
McGill University COMP251 Fall 2009 Instructor: Phuong Nguyen

Algorithm for finding strongly connected components

The idea of the algorithm is as follows:

1. call DFS(G) to compute the finishing time f [v] for every vertex v, sort the vertices of G in
decreasing order of their finishing time;

2. compute the transpose GT of G;

3. Perform another DFS on G, this time in the main for-loop we go through the vertices of G

in the decreasing order of f [v];

4. output the vertices of each tree in the DFS forest (formed by the second DFS) as a separate
strongly connected component.

There are two issues. First, on line 1, we want to sort the vertices. We don’t want Θ(n lnn)
algorithm for sorting here. Instead, we put the vertices in a linked list as they are colored Black
(thus v is inserted into the list at time f [v]). (This is similar to what we do in the Topological sort
algorithm, except for we do not check for back edges here.)

Second, to output the components (on line 4) we can use a unique identifier for each strongly
connected component.

For the first DFS, we use colors White, Gray, Black as usual. For the second DFS, we will use
Black, Blue, Red. (SCC stands for “strongly connected component”.)

SCC(G)

1. % initialization for the first DFS

2. for each u in V do

3. color[u]←White

4. end for

5. Linked list L← ∅ % L contains the vertices of G in decreasing order or f [v]

6. % now the main loop of the first DFS

7. for each u in V do

8. if color[u] = White do

9. SCC-Visit1(G, u, L)

10. end if

11. end for % end of the first DFS

12. % now compute GT by reversing the edges of G: B[v] is the adjacency list of v in the new
graph G′

1

13. for v in V do

14. for u in Adj[v] do

15. insert v into B[u]

16. end for

17. end for % end of computing GT

18. % now the second DFS

19. % initialization for the second DFS

20. for v from 1 to |V | do

21. SCC[v]← 0 % new array, SCC[v] is the SCC identifier for v.

22. end for

23. c← 0 % c is the identifier for the current strongly connected component

24. % the main loop of the second DFS

25. for each u in L do

26. if color[u] = Black do

27. c← c + 1

28. SCC-Visit2(GT , u, c)

29. end if

30. end for

2

The procedure SCC-Visit1 is similar to Topo-Visit. Once a vertex is colored Black we insert it
into the linked list L. So at the end L contains the vertices of G in decreasing order of f (finishing
time).

SCC-Visit1(G, u, L):

1. stack S ← ∅ % initialize S to the empty stack

2. push(S, u)

3. while S is not empty do

4. x← pop(S)

5. if color[x] = White do

6. time← time + 1

7. s[x]← time

8. color[x]← Gray

9. push(S, x)

10. for each v in Adj[x] do

11. if color[v] = White do

12. p[v]← x

13. push(S, v)

14. else if color[v] = Gray do

15. return false

16. end if

17. end for

18. else if color[x] = Gray do

19. time← time + 1

20. f [x]← time

21. color[x]← Black

22. insert x to L

23. end if

24. end while

3

The procedure SCC-Visit2 is similar to DFS-Visit, except now the triple of colors are (Black,
Blue, Red). Also, we give each vertex encountered during this search the SCC identifier c.

SCC-Visit2(G, u, c, SCC):

1. stack S ← ∅ % initialize S to the empty stack

2. push(S, u)

3. while S is not empty do

4. x← pop(S)

5. SCC[x]← c

6. if color[x] = Black do

7. color[x]← Blue

8. push(S, x)

9. for each v in Adj[x] do

10. if color[v] = Black do

11. p[v]← x

12. push(S, v)

13. end if

14. end for

15. else if color[x] = Blue do

16. color[x]← Red

17. end if

18. end while

4

