
McGill University COMP251 Fall 2009 Instructor: Phuong Nguyen

Practice problems

Note: Some problems from the textbook that are used in assignments will not be repeated in
this list.

The numbers such as 8.3-1 refer to exercises in the textbook: Cormen, Leiserson, Rivest, Stein
Introduction to Algorithm (2nd edition) McGraw-Hill (2001), ISBN: 0-07-013151-1. It is available
online at http://library.books24x7.com/ (with McGill ID). The book ID is 3444.

1 Linear sorts: radix sort and bucket sort

8.3-1, 8.3-2, 8.3-3, 8.4-1, 8.4-2, 8-2, 8-3, 8-4, 8-5.

2 Graph searchs

Note: In the textbook, for DFS d[v] is the “discovery time” of a vertex v. This is the same as s[v]
used in lecture (which stands for “starting time”). Also, consult your notes and the handouts for
the proofs of correctness for topological sort and strongly connected components.

2.1 Graph representations

22.1-2.

Problem 2.1 (CLRS 22.1-1). Given an adjacency-list representation of a directed graph, how long
does it take to compute the out-degree of every vertex? How long does it take to compute the
in-degrees?

Problem 2.2 (CLRS 22.1-3). Describe efficient algorithms for computing the transpose GT of a
directed graph G from G, for both the adjacency-list and adjacency-matrix representations of G.
Analyze the running times of your algorithms.

Problem 2.3 (CLRS 22.1-5). The square of a directed graph G = (V, E) is the graph G2 = (V, E2)
such that (u, w) ∈ E2 if and only if for some v ∈ V , both (u, v) ∈ E and (v, w) ∈ E. That is, G2

contains an edge between u and w whenever G contains a path with exactly two edges between u and
w. (Note that G2 may contain self-loops even though G does not.) Describe efficient algorithms
for computing G2 from G for both the adjacency-list and adjacency-matrix representations of G.
Analyze the running times of your algorithms.

Problem 2.4 (CLRS 22.1-6). When an adjacency-matrix representation is used, most graph al-
gorithms require time Ω(|V |2) (because the adjacency matrix has size |V |2), but there are some
exceptions. Show that determining whether a directed graph G contains a universal sink–a vertex
with in-degree (|V | − 1) and out-degree 0–can be determined in time O(|V |), given an adjacency
matrix for G.

1

Problem 2.5 (CLRS 22.1-7). The incidence matrix of a directed graph G = (V, E) is a |V | × |E|
matrix B = (bij) such that

bij =











−1 if edge j leaves vertex i

1 if edge j enters vertex i

0 otherwise

Describe what the entries of the matrix BBT represent, where BT is the transpose of B.

2.2 Breadth-first search

22.2-1, 22.2-2, 22-1.

Problem 2.6 (CLRS 22.2-3). What is the running time of BFS if its input graph is represented
by an adjacency matrix and the algorithm is modified to handle this form of input?

Problem 2.7 (CLRS 22.2-4). Argue that in a breadth-first search, the value d[u] assigned to a
vertex u is independent of the order in which the vertices in each adjacency list are given. Using
Figure 22.3 as an example, show that the BFS tree computed by the algorithm can depend on the
ordering within adjacency lists.

Problem 2.8 (CLRS 22.2-5). Given an example of a directed graph G = (V, E), a source s ∈ V ,
and a set of tree edges Eπ ⊆ E such that for each vertex v ∈ V , the unique path in the graph (V, Eπ)
from s to v is a shortest path in G, yet the set of edges Eπ cannot be produced by running BFS on
G, no matter how the vertices are ordered in each adjacency list.

Problem 2.9 (CLRS 22.2-7). The diameter of an undirected graph G = (V, E) is the the maximum
distance between two vertices in the graph:

max{δ(u, v) : u, v ∈ V }

(recall that δ(u, v) is the distance between u and v).
This problem is about computing the diameter of a tree. Give an O(|V |)-time algorithm for

determining the diameter of a tree T = (V, E).

Problem 2.10 (CLRS 22.2-8). Let G = (V, E) be a connected, undirected graph. Give an O(|V |+
|E|)-time algorithm to compute a path in G that traverses each edge in E exactly once in each
direction. (Note that this path has length 2|E|.)

2.3 Depth-first search

22.3-1, 22.3-2, 22.3-3, 22.3-4, 22.3-5, 22.3-8, 22.3-9, 22.3-11.

2.4 Topological sort

22.4-1, 22.4-2, 22.4-3, 22.4-5.

2

2.5 Strongly connected components

22.5-1, 22.5-2, 22.5-3, 22.5-4, 22.5-6, 22.5-7

Problem 2.11 (CLRS 22.3-12). (This is a starred question in CLRS. It can be solved

with more ease with knowledge of strongly connected components.) A directed graph
G = (V, E) is singly connected if for every two distinct vertices u and v in V , there is at most one
path from u to v. Give an O(|V | + |E|)-time algorithm that determines whether or not a directed
graph is singly directed, when the input graph is given using adjacency list representation.

3 Stack, queue, and linked list

10.1-1, 10.1-2, 10.1-3, 10.1-5, 10.1-6, 10.1-7.
10.2-1, 10.2-2, 10.2-3, 10.2-6.
10.4-2, 10.4-3, 10.4-4, 10.4-5.
10-1.

4 Binary search tree

12.1-1, 12.1-2, 12.1-4, 12.1-5, 12.2-1, 12.2-3, 12.2-4, 12.2-5, 12.2-6, 12.2-7, 12.2-8, 12.2-9.
12.3-2, 12.3-3, 12.3-5.
12-1, 12-2.

5 Red-black tree

Note: The textbook uses T.nil as a sentinel, which is always colored black. In the lecture we do
not use this, so the definition of red-black tree is a bit simpler. You may find Sections 13.3 and
13.4 in the textbook hard to follow (at least I do), so refer to your notes and the handouts.

13.1-5, 13.1-6, 13.1-7.
13.2-1, 13.2-3.
13.3-2, 13.4-4, 13.4-7.
13-2.

3

