
McGill University COMP531 Winter 2010 Instructor: Phuong Nguyen

Assignment 1 solution

Question 1 (Exercise 2.6 (b) in the text) [10pt] HIGH-LEVEL IDEA. We describe how the
universal nondeterministic Turing machine U works on input (α, x). The idea is to nondetermin-
istically guess a computation of the machine Mα on input x and accept if and only if the guess
is indeed a valid accepting computation. In order to run in time O(T (|x|)) (where T (|x|) is the
running time of Mα on x), we need to design the guesses so that it can be verified efficiently. For
example, we cannot guess the entire configuration of Mα for every step, because this would require
time T (n)2 to verify.

Our guesses will be a sequence of T (n) “description tuples” for the moves of Mα. Suppose Mα

has k tapes in total. A description tuple of a move of Mα is a tuple that contains

• the current state,

• the next state,

• k symbols that Mα reads on its k tapes,

• k symbols that Mα will write on the tapes,

• and k directions L or R or S (for left, right, or stay) for the movement of the tape heads.

Although U does not know the value of T (|x|), we can guarantee that it always runs in time
O(T (|x|) by requiring that its guesses are complete computations of Mα (so the last state is always
either qaccept or qreject).

To verify that our guesses correctly describe an accepting computation of Mα on x, we need to
verify that

(1) each description tuple obeys the transition functions of Mα,

(2) the symbols that are read on the tapes of Mα are guessed correctly,

(3) the last description tuple reach the accepting state qaccept.

For (1) we simply go though the sequence of guesses once and verify that each tuple satisfies
one of the transition functions of Mα. (For this purpose the transition functions of Mα is stored in
a separate work tape of U .) We check (2) for each tape of Mα, one by one, using a separate work
tape of Mα, by going through the sequence of guesses and following the actions specified by the
guesses to reconstruct the content of the work tape of Mα. The consistency of the guess for each
symbol that Mα reads can be easily verified during reconstruction. We will need k sweeps through
the guesses. Finally (3) is done by simply looking at the last desciption tuple.

SOME DETAILS. The universal nondeterministic Turing machine U has three work tapes. On
input (α, x) it decodes α and stores Mα’s transition function on the first work tape. The seconde
work tape will be used to store Mα’s current state during simulation. Then it guesses a sequence
of tuples of the form

(q, q′, s1, . . . , sk, s
′

1, . . . , s
′

k, D1, . . . , Dk)

1



where Di ∈ {L, R, S}, for 1 ≤ i ≤ k, so that in the last tuple q′ is either qaccept or qreject..
Next it goes through this sequence and checks that for each tuple either

δ0(q, s1, . . . , sk) = (s′1, . . . , s
′

k, D1, . . . , Dk)

or
δ1(q, s1, . . . , sk) = (s′1, . . . , s

′

k, D1, . . . , Dk)

where δ0, δ1 are the transition functions of Mα, and that in the last tuple q′ = qaccept.
Finally, for each i, 1 ≤ i ≤ k the machine U uses the last work tape to reconstruct the work

tape content of the i-th work tape of Mα as follows. For example, consider i = 1. U goes through
the sequence of guesses, checks that the current symbol that it reads on the third tape is s1, then
it prints the symbol s′1 on this tape, and moves the tape head according to D1. If at any point the
symbol it reads is not the same as s1 it rejects. After reconstructing the content of the first tape,
it erases all symbols on its last tape and goes on to reconstruct Mα’s second work tape, etc.

If all the above are verified, then U accepts. The running time of U is clearly bounded by
cT (|x|) for some constant c that depends on the machine Mα.

Question 2 [10pt] This problem can be solved in the same way that we have used to show (in
class) that P = NP implies EXP = NEXP.

Suppose DTIME(n) = NTIME(n). It suffices to show that NTIME(nk) = DTIME(nk) for
any k ∈ N. Let L be any language in NTIME(nk), i.e., there is an NTM M for L that works in
time O(nk). Let

L′ = {x01nk
−(n+1) : x ∈ L ∧ n = |x|}

Then M can be modified to obtain an NTM M ′ that accepts L′ in linear time. By the assumption
that NTIME(n) = DTIME(n), there is a deterministic TM M ′′ that accepts L′ in linear time.
So an O(nk) deterministic algorithm for L is as follows. On input x of length n, pad x to obtain

to obtain y = x01nk
−(n+1), then run M ′′ on y and accepts iff M ′′ accepts.

Question 3 (Exercise 2.5 in the text) [10pt] a) To show that PRIME is in co-NP we need
to show that there is a certificate for the fact that a given number n is a composite number. Such
a certificate can be taken to be a pair (y, z) of two numbers such that 1 < y, z < n and y · z = n.
The fact that y · z = n is easily verified in time polynomial in the length of n.

b) HIGH-LEVEL IDEA. The certificate for n ∈ PRIME will contain r that is guaranteed by
Lucas’ test. Then the fact that rn−1 ≡ 1 mod n can be done by repeated squaring. In order to be

able to verify the other condition, i.e., for all prime divisor q of n − 1, r
n−1

q 6≡ 1 mod n, we will
simply supply a list of all prime divisors of q1, q2, . . . , qk of n − 1 (probably with repetitions) such

that q1 · q2 · . . . · qk = n− 1, and verify that for each qi, r
n−1

qi 6≡ 1 mod n. Now the fact that qi are
primes also needs to be certified, and we will construct the certificates for the qi in the same way.
This suggests that the certificate for n can be viewed as consisting of at most log(n) parts:

w1#w2# . . .#wℓ

(where ℓ ≤ log(n)) so that

• w1 contains the list (r, q1, q2, . . . , qk) for n as above;

2



• for j ≥ 1: for each prime p in wj , wj+1 contains the list (r′, q′1, q
′

2, . . . , q
′

k′) that verifies that
p is a prime according to Lucas’ test.

There are at most log(n) such parts because the value of maximum prime in wj+1 is less than half
of the same value for wj .

We have to argue that the length of wj does not grows too fast. This can be seen as follows.
Consider the length of w1. Because q1 · q2 · . . . · qk = n − 1 we have

∑

i

log(qi) = log(n − 1)

so ∑

i

⌈log(qi)⌉ ≤ ⌈log(n)⌉ + k

Also, r < n and k ≤ log(n). Thus the total length of w1 is at most O(log(n)). Similarly we can
show that w2 is of length at most

∑

i

O(log(qi)) = O(log(n))

and generally, wj has length O(log(n)). As a result, the total length of the certificate is O((log(n))2).
SOME DETAILS. The NTM M for PRIME works as follows. On input n it guesses a nonde-

terministic string
w1#w2# . . .#wℓ

and verifies that this satisfies the conditions above. That is, it verifies that:

• w1 is a list of the form (r, q1, q2, . . . , qk) where

– r
n−1

qi 6≡ 1 mod n

– q1 · q2 · . . . · qk = n − 1

– for each i, r
n−1

qi 6≡ 1 mod n.

• for 1 ≤ j < ℓ, for each prime p > 3 appearing in wj , wj+1 contains a list (r′, q′1, q
′

2, . . . , q
′

k′)
such that

– (r′)
p−1

q′
i 6≡ 1 mod p

– q′1 · q
′

2 · . . . · q
′

k′ = p − 1

• ℓ ≤ log(n)

The running time of M is clearly polynomial in the length of n.

Question 4 (Exercises 2.10 and 2.29 in the text) [10pt] a) Suppose L1 and L2 are defined
by:

x ∈ L1 ⇔ ∃y, |y| ≤ t1(|x|)R1(x, y)

x ∈ L2 ⇔ ∃y, |y| ≤ t2(|x|)R2(x, y)

3



for some polynomial t1, t2 and polytime relations R1, R2. Then L1 ∩ L2 can be defined by

x ∈ L1 ∩ L2 ⇔ ∃y, |y| ≤ t1(|x|) + t2(|x|) + 1,

y = y1#y2 ∧ |y1| ≤ t1(|x|) ∧ |y2| ≤ t2(|x|) ∧ (R1(x, y1) ∧ R2(x, y2))

Similarly, L1 ∪ L2 can be define by

x ∈ L1 ∪ L2 ⇔ ∃y, |y| ≤ t1(|x|) + t2(|x|) + 1,

y = y1#y2 ∧ |y1| ≤ t1(|x|) ∧ |y2| ≤ t2(|x|) ∧ (R1(x, y1) ∨ R2(x, y2))

These show that both L1 ∩ L2 and L1 ∪ L2 belong to NP.
b) Suppose L1 and L2 are defined by:

x ∈ L1 ⇔ ∃y, |y| ≤ t1(|x|)R1(x, y)

x ∈ L2 ⇔ ∃y, |y| ≤ t2(|x|)R2(x, y)

and also

x 6∈ L1 ⇔ ∃y, |y| ≤ t1(|x|)R
′

1(x, y)

x 6∈ L2 ⇔ ∃y, |y| ≤ t2(|x|)R
′

2(x, y)

for some polynomial t1, t2 and polytime relations R1, R2, R
′

1, R
′

2 (here we use without loss of gen-
erality the same bound for two definitions of the Li).

Then L1 ⊕ L2 can be defined as follows:

x ∈ L1 ⊕ L2 ⇔ (x ∈ L1 ∧ x 6∈ L2) ∨ (x 6∈ L1 ∧ x ∈ L2)

⇔ (∃y, |y| ≤ t1(|x|)R1(x, y) ∧ ∃y, |y| ≤ t2(|x|)R
′

2(x, y))∨

(∃y, |y| ≤ t1(|x|)R
′

1(x, y) ∧ ∃y, |y| ≤ t2(|x|)R2(x, y))

⇔ ∃y, |y| ≤ t1(|x|) + t2(|x|) + 1, y = y1#y2 ∧ |y1| ≤ t1(|x|) ∧ |y2| ≤ t2(|x|)∧

(R1(x, y) ∧ R′

2(x, y)) ∨ (R′

1(x, y) ∧ R2(x, y))

This shows that L1 ⊕ L2 is in NP. Similar arguments show that L1 ⊕ L2 is in co-NP. Therefore
L1 ⊕ L2 ∈ NP ∪ co-NP as desired.

Question 5 [10pt] a) Suppose that L∗ is in P, then there is a Turing machine M that accepts
L∗ in time nk for some constant k. We construct a polytime Turing machine M ′ for L as follows.
The machine M ′ on input x of length n will append 01n2

to the end of x and then simulates M on
x01n2

. M ′ accepts x if and only if M accepts x01n2

.
The running time of M ′ is O(n2) + nk which is a polynomial in n.
b) We know by the Space Hierarchy Theorem that there is a language L in DSPACE(n2) but

L is not in DSPACE(n). Since L is in DSPACE(n2), there is a Turing machine M that accepts
L in space O(n2). Construct M∗ for L∗ as follows. On input y, M∗ reject if y is not of the form
x01n2

where n = |x|. Now for y of this form, M∗ simulates M on input x and accepts if and only
if M accepts. Since M accepts L, M∗ accepts L∗. The space used by M∗ is the maximal of (i) the
space used to verify that y is of the right form and (ii) the space used by M . Here the task in (i)
can be done in space |x|, and the space in (ii) is O(|x|2), which is O(|y|). So M∗ works in linear
space, i.e., L∗ ∈ DSPACE(n).

4


