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Abstract

An interactive instruction following task
(Shridhar et al., 2020) has been proposed as
a benchmark for learning to map natural lan-
guage instructions and first-person vision into
sequences of actions to interact with objects
in a 3D simulated environment. We find that
an existing end-to-end neural model (Shrid-
har et al., 2020) for this task is not robust
to variations of objects and language instruc-
tions. We assume that this problem is due
to the high sensitiveness of neural feature ex-
traction to small changes in vision and lan-
guage inputs. To mitigate this problem, we
propose a neuro-symbolic approach that per-
forms reasoning over high-level symbolic rep-
resentations that are robust to small changes
in raw inputs. Our experiments on the AL-
FRED dataset show that our approach signif-
icantly outperforms the existing model by 18,
52, and 73 points in the success rate on the
ToggleObject, PickupObject, and SliceObject
subtasks in unseen environments respectively.

1 Introduction

Instruction following, which requires an agent to
understand and follow natural language instruc-
tions, has been studied to enable non-experts to
operate robots (MacMahon et al., 2006). In recent
years, a task called “interactive instruction follow-
ing” has been proposed in order to enable agents to
perform complex tasks using language instructions
that require agent to interact with objects as well
as to move in environments (Shridhar et al., 2020).
Here, interaction with objects refers to the move-
ment or change in the state of objects due to actions
such as picking up, heating, cooling, cleaning, or
cutting.

In interactive instruction following, agents need
to be robust to variations of objects and language in-
structions that are not seen during training. For ex-
ample, as shown in Figure 1, objects are of the same
type but vary in attributes such as color, shape, and

Figure 1: An example of four different apples that an
agent needs to pick up, taken from ALFRED. An agent
needs to interact with objects of various shapes, colors,
and textures.

texture. Also, as shown in Figure 2, language in-
structions vary in predicates, referring expressions
pointing to objects, and the presence or absence of
modifiers, even though their intents are the same.
However, our analysis shows that the end-to-end
neural model proposed by Shridhar et al. (2020)
is not robust to variations of objects and language
instructions, i.e., it often fails to interact with ob-
jects with unseen attributes or to take the correct
actions consistently when language instructions are
replaced by their paraphrases. Similar phenomena
have been observed in the existing literature. End-
to-end neural models that compute outputs from
vision or language inputs without any symbolic rep-
resentations in the process are shown to be sensitive
to small perturbations in inputs in image classifi-
cation (Szegedy et al., 2013) and natural language
understanding (Jia and Liang, 2017).

In this study, we aim to mitigate this problem
by utilizing symbolic representations that can be
extracted from raw inputs. We hypothesize that rea-
soning over the high-level symbolic representations
of objects and language instructions are robust to
variations of inputs. Specifically, high-level sym-
bolic representations in this study refer to classes



Figure 2: An example where different language instruc-
tions are given by different annotators to the same ac-
tion, taken from ALFRED. Predicates, referring expres-
sions, and modifiers have the same meaning but can be
expressed in various ways. Modifiers can be omitted.
Agents should take the correct action consistently no
matter how the given instruction is expressed.

of objects, high-level actions, and their arguments
of language instructions. These symbolic represen-
tations are expected to be robust to small changes
in the input because of their discrete nature.

Our contributions are as follows.

• We propose Neuro-Symbolic Instruction Fol-
lower (NS-IF), which introduces object de-
tection and semantic parsing modules to im-
prove the robustness to variations of objects
and language instructions for the interactive
instruction following task.

• In subtasks requiring interaction with objects,
our NS-IF significantly outperforms an exist-
ing end-to-end neural model in the success
rate while improving the robustness to the
variations of vision and language inputs.

2 Neuro-Symbolic Instruction Follower

We propose Neuro-Symbolic Instruction Follower
(NS-IF) to improve the robustness to variations
of objects and language instructions. The whole
picture of the proposed method is shown in Figure
3. Each component is explained below.

2.1 Notation
The length of the sequence of actions required to
accomplish a task is T . The action at time t is at.
The observed image at time t is vt. The total num-
ber of subtasks is N . The step-by-step language
instruction for the n-th subtask is ln, and the lan-
guage instruction indicating the goal of the overall
task is g. Let bn be the high-level action for the
language instruction ln for each subtask, and rn
be its argument. The total number of observable
objects in vt is M . The mask of the m-th object
is um, and the class of the m-th object is cm. An
example is displayed in Figure 4.

Figure 3: Overview of our model.

2.2 Language Encoder

Previous Neuro-Symbolic methods perform infer-
ence using only the symbolic representation ob-
tained by transforming the input. However, the
high-level symbolic representation of language in-
structions obtained in this study is only the pred-
icate b1:N and the object r1:N , and information
about modifiers is lost. In order to avoid this hin-
drance to the success of the task, we input all the
words in the language instructions to the language
encoder to obtain continuous representations. The
word embeddings of the language instruction g rep-
resenting the goal and the step-by-step language
instruction l1:N for all subtasks are concatenated
and inputted into BiLSTM to obtain a continuous
representation H of the language instruction.1

2.3 Visual Encoder

Similarly, for the image vt, a continuous represen-
tation Vt is obtained with ResNet-18 (He et al.,
2016), whose parameters are fixed during training.

2.4 Semantic Parser

Here, we convert the language instructions ln for
each subtask into high-level actions bn and their
arguments rn. In this study, we used the ground
truth bn and rn provided by ALFRED not only in
training but also in testing to verify the usefulness
of the symbolic representation. Predicting these
labels with neural classifiers is future work.

1When using only high-level symbolic expressions as input
to the BiLSTM, the accuracy decreased. Therefore, we use
continuous representation as input here.



(a) Instructions and their high-level actions and arguments

(b) Visual inputs and ground-truth actions and objects for each time step

Figure 4: An example taken from ALFRED.

2.5 MaskRCNN

MaskRCNN is used to obtain the masks u1:M and
classes c1:M of each object from the image vt.
Here, we use a MaskRCNN pre-trained on AL-
FRED.2

2.6 Subtask Updater

We find that the distribution of the output action
sequences varies greatly depending on which sub-
task is being performed. In this section, to make
it easier to learn the distribution of the action se-
quences, we predict the subtask st being performed
at each time. In order to verify the effectiveness of
this module, we conducted an experiment under the
condition that the ground truth st is given during
both training and testing.

2.7 Action Decoder

The action decoder predicts the action at at each
time using LSTM. The input is the hidden state
vector ht−1 at time t − 1, the embedding vector
of the action at−1, the embedding representation
of the high-level action E(b1:N )T p(st) and Vt at
time t obtained using the embedding layer E and
st, and the output xt−1 from ht−1 to H . Vt, and wt,

2https://github.com/alfworld/alfworld

which is the concatenation of the output xt of at-
tention from ht−1 to H . Then, after concatenating
wt to the output ht of LSTM, we obtain the distri-
bution of behavior at via linear layer and Softmax
function.

2.8 Object Selector
When the action at is an interaction action such as
Pickup or Slice, models need to select the object
with a mask. The object selector module outputs
the mask of an selected object detected by MaskR-
CNN as follows:

p(ot) =
∑
n

p(st = n)Softmax(E(c1:M )E(rn)
T )

(1)

m∗ = argmaxotp(ot). (2)

Then, the model outputs the mask um∗ . The
overview of the object selector is shown in Fig-
ure 5.

2.9 Progress Monitor
Following Shridhar et al. (2020), our model learns
the auxiliary task with the Progress Monitor, which
monitors the progress of the task. Specifically, from
ht and wt, we obtain normalized progress (t/T )
and completed subtasks (number of accomplished



Figure 5: Detailed illustration of the object selector.

subtasks divided by N ) through independent linear
layers.

3 Experiments & Results

3.1 Dataset

We use the ALFRED dataset, in which roughly
three annotators provided different language in-
structions for the final objective and each subtask
for each demonstration played by skilled users of
AI2-Thor (Kolve et al., 2017). ALFRED also pro-
vides the Planning Domain Definition Language
(PDDL; (McDermott et al., 1998)), which contains
the high-level actions and their arguments. They
are used to define the subtasks when creating the
dataset. In this study, we defined high-level actions
and their arguments as the output of the Semantic
Parser. The number of training sets is 21,023. Since
the test sets are not publicly available, we use the
820 validation sets for rooms that are seen during
training, and the 821 validation sets for rooms that
are not seen during training. Note that the object
to be selected in the validation set is an object that
has never been seen during training, regardless of
the room. Therefore, models need to be robust to
unseen objects in both the validation sets.

3.2 Subtask Evaluation

In this study, we only evaluate the performance
on each subtask, not the whole task, to verify the
effectiveness of the symbolic representations. The
baseline model is SEQ2SEQ+PM (Shridhar et al.,
2020), which uses only continuous representations
in the computation process unlike our model.

We report the results in Table 1. The proposed

Model Goto Pickup Slice Toggle
Se

en
S2S+PM (Paper) - (51) - (32) - (25) - (100)
S2S+PM (Ours) 55 (46) 37 (32) 20 (15) 100 (100)
NS-IF 42 (35) 70 (64) 73 (59) 100 (99)

U
ns

ee
n S2S+PM (Paper) - (22) - (21) - (12) - (32)

S2S+PM (Ours) 26 (15) 14 (11) 3 (3) 34 (28)
NS-IF 28 (17) 66 (54) 76 (52) 52 (52)

Table 1: Success rate (%) for each subtask. The scores
that take into account the number of actions required
for success are given in parentheses. Higher is better.

NS-IF model improves the success rate especially
in the tasks requiring object selection, such as Pick-
upObject, SliceObject and ToggleObject. Notably,
NS-IF improved the score on SliceObject in the
Unseen environments from 3% to 76% compared
to S2S+PM. The fact that only objects with unseen
attributes need to be selected to accomplish the
tasks in the test sets indicates that the proposed
method is more robust to variations of objects on
these subtasks than the baseline.

On the other hand, the S2S+PM model fails in
many cases and does not generalize to unknown ob-
jects. Moreover, the accuracy of S2S+PM is much
lower in Unseen rooms than in Seen ones, which
indicates that S2S+PM is less robust not only to
unknown objects but also to the surrounding room
environment. However, the difference in accuracy
of NS-IF between Seen and Unseen is small, indi-
cating that the proposed model is relatively robust
to unknown rooms. This may be related to the fact
that the output of ResNet is sensitive to the scenery
of the room, while the output of MaskRCNN is
not. The failed cases of NS-IF in PickupObject



Model Goto Pickup Slice Toggle

Se
en S2S+PM 315 / 240 / 239 105 / 52 / 202 7 / 5 / 29 29 / 0 / 0

NS-IF 250 / 178 / 368 253 / 9 / 97 32 / 0 / 9 29 / 0 / 0

U
ns

ee
n S2S+PM 147 / 99 / 513 42 / 21 / 281 1 / 0 / 31 13 / 10 / 30

NS-IF 165 / 89 / 502 218 / 12 / 113 25 / 0 / 7 28 / 0 / 25
(I) ↑ / (II) ↓ / (III) ↓

Table 2: Three kinds of values, (I), (II), and (III), that reflect the robustness to variations of language instructions in
subtask evaluation are reported. These values represent the number of demonstrations where a model (I) succeeds
with all the language instructions, (II) succeeds with at least one language instruction but fails with other para-
phrased language instructions, or (III) fails with all the language instructions. Higher is better for (I), and lower is
better for (II) and (III).

and SliceObject are due to the failure to predict the
action at, or failure to find the object in drawers or
refrigerators after opening them.

There are still some shortcomings in the pro-
posed model. There was little improvement in the
Goto subtask. It may be necessary to predict the
bird’s eye view from the first person perspective, or
the destination based on the objects that are visible
at each time step. In addition, the accuracy of other
subtasks (PutObject, etc.) that require specifying
the location of the object has not yet been improved.
This is because the pre-trained MaskRCNN used in
this study has not been trained to detect the location
of the object.

3.3 Evaluating the Robustness to Variations
of Language Instructions

The robustness of models to variations of language
instructions can be evaluated by seeing whether the
performance remains the same even if the given
language instructions are replaced by paraphrases
(e.g., Figure 2) under the same conditions of the
other variables such as the room environment and
the action sequence to accomplish the task.

The results are shown in Table 2. The reported
values show that the proposed model increased
the overall accuracy while improving the robust-
ness to variations of language instructions com-
pared to the baseline. The number of demonstra-
tions corresponding to (II), “succeeds with at least
one language instruction but fails with other para-
phrased language instructions”, was less than 4%
for Pickup, 0% for Slice and 0% for Toggle, indi-
cating that the proposed model is robust to para-
phrased language instructions.

The cases that fall into the category (III), “fails
with all the language instructions", are considered
to be failures due to causes unrelated to the lack
of the robustness to various language instructions.

These failures are, for example, due to the failure
to select an object in a drawer or a refrigerator after
opening them.

4 Related Work

4.1 Neuro-Symbolic Method
In the visual question answering (VQA) task,
Yi et al. (2018) proposed neural-symbolic VQA,
where the answer is obtained by executing a set of
programs obtained by semantic parsing from the
question against a structural symbolic representa-
tion obtained from the image using MaskRCNN
(He et al., 2017). Reasoning on a symbolic space
has several advantages such as (1) allowing more
complex reasoning, (2) better data and memory
efficiency, and (3) more transparency, making the
machine’s decisions easier for humans to interpret.
In the VQA task, several similar methods have been
proposed. Neuro-Symbolic Concept Learner (Mao
et al., 2019) uses unsupervised learning to extract
the representation of each object from the image
and analyze the semantics of the questions. Neu-
ral State Machine (Hudson and Manning, 2019)
predicts a scene graph including not only the at-
tributes of each object but also the relationships
between objects to enable more complex reasoning
on the image. However, they are different from our
study in that they all deal with static images and the
final output is only the answer. Neuro-Symbolic
methods were also applied to the video question
answering task, where a video, rather than a static
image, is used as input to answer the question (Yi*
et al., 2020). However, here too, the final output is
only the answer to the question.

4.2 Embodied Vision-and-Language Task
Tasks that require an agent to move or perform
other actions in an environment using visual and
language information as input have attracted much



attention in recent years. In the room-to-room
dataset (Anderson et al., 2018), a Vision-and-
Language Navigation task was proposed to follow
language instructions to reach a destination, but it
does not require interaction with objects. In both
the embodied question answering (Das et al., 2018)
and interactive question answering (Gordon et al.,
2018) tasks, agents need to obtain information and
answer questions through movement in the envi-
ronment, and the success or failure is determined
by only the final output answer. In contrast to these
tasks, ALFRED (Shridhar et al., 2020) aims to ac-
complish a task that involves moving, manipulating
objects, and changing states of objects in a 3D sim-
ulated environment that closely resembles reality.

5 Conclusion

In this study, we proposed a Neuro-Symbolic
method to improve the robustness to variations of
objects and language instructions for interactive in-
struction following. In addition, we introduced the
Subtask Updater module that allows the model to
select more appropriate actions and objects by rec-
ognizing which subtask is solved at each time step.
Our experiments showed that the proposed method
significantly improved the success rate in the sub-
task requiring object selection when the model was
given the output of semantic parsing and the prior
knowledge of which subtask the model was solving
at each time step. The experimental results suggest
that the proposed model is robust to a wide vari-
ety of objects. However, interaction with unknown
objects at the class level is not required in the AL-
FRED evaluation dataset. Therefore, care should
be taken when dealing with an unfamiliar class of
objects. Furthermore, the results showed that the
number of cases where a model succeeds or fails
depending on the given language instructions un-
der the same demonstration was decreased in the
proposed model.

ALFRED contains the ground truth output of
semantic parsing and the prior knowledge of which
subtask was being solved at each step, so it was
possible to use them in training and testing in this
study, so it should be noted that the cost of annota-
tions of them can not be ignored for other datasets
or tasks. Additional analysis is needed to determine
how much annotation is actually needed. If the cost
is impractical, it may be possible to solve the prob-
lem by unsupervised learning, as in NS-CL (Mao
et al., 2019). On the other hand, annotation is not

necessary because the mask and class information
of the object used for training MaskRCNN can be
easily obtained from AI2-Thor. Therefore, whether
annotation of mask and class is necessary or not
depends on how well an object detection model
trained on artificial data obtained from simulated
environments such as AI2-Thor generalizes to real
world data.

This study is still in progress. Future work in-
cludes learning of semantic parser and subtack up-
dater to enable evaluation on the whole task.
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