McGill University COMP360 Winter 2011

Instructor: Phuong Nguyen

Assignment 10 Solution

Question 1 (5pt) Recall the Bellman-Ford algorithm for the (general) Shortest Path problem. In this question you are asked to write a program that computes the total number of shortest st-paths in a given graph.

Formally, the input to your algorithm consists of a directed graph G and two vertices s and t in G. Each edge e of G is associated with a cost c(e) that may be negative; however there is no cycle in G that has negative total cost. Your algorithm must output the total number of st-paths in G of minimum total cost. Note that you do not have to compute these paths.

Solution

The array: We modified the array used in the Bellman-Ford algorithm. Now each entry A[v, i] in the array is a pair (c, k) where:

- c is the smallest cost of going from v to t using a path of length exactly i,
- and k is the total number of such paths.

Recurrence: Initially,

$$A[v,0] = \begin{cases} (0,1) & \text{if } v = t \\ (\infty,0) & \text{if } v \neq t \end{cases}$$

For $i \ge 0$, for $v \in V$: Let $c = \min_{u \in V, (v,u) \in E} A(c(v, u) + A[u, i][1]$ Here A[u, i][1] denotes the first in the pair A[u, i]. Let S be the set of neighbors u of v such that c(v, u) + A[u, i][1] = c. Then

$$A[v,i+1] = \left(c,\sum_{u\in S}A[u,i][2]\right)$$

Program:

- 1. For $v \in V$ do $A[v, 0] \leftarrow (\infty, 0)$ End For
- 2. $A[t, 0] \leftarrow (0, 1)$
- 3. For *i* from 0 to n 1 do
- 4. For v in V do
- 5. $c \leftarrow \min_{u \in V, (v,u) \in E} A(c(v,u) + A[u,i][1])$
- 6. $k \leftarrow 0$
- 7. For u in V such that $(v, u) \in E$ do

8. If
$$c(v, u) + A[u, i][1] = c$$
 do $k \leftarrow k + A[u, i][2]$ End If

9. End For

- 10. $A[v, i+1] \leftarrow (c, k)$
- 11. End For
- 12. End For

In line 5 above, the min is meant to be implemented as a for-loop.

To compute the total number of shortest st-paths we find the smallest cost amongst all A[s, i], for $0 \le i \le n$, and sum up the corresponding numbers of paths.

- 1. $c \leftarrow \min_{0 \le i \le n} A[s, i][1]$
- 2. $k \leftarrow 0$
- 3. For i from 0 to n do
- 4. If A[s, i][1] = c do $k \leftarrow k + A[s, i][2]$ End If
- 5. End For
- 6. return k

Again, in line above 1, the min is meant to be implemented as a for-loop.

Question 2 (10pt) (a) [5pt] Consider a directed grid graph G whose vertices are point (i, j) on the plane, for integers $i, j: 0 \le i \le m$ and $0 \le j \le n$. The edges in G are horizontal and vertical grid edges that go from left to right and from bottom to top, together with diagonal edges in the direction from the lower-left corner (0,0) to the upper-right corner (m,n). In other words, the edges are:

 $\begin{array}{ll} ((i,j),(i,j+1)) & \mbox{ for } 0 \leq i \leq m, 0 \leq j \leq n-1 \\ ((i,j),(i+1,j)) & \mbox{ for } 0 \leq i \leq m-1, 0 \leq j \leq n \\ ((i,j),(i+1,j+1)) & \mbox{ for } 0 \leq i \leq m-1, 0 \leq j \leq n-1 \end{array}$

Each edge e of G is associated with a cost c(e) which is a non-negative integer.

Given a path P in G from (0,0) to (m,n). Show how to modify the costs on the edges of G so that P is the unique minimum-cost path in G if and only if it is a minimum-cost path under the new cost function.

(b) [5pt] Give an algorithm that runs in time $\mathcal{O}(mn)$ and space $\mathcal{O}(m+n)$ that determines whether G has a unique minimum-cost path from (0,0) to (m,n). Justify the time and space complexity of your algorithm. Use (a) to argue that your algorithm is correct.

Solution

(a) Observe that the total number of edges in the path P is at most m + n. We first show how to define the new cost function which may have non-integer rational values. Then the costs can be scaled up simultaneously to become integers by multiplying with a common denominator.

We will increase the cost of each edge on P by a small amount, i.e. $\frac{1}{2(m+n)}$, and keep the cost of all other edges unchanged. Let c' denote the new cost function. We will prove now that P is the unique min-cost path under c iff P is a min-cost path under c'.

First, suppose that P is the unique min-cost path under c. Then note that the total increase in cost for P is at most

$$(m+n)\frac{1}{2(m+n)} = \frac{1}{2}$$

That is, $c'(P) \le c(P) + \frac{1}{2}$. On the other hand, the total cost of all other paths do not decrease, i.e. $c'(P') \ge c(P')$ for all other paths P'. Because P is the unique min-cost under c we have

$$c(P') \ge c(P) + 1$$

for any other path P'. From these we have $c'(P') \ge c'(P) + \frac{1}{2}$. So P is a min-cost path under c'.

Second, suppose that P is not a min-cost path under c. This means that there is another path P' with $c(P') \leq c(P)$. Observe that the cost increase in P is the greatest, because no other path can contain all edges of P. Thus we have, in particular,

$$c'(P) - c(P) > c'(P') - c(P')$$

This gives

$$c'(P) > c'(P') + (c(P) - c(P') \ge c'(P')$$

Thus P is not a min-cost path under c'. QED

To define a new cost function that takes integer values, we let

$$c''(e) = 2(m+n)c'(e)$$

for all edges e.

(b) The algorithm is by defining a new cost function as above, then run a dynamic programming algorithm for computing the min-cost of going from (0,0) to (m,n). Then compare this to the new cost of P: they are the same if and only if P is indeed the unique min-cost under the original cost function.

Question 3 (10pt) Consider the following problem. There are m machines M_1, M_2, \ldots, M_m . There are k types of job, and there are n jobs in total. (In general $n \ge k$, so there can be multiple jobs of the same type.) Each machine M_i is capable of processing a set of types of jobs, denoted by S_i . For example, if $S_2 = \{5, 9, 12\}$ then machine M_2 can process jobs of types 5, 9 and 12. Assume that each job requires one unit of time and must be processed by a single machine that is capable of processing it. Furthermore, each machine M_i has a total t_i units of time available. The problem is to schedule, whenever possible, all jobs on the machines in such a way that meet the described specification. Set up a flow network for solving this problem.

(a) Clearly specify the vertices, the edges, and the capacity on each edge of the network. Specify an algorithm for computing a maximum flow of the network.

(b) Give an algorithm that determines whether it is possible to schedule all jobs in such a way that satisfies the specification above, and if so, outputs such a schedule. (The output should be a list L_i for each machine M_i ; this is the list of jobs that will be processed by the machine.)

(c) Prove that your algorithm in (b) is correct.

Solution

(a) The network has a vertex M_i for each machine M_i and T_j for each type j of jobs. If M_i can process a job of type T_j then there is an edge from M_i to T_j with capacity

$$c(M_i, T_j) = \min\left(t_i, n_j\right)$$

where n_j is the total number of jobs of type j.

There are also source s and sink t. For each machine M_i there is an edge from s to vertex M_i with capacity t_i , and for each job type j there is an edge from T_j to t with capacity n_j .

A maximum flow can be computed using Ford–Fulkerson algorithm.

(b) First run the Ford–Fulkerson algorithm to obtain a maximum flow f_{max} . If the value of this flow is less than n then we cannot schedule all n jobs. Otherwise, the list L_i of jobs for each machine M_i is obtained by looking at all vertices T_j such that $f_{max}(M_i, T_j) > 0$. The machine M_i will process $f_{max}(M_i, T_j)$ many jobs of type j.

(c) To prove the correctness of the algorithm, we argue that if there is a way of scheduling all n jobs, then the maximum flow value is n. In addition, if the maximum flow value is n, then there is a way of scheduling all n jobs.

First, suppose that we can schedule all n jobs. Then we can define a flow f of value n as follows.

- The flow on each edge (M_i, T_j) is the total number of jobs of type j that are processed by M_i .
- The flow on each edge (T_j, t) is n_j .
- The flow on each edge (s, M_i) is the total number of jobs scheduled on M_i .

It is easy to verify that this is a valid flow (i.e., it satisfies the Conservation and Capacity conditions). Also, the cut having t alone on one side has capacity exactly n. Thus the maximum flow is at most n. So the flow f above is a maximum flow.

Second, suppose that f is a maximum flow on the network, and f has value n. Then define a schedule as in (b). We can easily verify that it is a valid schedule (i.e., each machine M_i does not exceed its total time limit t_i , and for each job type j a total of n_j jobs are processed). QED