
COMP 330 - Theoretical Aspects of Computer Science

Solutions for Assignment 5

Guillaume Saulnier

November 29, 2010

1. a) HTM ≤m La

The reduction will be as follow:
Given a turing machine M with input w, we create a new turing machine

N :

on input x
if x 6∈ L(110{0, 1}∗) then
REJECT x

else
Simulate M on w
if M halts then

ACCEPT x
end if

end if

Note that N only accepts x ∈ L(110{0, 1}∗) if M halts on w. If x 6∈ L(110{0, 1}∗) then it is
rejected. If x ∈ L(110{0, 1}∗), but M does not halt on w, then N does not halt on x and thus
x 6∈ L(N). We can check if x ∈ L(110{0, 1}∗) or not because it is a regular language and we know
we can decide those using DFAs.

We claim that N is a reduction of HTM to La:

Proof.

< M,w >∈ HTM ⇒M halts on w⇒ L(N) = L(110{0, 1}∗)⇒ N ∈ La

< M,w >6∈ HTM ⇒M does not halt on w⇒ L(N) = ∅ ⇒ N 6∈ La

Therefore, if we had a decider for La, we could decide HTM . This is impossible since we know
HTM is undecidable by diagonalization.

b) HC
TM ≤m Lb

The reduction will be as follow:
Given a turing machine M with input w, we create a new turing machine

N :

on input x
Simulate M on w

1

if M halts then
ACCEPT x

end if

We have that:

L(N) =

{
Σ∗ if M halts on w
∅ if M does not halt on w

We claim that N is a reduction of HC
TM to Lb:

Proof.

< M,w >∈ HC
TM ⇒M does not halt on w⇒ L(N) = ∅ ⇒ L(N) is finite⇒ N ∈ Lb

< M,w >6∈ HC
TM ⇒M halts on w⇒ L(N) = Σ∗ ⇒ L(N) is infinite⇒ N 6∈ Lb

We know that HC
TM is not recursively enumerable, therefore Lb is not recursively enumerable.

Thus Lb is not decidable.

(The question could also be solved by creating a decider for the halting problem, which would
create a contradiction with the fact that it is undecidable).

c) HC
TM ≤m Lc

The reduction will be as follow:
Given a turing machine M with input w, we create a new turing machine N (as follow) with a
new state q (not accepting nor rejecting) which is never visited during the simulation of M on w

N :

on input x
if x 6= w then

Visit all states of N except q.
else

Simulate M on w
if M halts then

Visit q.
end if

end if

The machine visits all of its states on input x 6= w to prevent the existence of other non accepting
nor rejecting states that would not be visited while simulating M on w. If such states would exists,
then even if q was visited, then the machine would still be in Lc.

We claim that N is a reduction of HC
TM to Lc:

Proof.

< M,w >∈ HC
TM ⇒M does not halt on w⇒ q is never visited on any input⇒ N ∈ Lc

< M,w >6∈ HC
TM ⇒M halts on w⇒ q is visited on input x=w⇒ N 6∈ Lc

2

We know that HC
TM is not recursively enumerable, therefore Lc is not recursively enumerable.

Thus Lc is not decidable.

(The question could also be solved by creating a decider for the halting problem, which would
create a contradiction with the fact that it is undecidable).

2. First we will show that AC
TM ≤m L.

The reduction will be as follow:

f(< M,w >):

• Create the following turing machine N :

if x 6= w then
ACCEPT x

else
Simulate M on w
if M accepts w then

ACCEPT x
end if

end if

• Let v ∈ Σ∗ such that v 6= w.

• Return < N, v,w >.

We claim that f(< M,w >) is a reduction from AC
TM to L.

Proof.

< M,w >∈ AC
TM ⇒ M does not accept w

⇒ N does not accept w

⇒ N accepts v and does not accept w

⇒< N, v,w >∈ L

< M,w >6∈ AC
TM ⇒ M accept w

⇒ N accepts w

⇒ N accepts v and accepts w

⇒< N, v,w > 6∈ L

We know that AC
TM is not recursively enumerable, therefore L is not recursively enumerable.

AC
TM ≤m LC .

Note that:

LC = {< M, v,w > | M is a TM and (M does not accept v or M accepts w)}

The reduction will be as follow:

f(< M, v >):

3

• Create the following turing machine N :

if x 6= v then
REJECT x

else
Simulate M on v
if M accepts v then
ACCEPT x

end if
end if

• Let w ∈ Σ∗ such that w 6= v.

• Return < N, v,w >.

We claim that f(< M, v >) is a reduction from AC
TM to LC .

Proof.

< M, v >∈ AC
TM ⇒ M does not accept v

⇒ N does not accept v

⇒< N, v,w >∈ LC

< M, v >6∈ AC
TM ⇒ M accept v

⇒ N accepts v

⇒ N accepts v and N does not accept w

⇒< N, v,w > 6∈ LC

We know that AC
TM is not recursively enumerable, therefore LC is not recursively enumerable.

3. a) A LBA has a total of qngn possible tape configurations where

• q is the number of states.

• n is the length of the string (which determines the length of the tape).

• g is the size of the tape alphabet.

If we run a LBA for qngn+1 steps and it did not halt, it must be in a loop. Since qngn+1 > qngn,
one tape configuration must have been visited at least twice by the pigeonhole principle. Call this
tape configuration ti. There must exist a tape sequence T = {ti, ti+1, ti+2, . . . , ti+n, ti}. Since
the tape configuration defines all of the machine’s behavior, it will repeat the sequence T forever.
Simulating a LBA for qngn steps is enough as if it did not halt after that the next step will surely
make it enter a loop.

Let S be the set of all strings of length less than 100. Note that S is finite as |S| =
∑99

i=0 |Σ|i.
Take any ordering s0, s1, s2, . . . , sn of the strings in S.

We can create a decider Da for La in the following way.

Da:

on input < M >
for i = 1 to n do
for j = 1 to qngn do

Simulate M on si for j steps

4

if M accepts si then
ACCEPT < M >

end if
end for

end for
REJECT < M >

We claim that Da is a decider for La:

Proof. Da will always halt as the set of strings is finite and we run M on each of them for a finite
number of steps.

Da accepts < M >⇒ M accepts a string sj ∈ S

⇒ M accepts a string with length less than 100

⇒< M >∈ La

Da rejects < M >⇒ M does not accept any string ∈ S

⇒ M does not accept a string with length less than 100

⇒< M >6∈ La

Therefore Da is a decider for La which implies that La is decidable.

b) Note that there is a total of q2|w|g2|w| possible tape configurations if we have 2|w| cells available.
Therefore, we will use the loop detection scheme defined in a) to limit the number of steps in the
simulations.

We define a decider Db for Lb as follow:

Db:

on input < M,w >
for j = 1 to q2|w|g2|w| do

Simulate M on w for j steps.
if the head is beyond the first 2|w| cells of the tape then

REJECT < M,w >
end if
if M has halted then

ACCEPT < M,w >
end if

end for
ACCEPT < M,w >

We claim that Db is a decider for Lb:

Proof. Db will always halt as Db simulate M for a finite number of steps and it accept afterwards
(if it did not halt during the simulation).

Db accepts < M,w >⇒M halted or M is in a loop,

both without the head moving past the first 2|w| cells of the tape.

⇒< M,w >∈ Lb

If M halted without having the head move past the first 2|w| cells of the tape, then clearly
< M,w >∈ Lb. If M is in a loop, then ∃ a sequence T = {ti, ti+1, ti+2, . . . , ti+n, ti} that M will
repeat. Since < M,w > was not rejected on the first pass of the sequence, then M will never move

5

the head beyond the first 2|w| cells of the tape while repeating T and it will repeat T forever.
Therefore < M,w >∈ Lb.

Db rejects < M,w >⇒ The head moved past the first 2|w| cells of the tape while simulating M on w

⇒< M,w >6∈ Lb

Therefore Db is a decider for Lb which implies that Lb is decidable.

4. Since B 6= ∅, ∃a ∈ B and since B 6= Σ∗, ∃r 6∈ B. We create the following reduction from A to B:

f(w) =

{
a if w ∈ A
r if w 6∈ A

We claim that f is a reduction:

Proof. f is total (it always halts) because A is decidable. Thus, we can verify if w ∈ A or not in finite
time.

w ∈ A⇒ f(w) = a⇒ a ∈ B ⇒ f(w) ∈ B

w 6∈ A⇒ f(w) = r ⇒ r 6∈ B ⇒ f(w) 6∈ B

Therefore, w ∈ A⇔ f(w) ∈ B.

f is thus a valid reduction from A to B (A ≤m B).

5. First, we show the following lemma.

A ≤m B ⇔ AC ≤m BC

Proof. A is reducible to B (A ≤m B) if and only if w ∈ A ⇔ f(w) ∈ B, which can be rewritten as
w ∈ A⇒ f(w) ∈ B and f(w) ∈ B ⇒ w ∈ A. Then,

f(w) ∈ B ⇒ w ∈ A

w 6∈ A⇒ f(w) 6∈ B using transposition

w ∈ AC ⇒ f(w) ∈ BC

w ∈ A⇒ f(w) ∈ B

f(w) 6∈ B ⇒ w 6∈ A using transposition

f(w) ∈ BC ⇒ w ∈ AC

Therefore, (w ∈ A ⇔ f(w) ∈ B) ⇒ (w ∈ AC ⇔ w ∈ BC). We can do (w ∈ AC ⇔ w ∈ BC) ⇒ (w ∈
A⇔ f(w) ∈ B) similarly.

We know that AC ≤m A using the lemma. Since A is recursively enumerable, then so is AC . We have
that both A and AC are recursively enumerable, therefore A is decidable.

6. Let D∪ and D∩ be the decider for L1∪L2 and L1∩L2 respectively. Let R1 and R2 be the recognizers
for L1 and L2 respectively. Then we can create a decider D1 for L1 as follow:

D1:

6

on input x
Run D∪ on x
if D∪ rejects then
REJECT x

end if
Run D∩ on x
if D∩ accepts then
ACCEPT x

else
Run R1 and R2 on x simultaneously.
if R1 accepts then

ACCEPT x
end if
if R2 accepts then

REJECT x
end if

end if

• If x 6∈ L1 ∪ L2 ⇒ x 6∈ L1 and D1 will reject when running D∪ on x.

• If x ∈ L1∩L2 ⇒ x ∈ L1, then D1 will not reject when running D∪ and will accept when running
D∩ on x.

• If x ∈ L1 but x 6∈ L1 ∩ L2 then D1 will not reject when running D∪, not accept when running
D∩ and will accept when R1 accepts (since x is not in the intersection, R2 will not accept it).

• If x 6∈ L1 but x ∈ L1 ∪ L2 then D1 will not reject when running D∪, not accept when running
D∩ and will reject when R2 accepts (since x is not in the intersection, R1 will not accept it).

Since D1 always halts and correctly decide every input, D1 is a decider for L1.

7. a) We will prove that K is undecidable by contradiction. Assume K is decidable, then there exists a
decider DK for it. We will create a decider DL for L using DK :

DL:

on input p
Let q = p2 − 1
Run DK on q
if DK accepts then
REJECT p

else
ACCEPT p

end if

We claim that DL is decider for L

Proof. DL always halt, because DK always halt.

p ∈ L⇒ ∃x such that p(x) = 0.

⇒ p2(x) = 0 squaring does not change the roots of a polynomial

⇒ p2(x)− 1 < 0

⇒ DK rejects p2 − 1

⇒ DL accepts p

7

p 6∈ L⇒6 ∃x such that p(x) = 0

⇒6 ∃x such that p2(x) = 0 squaring does not change the roots of a polynomial

⇒ p2 > 0

⇒ p2 ≥ 1 ·,+,−on integers yields an integer

⇒ p2 − 1 ≥ 0

⇒ DK accepts p2 − 1

⇒ DL rejects p

Therefore, DL is a decider for L. We know L is undecidable, therefore DL cannot exists and thus
the assumption that K is decidable is false. We can conclude that K is undecidable.

b) We will prove that K+ is undecidable by contradiction. Assume K+ is decidable, then there exists
a decider DK+ for it. We will create a decider DK for K using DK+ :

First we define f(p, S) where p is a polynomial and S is a subset of its variables V to return a new
polynomial q such that:

∀ occurences of s ∈ S in p, we replace s by (-s) in q, otherwise q stays the same as p

If we let x ∈ Nn, we can see f(p, S) as simulating a negative input for the variables in S. More
formally, let x = {x0, x1, . . . , xn} ∈ Zn and define S = {xi|xi < 0}. Then p(x) = f(p, S)(x′) where
x′ = {|x0|, |x1|, . . . , |xn|} because x = sign(x)|x|.

DK :

on input p
Let V be the set of variables in p
for all S ⊆ V do

Run DK+ on f(p, S)
if DK+ rejects then
REJECT p

end if
end for
ACCEPT p

We claim that DK is decider for K

Proof. DK always halts since the number of subsets of a finite set is finite and DK+ always halts.

p ∈ K ⇒ p is positive on integers

⇒ ∀f(p, S), DK+ will not reject. see explanations below

⇒ DKaccepts p

If DK+ rejects f(p, S) then ∃x′ ∈ Nn such that f(p, S)(x′) < 0. But we can create x ∈ Zn such
that x = x′ and for each xi ∈ S we negate the entry in x. Then, p(x) < 0 which is a contradiction
with the fact that p ∈ K.

p 6∈ K ⇒ ∃x ∈ Zn such that p(x) < 0

⇒ ∃S ⊆ V such that ∀xi ∈ S, xi < 0 and x′ = {|x0|, |x1|, . . . , |xn|} ∈ Nn

⇒ f(p, S)(x′) < 0

⇒ DK+ rejects this f(p, S)

⇒ DK rejects p

8

Therefore, DK is a decider for K, but we have seen in a) that K is undecidable. We have a
contradiction, so our assumption that K+ is decidable was false and thus K+ is undecidable.

9

