
McGill University COMP360 Winter 2011 Instructor: Phuong Nguyen

Assignment 9

Due March 23 before the lecture

The work you submit must be your own. You may discuss problems with each others; however,
you should prepare written solutions alone. Copying assignments is a serious academic offense, and
will be dealt with accordingly.

Question 1 (10pt) Consider the following variant of the Knapsack problem. The input consists
of

• a set of items with associated weights and values, just as before:

S = {(w1, v1), (w2, v2), . . . , (wn, vn)},

• a target value V ,

• an upper bound W ,

• and a “relax” factor ǫ.

Furthermore, the set S is guaranteed to contain a subset of items whose total weight is ≤ W and
whose total value is exactly V . The problem is to compute a subset of S whose total value is at

least V , and whose total weight is ≤ (1 + ǫ)W (so it can be a bit more than W ).
Give a dynamic programming algorithm for solving this problem. Your algorithm must run in

time polynomial in n and 1

ǫ
. Prove the correctness of your algorithm and analyze its running time.

Question 2 (10pt) Your friends are looking at n consecutive days of a given stock, at some point
in the past. The days are numbered 1, 2, . . . , n. For each day i they have a price p(i) per share for
the stock on that day.

For a certain (possibly large) integer k your friends want to know what is the best return of a
so-called k-shot strategy. Here a k-shot strategy is a collection of m pairs of days

(b1, s1), (b2, s2), . . . , (bm, sm)

for some m ≤ k and b1 < s1 < b2 < s2 < . . . < bm < sm. This can be viewed as a set of at most k
non-overlapping intervals, during each of which your friends buy 1,000 shares of the stock (on day
bt) and then sell it (on day st). The return of such a strategy is simply the profit of the transaction,
i.e.,

1, 000

m∑

t=1

(p(st)− p(bt))

You are asked to design an efficient algorithm to determine the best k-shot strategy.
Formally, the input to your algorithm consists of

• positive integers p(1), p(2), . . . , p(n),

• a positive integer k ≤ n/2

1



The output is a sequence of m pairs

(b1, s1), (b2, s2), . . . , (bm, sm)

as above, for some m ≤ k, with maximum possible return.
Your algorithm must run in time polynomial in n, k. Analyze its running time.

2


