
COMP 330 - Fall 2010 - Assignment 6

Solutions

General rules: In solving this you may consult books and you may also consult with each other,
but you must each find and write your own solution. In each problem list the people you consulted.
This list will not affect your grade. There are in total 115 points, but your grade will be considered
out of 100. You should drop your solutions in the assignment drop-off box located in the Trottier
Building on the 3rd floor left of the elevators.

1. Recall that for f, g : N→ R+, we say f = O(g) if and only if

∃c, n0 > 0∀n > n0 f(n) ≤ cg(n). (1)

In each one of the following cases show that f = O(g) by proving (1).

(a) (5 Points) f(n) = (n+ 5)3 and g(n) = n3.

Solution: Note that f(n) = n3 + 15n2 + 75n+ 125 ≤ n3 + 15n3 + 75n3 + 125n3 = 216n3

for n ≥ 1. Thus for c = 216 and n0 = 1 we have f(n) ≤ cg(n) ∀n > n0 as required.

(b) (10 Points) f(n) = 10
√

n and g(n) = 2n.

Solution: Note that 10
√

n ≤ 2n ⇔
√
n log2 10 ≤ n ⇔ n ≥ (log2(10))2. Let c = 1 and

n0 =
⌈
(log2(10))2

⌉
= 12 to obtain f(n) ≤ cg(n) ∀n > n0 as required.

(c) (10 Points) f(n) = log2 n and g(n) =
√
n.

Solution: Define h(n) = g(n)− f(n). Differentiating with respect to n we obtain h′(n) =
1

2
√

n
− 1

n ln(2) . Setting h′(n) = 0 we note that the only critical point is 4
ln(2)2

≈ 8.325 and
h′(n) > 0 for all n ≥ 9.
Now h(n) = 0 for n = 16 and h(n) is increasing for all n ≥ 9 hence letting c = 1 and
n0 = 16 we obtain f(n) ≤ cg(n) ∀n > n0 as required.

2. Recall that for f, g : N→ R+, we say f = o(g) if and only if

∀ε > 0∃n0 > 0∀n > n0 f(n) ≤ εg(n). (2)

In each one of the following cases show that f = o(g) by proving (2).

1

(a) (10 Points) f(n) = 342n2 + n+ 10 and g(n) = n2 log2 n

Solution: Let ε > 0 be given. Note that 342n2 + n+ 10 ≤ 342n2 + n2 + 10n2 = 353n2 for
n ≥ 1. And 353n2 ≤ εn2 log2 n ⇔ 353 ≤ ε log2 n ⇔ n ≥ 2

353
ε . Hence choosing n0 = 2

353
ε

gives f(n) ≤ εg(n) ∀n ≥ n0 as required.

(b) (10 Points) f(n) =
√
n+ 10 and g(n) =

√
n log2 n.

Solution: Let ε > 0 be given. Note that
√
n + 10 ≤

√
n + 10

√
n = 11

√
n ∀ n ≥ 1.

Next 11
√
n ≤ ε

√
n log2 n ⇔ 11 ≤ ε

√
log2 n ⇔ n ≥ 2

121
ε2 . Hence choosing n0 = 2

121
ε2 gives

f(n) ≤ εg(n) ∀n ≥ n0 as required.

3. Consider the following algorithm:

On input w which is the binary representation of a positive integer:

• For i = 2, 3, . . . , w − 1

• If w is divisible by i, reject.

• If w was not divisible by any of the above values of i, accept.

(a) (5 Points) What is the language of the above Turing Machine?

Solution: The language of this Turing Machine is the set of prime numbers.

(b) (5 Points) Is the running time of this Turing Machine polynomial? (Explain)

Solution: No. Suppose we have an input w consisting of n bits where each bit is a 1.
Then the size of w is 2n− 1. In the case that w is a prime number the machine would have
to perform O(2n) steps to check if w is divisible by any positive integer smaller than itself.
Hence the running time of this machine is exponential in the input size n.

4. (15 Points) A cycle of size m in a graph G is a set of distinct vertices v1, . . . , vm such that v1 is
adjacent to v2, v2 is adjacent to v3,. . . ,vm−1 is adjacent to vm, and vm is adjacent to v1. Show
that the following language is in P :

C100 = {〈G〉 : G is a graph which contains a cycle of size at least 100}.

Solution: To show that C100 is in P we will construct a TM that decides C100 in polynomial
time.

M = On input 〈G〉 where G = (V,E) with |V | = n :
1. If n < 100 reject 〈G〉.
2. Let k = n!/(n− 100)! and V1, · · · , Vk be all the possible permutations of 100 vertices in V .

2

3. For i = 1, · · · k:

here Check if the vertices given by the permutation Vi form a simple path in G. If they do,
here mark the vertices in Vi except the very first and last vertex. Then check if there exists
here another simple path from the first vertex in Vi to the last vertex in Vi that does not
here use any marked vertices. If there is, accept 〈G〉 and return.

4. If the loop terminates without accepting 〈G〉 then reject 〈G〉.

To compute the running time of this TM note that the for loop is repeated k = O(n100) times.
Inside each iteration we can check if the vertices of a given permutation Vi form a simple path in
a constant number of steps since each permutation constains a constant number of vertices. Next
we can check if the there exists a path between the first and last vertex consisting of unmarked
vertices by using a BFS. This can be done in O(n2). Therefore the overall running time of the
TM is O(n100) which is polynomial.

To see that the TM does indeed decide C100 note that if 〈G〉 ∈ C100 then there is a set of vertices
v1, · · · , vm with m ≥ 100 that form a cycle. Hence when the TM performs the for loop for
the permutation v1, · · · , v100 it will find that these vertices form a simple path. The TM will
then mark the vertices v2, · · · , v99 and will proceed to find the simple path v100, v101,· · · ,vm, v1
which connects v1 to v100 without using any marked vertices. Hence the TM will accept 〈G〉 and
terminate.

Now if 〈G〉 /∈ C100 then there is no cycle of length at least 100. Hence even if the TM finds a
pemutation of 100 vertices that form a simple path there will be no path joining the first and
last vertex using only unmarked vertices. Therefore the TM will reject 〈G〉.

5. (10 Points) Show that if P=NP, then every language in NP except ∅ and Σ∗ is NP-complete.

Solution: Let B be a language in NP such that B 6= ∅ and B 6= Σ∗. Note that this implies
the existence of two distinct elements x 6= y such that x ∈ B and y /∈ B. To show that B is
NP-complete, we must show that:

(a) B ∈ NP and

(b) every A in NP is polynomial-time reducible to B.

The first condition holds by definition. To check the second condition let A be any language in
NP. Since we are assuming that P=NP it follows that A ∈ P. Hence there exists a deterministic
TM M that decides A in polynomial time. Then define the function f : Σ∗ → Σ∗ as

f(w) =

{
x ifw ∈ A
y ifw /∈ A

Then note that f is a polynomial time computable function due the the existence of the TM M .

3

We then obtain

w ∈ A⇒ f(w) = x⇒ f(w) ∈ B
w /∈ A⇒ f(w) = y ⇒ f(w) /∈ B

Hence w ∈ A⇔ f(w) ∈ B and therefore A is polynomial-time reducible to B. It follows that B
is NP-complete.

6. (10 Points) Show that if L is in NP, then L∗ is also in NP.

Solution: First note that since L is in NP there exists a nondeterministic polynomial time TM
N that decideds L. To show that L∗ is in NP we will construct a nondeterministic polynomial
time TM M that decides L∗ as follows:

M = On input w with |w| = n: 1. If w = ∅ accept w.
2. For i = 1, · · ·n:
here 3. Partition w nondeterministically into i non-empty substring w1, · · · , wi.
here 4. Run N on each substring w1, · · · , wi. here 5. If each substring is accepted then accept
w.
6. Reject w.

If w ∈ L∗ then we can write w = w1 · · ·wk for some k ≤ n such that each wi ∈ L. Hence the
TM M will accept w. If instead w /∈ L∗ then there is no way of partitioning w into substrings
which are in L hence the TM M will reject w.

Since N runs in polynomial time it follows that M also runs in polynomial time.

7. Show that the following languages are NP-complete.

(a) (10 Points)

{〈φ〉 : φ is a CNF with a solution that sets exactly half of the variables to TRUE}.

Solution: Let L be the language in question. We will first show that L is in NP. To see
this consider the TM that chooses half of the variables of φ nondeterministically, sets them
to TRUE and sets all other variables to FALSE. The TM then verifies if this assignment
satisfies φ. If it does it accepts and if it does not it rejects. Also if there is an odd number
of variables the TM just rejects.

We now look at 3SAT which is NP-complete and we will show that 3SAT ≤p L which
together with L ∈ NP will imply that L is NP-complete. We do this using the following
polynomial time reduction:

4

M = On input 〈φ〉 such that φ has has variables x1, · · ·xn:
1. Define new variables y1, · · · , yn and set φ′ = φ.
2. For each clause in Ci in φ:
here 3. Define a new clause C ′i = Ci.
here 4. Negate all the literals in C ′i.
here 4. For each variable xj in C ′i replace it with yj .
here 5. Append clause C ′i to φ′ .
6. Output 〈φ′〉.

If 〈φ〉 ∈ 3SAT then there is some assignment of values TRUE / FALSE to the variables
x1, · · · , xn which satisfies φ. Wlog we can assume that the variable x1, · · · , xl are set to
TRUE in this assignment and the variables xl+1, · · · , xn are set to FALSE, for some l ≤ n.
We then set y1, · · · , yl to FALSE and yl+1, · · · , yn to TRUE. We claim that this assignment
satisfies φ′. To see this note that every clause Ci which is a clause of φ must have a literal
which evaluates to TRUE. It follows that the corresponding clause in C ′i will also evaluate
to TRUE. In addition φ′ has 2n variables, of which exactly l+(n− l) = n are set to TRUE.
Hence 〈φ′〉 ∈ L.

If 〈φ〉 /∈ 3SAT then φ always evaluates to FALSE for any assignment of TRUE / FALSE
values to the variables. It follows that φ′ will also evaluate to FALSE and hence 〈φ′〉 /∈ L .

Therefore 〈φ〉 ∈ 3SAT ⇔ 〈φ′〉 ∈ L.

(b) (15 Points) A d-clique in a graph G is a set of vertices such that every two of them are
in distance at most d from each other. So a 1-clique is an actual clique. The language in
question is

{〈G, k〉 | G contains a 2-clique with k vertices}.

Solution: Let L be the language in question. We will first show that L is in NP. Suppose
we have a graph G = (V,E) with |V | = n and a given integer k ≤ n. Consider the TM that
chooses a set S of k vertices nondeterministically. For every pair of vertices u, v ∈ S that
are not joined by an edge the TM checks if there exists a vertex w ∈ S such that (u,w) ∈ E
and (v, w) ∈ E. If it does not find such a w for a pair u, v it reject. If it cycles through all
pairs without rejecting, it accepts. This can be done in polynomial time.

We now look at CLIQUE which is NP-complete and we will show that CLIQUE ≤p L
which together with L ∈ NP will imply that L is NP-complete. We do this using the
following polynomial time reduction:

M = On input 〈G, k〉 where G = (V,E) with |V | = n, |E| = m and k ≤ n:
1. Construct a new graph H by subdividing each edge in G (as decribed in the hint). Let
W be the set of new vertices added when subdividing the edges.
2. Add a separate clique of size 100n2 to the graph consisting of vertices u1, · · · , u100n2 .

5

3. Join u1 to every vertex in V .
4. Output

〈
H, k + 100n2

〉
.

If 〈G, k〉 ∈ CLIQUE then G has a clique of k vertices v1, · · · , vk . In this case the vertices
v1, · · · , vk, u1, · · · , u100n2 form a 2-clique in H of size k+100n2. Hence

〈
H, k + 100n2

〉
∈ L.

If 〈G, k〉 /∈ CLIQUE then the maximum clique in G must be of size strictly smaller than k.
Let v1, · · · , vl denote the maximum clique in G with l < k. Now note that the maximum
2-clique in H cannot include any vertices from the set W since |W | < n2 < 100n2 and each
vertex in W is at a distance 3 from each of the vertices u2, · · · , u100n2 . Hence the maximum
2-clique in H is v1, · · · , vl, u1, · · · , u100n2 and has size l + 100n2 < k + 100n2. Therefore〈
H, 100n2 + k

〉
/∈ L.

It follows that 〈G, k〉 ∈ CLIQUE ⇔
〈
H, 100n2 + k

〉
∈ L.

6

