
McGill University COMP531 Winter 2010 Instructor: Phuong Nguyen

Assignment 2 solution

Question 1 (5pt) First, suppose that there is a p-bounded QBF proof system F . Then there is a
polynomial p so that for every valid QBF formula A there is an F -proof π of A of size |π| ≤ p(|A|).
So we have

A ∈ QBF-TAUT iff ∃π, |π| ≤ p(|A|), F (π) = A

The relation F (π) = A is a polytime relation, so this definition of QBF-TAUT shows that it is in
NP, hence PSPACE ⊆ NP. Since NP ⊆ PSPACE, we have PSPACE = NP.

Now we prove the other direction. Suppose that PSPACE = NP, we will show that there is a
p-bounded QBF proof system. By the hypothesis, there is a polytime relation R and a polynomial
t so that for all A:

A ∈ QBF-TAUT iff ∃y, |y| ≤ t(|A|), R(A, y)

Define a polytime function F as follows:

F (A, y) =

{

A if |y| ≤ t(|A|) ∧R(A, y)

undefined otherwise

Since R is a polytime relation, the function F is computable in polytime. Furthermore, if A is
a valid QBF formula then by the NP-definition of QBF-TAUT there is y of length at most t(|A|)
that makes R(A, y) true. For this choice of y, F (A, y) = A, so F is an onto function. Also, for each
A in QBF-TAUT, the F -proof (A, y) of A has length at most |A|+ t(|A|) which is a polynomial in
|A|. So F is a p-bounded QBF proof system.

Question 2 (5pt) First suppose that NPA = NP. Clearly both A and its complement Ac belong
to NPA:

• The oracle Turing machine for A works as follows: on input x it asks the oracle the membership
of x in A, and accepts if and only if the answer is YES.

• Similarly, the oracle Turing machine for Ac works as follows: on input x it asks the oracle the
membership of x in A, and accepts if and only if the answer is NO.

By the assumption that NPA = NP, we have both A and Ac belong to NP, hence A ∈
NP ∩ co-NP.

Now for the other direction, suppose that A ∈ NP∩co-NP. This means that there are polytime
nondeterministic Turing machines M1 and M2 that accepts A and Ac. To show that NPA ⊆ NP,
let M be an polytime oracle nondeterministic Turing machine with access to A. We show that M
can be simulated by nondeterministic Turing machine M ′ in polytime.

The machine M ′ works as follows. On input x it simulates M , and every time M as a query of
the form y ∈ A? M ′ runs both M1 and M2 on y, Exactly one of these will accept, and M ′ continues
to simulate M with oracle answer YES if M1 accepts and with oracle answer NO if M2 accepts.
Since M, M1, M2 all run in polytime, M ′ also runs in polytime time.

Question 3 (Exercise 5.13(a) in the text) (5pt) We give a formula defining membership in
VC-DIMENSION that has the right alternation of bounded quantifiers. By definition: (C, k) is in
VC-DIMENSION iff

1

there is a set X ⊆ {0, 1}n, |X| = k such that
for all X ′ ⊆ X,

there is some i, 1 ≤ i ≤ 2l such that X ′ = X ∩ {x : C(i, x) = 1}

This statement already has the required form of quantifier alternation (i.e., ∃∀∃). We need to argue
that the quantified variables are of bounded length, and the relation X ′ = X ∩ {x : C(i, x) = 1}
is computable in polytime.

First observe that a set X of k elements has precisely 2k subsets, so if S = {S1, S2, . . . , S2ℓ}
shatters X, S must have at least 2k elements. It follows that k ≤ ℓ. Also, it is obvious that
n, ℓ ≤ |C|. So in the following, it suffices to give the upper bounds on the lengths of the quantified
variables as polynomials in n, k, ℓ.

The set X can be encoded simply as a sequence of k n-bit strings (members of X), and this
is a string of length nk. Then X ′ can be easily encoded as a binary string of length k whose bits
indicate membership in X ′ for each element in X. The last quantified variable, i, can be written
as a binary string of length ℓ.

Finally, the relation X ′ = X ∩ {x : C(i, x) = 1} can be verified in time polynomial in nk by
verifying that for each element x of X, C(i, x) = 1 iff x ∈ X ′. This requires running through all
elements of X (thus k loops), for each element x computing C(i, x) (taking time polynomial in the
size of |C|) and verifying that the output of C agrees with the membership of x in X ′. All these
operations take polynomial time in |C|.

Question 4 (10pt) Following the “elementary school algorithm” for multiplication, we compute
MULT (x, y) by writing down the following table and then computing the sum of all rows. Let
|y| = n and y be the binary string yn−1yn−2 . . . y2y1y0. The table has n rows; the i-th row is either
(i) all 0 string if yi = 0, or (ii) the string x shifted left by i bits, if yi = 1. In other words:

MULT (x, y) =
n

∑

i=1

xi

and

xi =

{

0 if yi = 0

x00 . . . 0 (x padded with i 0’s) if yi = 1

We will argue that this algorithm can be carried out in O(log(n)) space.
First, of course we don’t have enough space to write down the above table, but this is not a

problem, because the j-th least significant bit of the i-th row is

{

0 if j < i or yi = 0

xj−i otherwise

So we will compute this bit only when we need (and then discard the result).
We will sum up these rows and output the bits of the sum starting from the least significant

bit. This means that for each column we compute the sum of all bits in the column together with
the carry from the previous columns, and write down the last bit of the sum. For this we need to
maintain the current carry over from the previous column (initially this carry over is 0). The next
Claim shows that the carry over can be stored in O(log(n)) space.

Claim: the value of the carry over is always ≤ n.

2

We prove the Claim by induction on j that the carry over from column j is always ≤ n. For the
base case, the carry for the left-most column is 0. For the induction step, assume that the carry
over for column j is at most n. Then the sum of all bits in column j + 1 and the carry over from
column j is at most n + n = 2n. There the carry over for column j + 1 is at most 2n/2 = n. This
proves the Claim.

Since the values of the carries over are ≤ n, they can be maintained using ⌈log(n)⌉ bits. We
will also need to maintain an index for the current column, and for summing the bits in the column
an index for the rows. In total, we need O(log(n)) space.

Question 5 (10pt) First we show that HornSAT is in P. We will give a polytime algorithm
for HornSAT. Given a Horn formula A, our algorithm actually searches for a satisfying truth
assignment for A, and output NO if no such truth assignment is found. It is based on the following
observation.

Claim: If A is a Horn formula all of whose clauses have at least one negative literal, then A is
satisfiable by the truth assignment that assigns FALSE to every variable.

The proof of the Claim is straightforward: Suppose that every clause in A has at least one
negative literal, then the truth assignment that assigns FALSE to every variable satisfies every
clause, and hence A as well.

Thus let S be the set of clauses in A. The goal is to search for a truth assignment that satisfies
all clauses in S. By the Claim, we know that if all clauses in S have at least one negative literal,
we can conclude that A is satisfiable by the truth assignment that make every variable FALSE.
Otherwise, S must contain a clause whose only literal is a positive literal p. Any truth assignment
that satisfies A must set p to TRUE. We can now simplify the clauses in S: if a clause C contains
p, it is already true because we have set p to TRUE, and hence can be eliminated from S. If a
clause C contains ¬p then we can eliminate ¬p from it.

After this simplifying procedure, what we have left is a set S′ of simplified clauses that contains
at most one clause less than S, and S′ doesn’t contain p. We can now recursively search for a
satisfying truth assignment for S′.

Formally the algorithm is as follows: Let S be the set of clauses of A.
HornSAT-SEARCH(S):

1. τ ← ∅ (the current truth assignment)

2. while S is not empty do

3. if all clauses in S contains at least a negative literal:

4. append τ with the truth assignment that assigns FALSE to every variables in S

5. output τ

6. else

7. if there is an empty clause in S, output NO;

8. else

9. let p be a clause in S that contains only a positive literal

3

10. τ ← τ ∪ {p = TRUE}

11. simplify S as discussed above

12. end if

13. end if

14. end while

15. Output τ

The proof that the algorithm is correct is based on the Claim above. First we show that if that
if there is a truth assignment that satisfies all clauses in S then the algorithm outputs one such
truth assignment. This is proved by proving by induction on the size of the set S. The base case
is obvious. For the induction step, consider two cases:

• All clauses in S contains at least one negative literal. Then by the Claim S is satisfiable and
the algorithm outputs one satisfying truth assignment.

• There is a clause in S that contains only a positive literal. Then any satisfying truth as-
signment for S must set this literal to TRUE, and the set S′ obtained from S after the
simplification is also satisfiable. Now we can apply the induction hypothesis.

Next we show that if S is unsatisfiable then the algorithm will output NO. So suppose that S
is unsatisfiable. If S contains an empty clause then we output NO in line 7. Otherwise, by the
Claim, S must contain a clause with only a positive literal. The set S′ obtained from S by the
simplification procedure is also unsatisfiable, so it contains either an empty clause, or a clause with
only a positive literal, etc. This process of applying the simplification procedure must stop at some
time, and at that point we must arrive at a set that contains an empty clause, and the algorithm
will output NO.

Now we show that HornSAT is P-hard. This is done by reducing the Circuit Value
Problem (CVP) to HornSAT. Thus, given a Boolean circuit C that takes only constant (0,1) inputs
(i.e., there is no variable input), we want to construct a Horn formula A so that C outputs 1 iff A
is satisfiable.

The reduction: Let the gates in C be g1, g2, . . . , gn where gn is the output gate, so that each
gate gi is either a constant 0 or 1, or for some j, k < i:

gi = gj ∧ gk or gi = gj ∨ gk or gi = ¬gj

Our reduction uses the double-rail logic: we introduce for each gate gi two variables pi and qi with
the intended meanings pi = gi and qi = ¬gi. The formula A is the conjunction of the following
clauses: for each i we have two clauses below that say that pi = ¬qi:

pi ∨ ¬qi and ¬pi ∨ qi

and

• if gi is a constant gate 0, then we have two clauses ¬pi and qi;

• if gi is a constant gate 1, then we have two clauses pi and ¬qi;

4

• if gi is an ∧-gate with inputs from gates gj and gk then we have the following clauses that
say that pi ↔ pj ∧ pk:

¬pi ∨ pj , ¬pi ∨ pk, ¬pj ∨ ¬pk ∨ pi

• if gi is an ∨-gate with inputs from gates gj and gk then we have the following clauses that
say that pi ↔ pj ∨ pk:

¬pi ∨ ¬qj ∨ ¬qk, ¬pj ∨ pi, ¬pk ∨ pi

• if gi is a ¬-gate with input from gate gj then we have the following clauses that say that
pi ↔ ¬pj :

¬pi ∨ ¬pj , ¬qj ∨ pi

Finally, we have clause gn which says that the output of the circuit is 1.
Correctness of reduction: Observe that each clause described above has at most one positive

literal, so A is a Horn formula. It remains to show that A is satisfiable iff C outputs 1. First,
suppose that A is satisfiable by a truth assignment τ . It can be shown by induction on i that τ(pi)
is precisely the value of the gate gi and qi is its negation. Hence the fact that τ(pn) = 1 implies
that the output of C is 1. Next, suppose that C outputs 1. Then define a truth assignment τ to
the variables pi and qi by letting τ(pi) be the value of gi and τ(qi) be its negation. Then it can be
shown that τ satisfies A.

Question 6 (10pt) First we show that UDIST is in NL. Notice that (G, s, t, d) is in UDIST
iff (i) there is a path from s to t of length d, and (ii) there is no shorter path from s to t. (i) can
be easily computable by an NL algorithm that guesses a path of length exactly d from s and t.
By the same argument (ii) is computable by some algorithm in co-NL, but since co-NL = NL we
also have (ii) can be done in NL. Thus UDIST is in NL.

Now we show that UDIST is NL-hard. We do this by showing that PATH is logspace
reducible to UDIST.

The reduction: Given a directed graph H and two vertices x, y we want to construct an
undirected graph G with two vertices s, t and a distance d so that

there is a path from x to y in H iff
the distance between s and t in G is exactly d.

Let n be the number of vertices in H and let v1, v2, . . . , vn be all vertices of H, and without loss
of generality suppose that x = v1, y = v2. The graph G has n copies of v1, v2, . . . , vn, the i-th copy
are

ui,1, ui,2, . . . , ui,n

(for 1 ≤ i ≤ n). The edges of G are as follows. For the i-th copy, there is an edge between ui,ℓ and
ui,k iff there is a (directed) edge in G from vℓ to vk. In addition, between the i-the copy and the
(i + 1)-st copy there is an edge between ui,ℓ and ui+1,k iff either ℓ = k or there is a (directed) edge
in G from vℓ to vk. Finally, take s = u1,1 (i.e. x in the first copy of H) and t = un,2 (i.e. y in the
last copy of H) and the distance d = n.

Correctness of the reduction: It can be seen that if there is a path from v1 to v2 in H, say

vj1 = v1, vj2 , vj3 , . . . , vjr−1, vjr
= v2

5

then there is a path of length exactly n between u1,1 and un,2 in G:

u1,1, u2,j2 , u3,j3 , . . . , ur−1,jr−1, ur,2, ur+1,2, . . . , un,2

Furthermore, since the edges go only from one copy to the next, and path between u1,1 and un,2

must have length at least n. Thus the distance between s and t is n.
On the other hand, suppose that the distance between s and t in G is n. Then there is a path

of length exactly n between u1,1 and un,2. This path must be of the form

u1,j1 = u1,1, u2,j2 , u3,j3 , . . . , un−1,jn−1
, un,2 = un,jn

By definition of G, for each i either ji = ji+1 or there is directed edge from vji
to vji+1

in H. This
shows that there is a path from v1 to v2 in H.

Complexity of the reduction: Given H the vertices and edges of G are easily computed in
logspace. (In fact this is an AC0 reduction.)

6

