
McGill University COMP360 Winter 2011 Instructor: Phuong Nguyen

Assignment 4 Solution

Question 1 (10pt) Consider the following variant of the problem Interval Scheduling, which we
call MIS (M for multiple). In this problem, each request consists of a set of intervals (instead of
just one interval as in Interval Scheduling). There is a single processor that can process only one
request at a time. Thus, if we accept a request R then we cannot accept any other request that
contains some interval which overlaps one of the intervals in R. For example, suppose that there
are 4 requests:

R1 = {(1, 3), (5, 6), (7, 8)}

R2 = {(2, 4)}

R3 = {(4, 6), (8, 9)}

R4 = {(3, 4), (8, 9)}

Then the maximum number of requests that can be scheduled together is 2, e.g.: R1 and R4, or
R2 and R3. The MIS problem is as follows.

Input:

• A set of n requests R1, R2, . . . , Rn, each request Ri is specified by a list of intervals

Ri = (si1, f
i
1), (s

i
2, f

i
2), . . . , (s

i
mi

, f i
mi

)

where all sij , f
i
j are nonnegative integers.

• An integer k

(Representation of numbers are not very important here, for example, they are written in unary.)
Output: Accept if we can schedule at least k requests together.
Show that the MIS problem is NP-complete, by giving a nondeterministic polytime algorithm

for it, and many-one reducing CLIQUE to it. Give formal proof of correctness for your reduction.

Solution
Specify the problem: We reduce CLIQUE to MIS.
The reduction: The reduction is as follows. On input (G, k), the output is the following set

of requests and k: There is one request denoted Rv for each vertex v of G. The request Rv consists
of all intervals of the form [auv, auv + 1] for all u such that (u, v) is NOT an edge of G. here auv
is an integer such that auv = avu and auv 6= au′v′ if the set {u′, v′} is different from the set {u, v}.
Here we assume that vertices of G are numbered 1, 2, . . . , n. Then we can take auv to be

auv = (u+ v)2 + uv

It is clear that if auv = au′v′ then we must have both

u+ v = u′ + v′ and uv = u′v′

Hence it must be that {u, v} = {u′, v′}.

1



Formally, define

Rv = {[auv, auv + 1] : for all u such that (u, v) 6∈ E}

for auv as above.
Correctness of the reduction: Observe that if (u, v) is an edge of G then Ru ∩ Rv = ∅ (so

Rv and Ru can be scheduled together), and if (u, v) is not an edge of G then Ru ∩Rv is the set of
one interval [auv, auv + 1] (so Rv and Ru cant be scheduled together). Thus K is a clique of G if
and only if the set of requests

{Rv : for v ∈ K}

can be scheduled together.
Consequently, G contains a clique of size k if and only if at least k requests can be scheduled

together.

Question 2 (4pt) Consider the following greedy algorithm that attempts to solve the Knapsack
problem (see Assignment 3). Informally, the idea is to always select elements with highest possible
ratio value/weights. Then output Yes if the selected elements have total value at least V .

(a) (2pt) Give pseudo-code for the algorithm.

(b) (2pt) Exhibit an example where the algorithm fails to solve Knapsack. Clearly describe why
the algorithm fails on your example.

Solution

(a) The algorithm:

1. sort the items so that v1/w1 ≥ v2/w2 ≥ . . . ≥ vn/wn

2. S = 0 % total weight so far

3. T = 0 % total value so far

4. for i = 1 to n do

5. if wi ≤ W − S do

6. T = T + vi

7. S = S + wi

8. end if

9. end form

10. if T ≥ V output YES

11. else output NO

2



(b) Example where the above algorithm fails: The set consists of two items:

w1 = 1, v1 = 2, w2 = 10, v2 = 10

and W = 10, V = 10. The answer is YES, because we can pack just item 2.
However the algorithm outputs NO, because v1/w1 > v2/w2, and the algorithm selects the

first item, and then there is no room for the second item. Thus when the for-loop terminates
S = 1, T = 2, and the algorithm outputs NO.

Question 3 (6pt) In class we discussed an greedy algorithm for Interval Scheduling that works
by always selecting requests that finish as early as possible. Another greedy algorithm that also
produces an optimal solution is to always select requests that start as late as possible.

(a) (2pt) Give pseudo-code for the algorithm.

(b) (4pt) Proof that the algorithm always output an optimal schedule.

Solution

(a) The algorithm

1. sort the requests so that s1 ≥ s2 ≥ s3 ≥ . . . ≥ sn

2. s = f1 % current start time

3. for i = 1 to n do

4. if fi ≤ s do

5. add i to the schedule

6. s = si

7. end if

8. end for

(b) Proof of correctness.
Let O be an optimal schedule,

O = i1, i2, . . . , ik

and let the output of the algorithm be
j1, j2, . . . , jℓ

We need to show that ℓ = k. We already know by the optimality of O that k ≥ ℓ. We will show
that ℓ ≥ k.

Suppose that the requests have been sorted as in the algorithm, that is

s1 ≥ s2 ≥ s3 ≥ . . . ≥ sn

3



We will prove by induction on t that sjt ≥ sit for 1 ≤ t ≤ ℓ. It will follow that ℓ = k, because
otherwise k ≥ ℓ+ 1, and by the time the for-loop terminates, s = sjℓ and there is still at least one
more request, namely iℓ+1 (where iℓ+1 > jℓ), such that

fiℓ+1
≤ s

hence the for-loop must have continued.
Now we prove the claim. The base case is obvious because j1 = 1. For the induction step,

suppose that sjt ≥ sit for some t < ℓ. We need to show that sjt+1
≥ sit+1

. At step t + 1, the
algorithm chooses jt+1 because it is the request with maximal start time among all requests that
start before request jt. Because it+1 also starts before jt, we have sjt+1

≥ sit+1
. QED.

4


