
McGill University COMP360 Winter 2011 Instructor: Phuong Nguyen

Assignment 1 Solution

QUESTION 1

The idea of the algorithm is as follows. We start with an arbitrary vertex s, color it Red, and
run BFS from there in order to color all vertices in the same connected component with s. It is
necessary that all neighbors of s are colored Blue, and all neighbors of these neighbors are colored
Red, etc. If at some point we detect a vertex that is colored by two different colors, then the graph
is not 2-colorable.

After doing BFS at s, if there are uncolored vertices in G we choose one of them and repeat
the same process.

The algorithm We will use the adjacency list representation for the graph. In this represen-
tation, each vertex v is associated with a linked list Adj[v] that contains all the neighbors of v. We
will use an array Color, where Color[v] is the color of vertex v. Initially Color[v] = null for all
vertices v.

1. % main for-loop: do BFS while there are unvisited vertices

2. for v in V do

3. if Color[v] = null do % vertex v has not been visited

4. % now do BFS at v

5. initialize an empty queue Q

6. Color[v]← Red

7. Enqueue(Q, v)

8. while Q is not empty do

9. u← Dequeue(Q) % take an element from the queue

10. for each w in Adj[u] do

11. if Color[w] = null do % w has not been visited

12. if Color[u] = Red

13. Color[w]← Blue

14. else

15. Color[w]← Red

16. end if

17. Enqueue(Q,w)
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18. else if Color[w] = Color[u]

19. output NO

20. end if

21. end for

22. end while

23. end if

24. end for

25. output YES

Running time The total time for all “for” loops (line 10) that are executed is O(|E|), because
each loop corresponds to an edge of G. Thus the total running time is O(|V |+ |E|).

Proof of correctness: There are two parts.
Part I. First we show that if the algorithm rejects (output NO) then the graph is not 2-colorable.

Because every two BFS trees are not connected, the coloring for each tree is independent of each
other. Suppose that the algorithm outputs NO during the BFS tree T that starts at a vertex v,
we will show that this tree is not 2-colorable, and hence the whole graph is also not 2-colorable.
Suppose for a contradiction that T is 2-colorable, then any 2-coloring of T is completely determined
by the color of v, and we can assume without loss of generality that v has color Red. We prove the
following Claim by induction on the distance from a vertex u to v.

Claim: Let u be a vertex in T . Any color that u gets from the program is the color that u

must get in a 2-coloring of T where v is colored Red.
Proof of Claim For the base case, the distance from u to v is 0, i.e., u is v itself. The Claim

holds in this case because v is colored Red.
For the induction step, suppose that the distance from u to v is d+1 for some d ≥ 0. Therefore

there is a neighbor u′ of u such that the distance from u′ to v is d. By the induction hypothesis
the color assigned to u′ by the program is the color u′ must get in a 2-coloring of T where v is Red.
Given the color of u′, u has only once choice and it’s clear that this is the choice chosen by the
program. This completes the induction step, and hence the proof of the Claim.

We reach a contradiction because some vertex u in T is colored both Red and Blue by the
program.

Part II. Now we show that if the program outputs YES, then indeed the graph is 2-colorable.
This is so because the program actually provides a 2-coloring of the graph. This is because the
BFS algorithm colors every vertex of the graph, and for any edge (u, v) the two endpoints must
have different colors, for otherwise the program would outputs NO.

QUESTION 2

The nondeterministic algorithm The certificate describes a mapping f such that (f(v1), f(v2)) ∈
E2 whenever (v1, v2) ∈ E1. Such a mapping can be given as a list of pairs of preimages and images.
For example, if v1, v2, . . . , vn are all vertices of G1, then f can be given as a list of the form

(v1, u1), (v2, u2), . . . , (vn, un)
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where u1, u2, . . . , un are vertices in G2.
On input G1, G2 and a mapping f as the certificate, the verifier works as follows. It goes over

all edges in G1, and for each edge e verifies that (f(v1), f(v2)) is an edge in G2, where v1, v2 are
the two endpoints of e.

Running time For each edge e = (v1, v2) in G1, to find the images f(v1), f(v2) in the worst
case the verifier has to go through the list of n = |V1| pairs. Once the images are found, verifying
that they form an edge in G2 takes time at most |E2|. Therefore the total running time is at most

|E1| × |V1| × |E2|

This is a polynomial in the size of the input (G1, G2).
Correctness of the algorithm The verifier accepts precisely when the certificate is a mapping

f as in the definition of the problem. Therefore (G1, G2) is a YES instance if and only if there is a
certificate that makes the verifier accept.
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