where life-
long learning is possible (Thomason et al., 2015;
Johansen et al., 2020). Low-level physical robot
control is more difficult than the abstract loco-
motion used in ALFRED, and poses a separate
set of challenges (Blukis et al., 2019; Anderson
et al., 2020). By operating only in simulation,
our model also misses the full range of experience
that can ground language in the world (Bisk et al.,
2020), such as haptic feedback during object ma-
nipulation (Thomason et al., 2020, 2016; Sinapov
et al., 2014), and audio (Chen et al., 2020a) and
speech (Harwath et al., 2019; Ku et al., 2020) fea-
tures of the environment. Further, in ALFRED an
agent never encounters novel object classes at infer-
ence time, which represent an additional challenge
for successful task completion (Suglia et al., 2020).

The ALFRED benchmark, and consequently the
EmBERT model, only evaluates and considers writ-
ten English. EmBERT inherently excludes people
who cannot use typed communication. By training
and evaluating only on English, we can only specu-

late whether the object-centric navigation methods
introduced for EmBERT will generalize to other
languages. We are cautiously optimistic that, with
the success of massively multi-lingual language
models (Pires et al., 2019), EmBERT would be
able to train with non-English language data. At
the same time, we acknowledge the possibility of
pernicious, inscrutable priors and behavior (Bender
et al., 2021) and the possibility for targeted, lan-
guage prompt-based attacks (Song et al., 2021) in
such large-scale networks.
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A Appendix

A.1 Additional Auxiliary Losses

In this section we describe alternative auxiliary
losses that we designed for EmBERT training us-
ing ALFRED data. After validation, these config-
urations did not produce results comparable with
the best performing model. This calls for a more
detailed analysis of how to adequately design and
combine such losses in the complex training regime
of the ALFRED benchmark.

Masked Language Modeling The task-oriented
language in ALFRED differs from the web crawl
text used to train large-scale Transformers. We
tune our initial model weights using a masked lan-
guage modeling objective (Devlin et al., 2019). We
mask with a %15 probability a token among the
ones in Ig and It at the very last step of a sub-goal.
Differently from captions data or Wikipedia, when
which such supervision should be provided is cru-
cial. Given the instruction Turn around and walk
to the book on the desk, at the very first timestep
of the trajectory it is likely that none of the men-
tioned objects are visible. Thus, we assume that
at the last step of a subgoal the agent will have
in view the objects associated with the instruction.
We apply the same conditional scaling approach to
generate time-dependent language representations
L̃ as the one used in Equation 2. We denote the
masked language modeling loss used for this task
by LMLM .

Masked Region Modeling This is analogous to
the Visual Region Classification (VCR) loss that
we integrated in the model. The main difference is
that 15% of the visual features are entirely masked
(i.e., replaced with zero values) and we ask the
model to predict them given the time-dependent
representations generated by EmBERT for them.

Image-text Matching The masked region and
language modeling losses encourage the model to
learn fine-grained object and language token rep-
resentations, respectively. However, we are also
interested in global representations that are expres-
sive enough to encode salient information of the
visual frames. For this reason, we design an addi-
tional loss LIM . Given the state representation for
the current timestep t, EmBERT predicts whether
the current visual features can be associated with
the corresponding language features or not. We
maximize the cosine similarity between the visual

features of the current timestep t and the corre-
sponding language features while, at the same time,
minimizing the cosine similarity between the cur-
rent visual features and other language instructions
in the same batch. In this task, just like when mod-
eling the robot state, we use L̃0 as the language
features and L̃m+n as the visual features. We de-
fine LIM the same way as the contrastive loss in
CLIP (Radford et al., 2021). However, we expect
the model to use the time-dependent representation
of the agent state in order to truly understand the
meaning of a language instruction. In this case the
meaning of an instruction can be appreciated only
after several timesteps when the corresponding se-
quence of actions has been executed.

A.2 EmBERT Asset Licenses
AI2THOR (Kolve et al., 2017) is released under
the Apache-2.0 License, while the ALFRED bench-
mark (Shridhar et al., 2020) is released under the
MIT License.


