
Concurrent Programming
COMP 409, Fall 2010

Assignment 1

Due date: Thursday, October 7, 2010
6pm

Assignment Questions

1. Suppose two threads are executing the following code:

volatile int x=1, y=1, stop=0;

Thread 1 Thread 2
while (stop==0) { while (x==y) {
y=2*y; y=x;
x=2*x; x=y;

} stop=x-y;
}

In all cases assume Java-style atomicity guarantees.

(a) Are there any race conditions in this program? Why or why not? 1

(b) What control flow (interleaving), if any, would let this program terminate? 3

(c) Assume every interleaving is equally likely. What are the odds of this program terminating after each
thread has executed 2 iterations of its loop? 6

Programming Questions

You may use Java, or PThreads (C/C++) for the following implementations. Inall cases your code must be in
a professional style:well-commented, properly structured, and appropriate symbol names. Marks will be very
generously deducted if not! All programs should include demonstrative, but not excessive, output. Your programs
should not have race conditions and should maximize the ability of threads to execute concurrently.

2. You and 4 of your friends are cleaning out a zombie invasion. You’vesecured a warehouse consisting of just
one very large room and 4 doors to the street. Zombies move slowly, so it’s easy to control in general. You
only have one weapon though, so you’ve set up the following protocol. Each of your 4 friends controls each of
the 4 doors; they let in individual zombies, keeping count of how many have entered. You stand in the center,
and eliminate the zombies that have entered as fast as you can, keeping track of how many you have removed.

You don’t want too many zombies in the room for obvious reasons, and somust periodically check on how
many zombies are in the building in total. If there are too many you need to ensureno new zombies enter until
you’ve had opportunity to reduce their numbers. For this you can only radio each of your friends individually
to find out how many they have let in and/or ask them to close the door. Only once the total number is below
a reasonable threshold should you allow zombies back in, again only by radio-ing each friend individually.

Simulate this as a multi-threaded program. You should have 5 threads, one representing you and one for each
friend/door. Each friend thread should let in a zombie with a 10% chance every 10ms, keeping track of the
number she admitted. The thread representing you has a 40% probability of removing a zombie once every
10ms. You should check the total every 2s, and if it is belown then everything is ok, otherwise no new
zombies should be admitted until you’ve reduced the number to belown/2. n is a command-line parameter.

1



You may user either Java or PThreads and appropriate synchronization(ie synchronized or mutexes).
Your solution should allow for maximal concurrency—operations should not be serialized unless necessary.
Run your program for a few minutes withn = 5, n = 10, n = 100. What is your throughout (zombies
eliminated/second)? 18

3. A circular, singly-linked list of letters is maintained by thread 1, which traverses the list and sometimes chooses
to remove a letter or insert a new (random) letter. Thread 2 accesses the same data structure, also constantly
traversing the list but just printing out the contents.

Develop a simulation of the above. In this case you must find a solution that does not use blocking syn-
chronization (synchronized in Java or mutexes in PThreads). You must still ensure your program hasno
race conditions of course. Note that items being traversed by thread 2 may also be in the process of being
accessed as part of a deletion or insertion by thread 1—nevertheless, itshould always be the case that thread 2
(eventually) rejoins the main, circular linked list.

Both threads should perform an action and then sleep for 100ms, repeat.Thread 1 should randomly add (1/3)
or remove (1/3) a node (letter) in the linked list, or move to the next item in the linkedlist (1/3). It never
removes the last item in the linked list. Thread 2 should print the current letter and move to the next node. The
simulation should end after 1000 characters have been printed. 12

What to hand in

For assignment submission you will usehandin. See the SOCS docs on the SOCS website for how to do this.
Note that clock accuracy varies, and late assignments will not be acceptedwithout a medical note: you have ample
time, do not wait until the last minute to do the assignment nor to sort out how handin works. Assignments must
be submitted on the due datebefore 6pm.

Where possible hand in onlysource code files containing code you write. Do not submit compiled binaries or .class
files. For the written answer questions submit either an ASCII text documentor a .pdf filewith all fonts embedded.
Do not submit .doc or .docx files.

Note that for written answers you must show all intermediate work to receivefull marks.

This assignment is worth 10% of your final grade. 40

2


