1. a)

COMP 330 - Theoretical Aspects of Computer Science
Solutions for Assignment 5

Guillaume Saulnier

November 29, 2010

HTM Sm La

The reduction will be as follow:
Given a turing machine M with input w, we create a new turing machine

N:

on input x

if ¢ L(110{0,1}*) then
REJECT x

else
Simulate M on w
if M halts then

ACCEPT x

end if

end if

Note that N only accepts x € L(110{0,1}*) if M halts on w. If x ¢ L(110{0,1}*) then it is
rejected. If z € L(110{0,1}*), but M does not halt on w, then N does not halt on = and thus
x ¢ L(N). We can check if z € L(110{0,1}*) or not because it is a regular language and we know
we can decide those using DFAs.

We claim that N is a reduction of Hyps to Lg:
Proof.

< M,w >€ Hpry = M halts on w= L(N) = L(110{0,1}*) = N € L,

< M,w >¢& Hrp = M does not halt on w= L(N)=0= N & L,
O

Therefore, if we had a decider for L,, we could decide Hrps. This is impossible since we know
Hr)y is undecidable by diagonalization.

H:[QM Sm Lb

The reduction will be as follow:
Given a turing machine M with input w, we create a new turing machine

N:
on input x
Simulate M on w

if M halts then
ACCEPT x
end if

‘We have that:

| ¥* if M halts on w
L(N) = { 0 if M does not halt on w

We claim that N is a reduction of HS), to Ly:
Proof.

< M,w >€ HS,; = M does not halt on w= L(N) =0 = L(N) is finite= N € L,

< M,w>¢ HS,; = M halts on w= L(N) = ¥* = L(N) is infinite = N ¢ Ly
O

We know that Hg u is not recursively enumerable, therefore L; is not recursively enumerable.
Thus L is not decidable.

(The question could also be solved by creating a decider for the halting problem, which would
create a contradiction with the fact that it is undecidable).

H:[QM <m Lc

The reduction will be as follow:
Given a turing machine M with input w, we create a new turing machine N (as follow) with a
new state g (not accepting nor rejecting) which is never visited during the simulation of M on w

N:
on input x
if x # w then
Visit all states of N except q.
else
Simulate M on w
if M halts then
Visit q.
end if
end if

The machine visits all of its states on input = # w to prevent the existence of other non accepting
nor rejecting states that would not be visited while simulating M on w. If such states would exists,
then even if ¢ was visited, then the machine would still be in L..

We claim that N is a reduction of HIQM to Lg:
Proof.

< M,w >€ HS,; = M does not halt on w=> q is never visited on any input = N € L.

< M,w >¢ HgM = M halts on w= q is visited on input z=w= N & L.

We know that HS,, is not recursively enumerable, therefore L. is not recursively enumerable.
Thus L. is not decidable.

(The question could also be solved by creating a decider for the halting problem, which would
create a contradiction with the fact that it is undecidable).

2. First we will show that A%, <., L.
The reduction will be as follow:

fl<« M,w >):

e Create the following turing machine N:

if x # w then
ACCEPT x
else
Simulate M on w
if M accepts w then
ACCEPT x
end if
end if

e Let v € ¥* such that v # w.
e Return < N,v,w >.

We claim that f(< M,w >) is a reduction from A%, to L.
Proof.

< M,w >€ AS,; = M does not accept w
= N does not accept w
= N accepts v and does not accept w

=< N,v,w >€ L

< M,w>¢ AS,; = M accept w
= N accepts w
= N accepts v and accepts w
=< N,v,w>¢ L

We know that A%, is not recursively enumerable, therefore L is not recursively enumerable.
AQyp Sm LE.

Note that:

LY = {< M,v,w > | M is a TM and (M does not accept v or M accepts w)}

The reduction will be as follow:

f(< M, v >):

e Create the following turing machine V:

if x # v then
REJECT x
else
Simulate M on v
if M accepts v then
ACCEPT x
end if
end if

e Let w € ¥* such that w # v.
e Return < N,v,w >.

We claim that f(< M,v >) is a reduction from AS,, to LC.
Proof.

< M,v>¢c AS,;, = M does not accept v
= N does not accept v

=< N,v,w >€ L¢

< M,v>¢ AS,; = M accept v
= N accepts v
= N accepts v and N does not accept w
=< N,v,w >¢ L°

We know that A$,, is not recursively enumerable, therefore LC is not recursively enumerable.

3. a) A LBA has a total of gng™ possible tape configurations where

e ¢ is the number of states.
e 1 is the length of the string (which determines the length of the tape).
e ¢ is the size of the tape alphabet.

If we run a LBA for gng™ + 1 steps and it did not halt, it must be in a loop. Since gng™ +1 > qng",
one tape configuration must have been visited at least twice by the pigeonhole principle. Call this
tape configuration ¢;. There must exist a tape sequence T = {t;,t;4+1,ti+2,--,titn,ti}. Since
the tape configuration defines all of the machine’s behavior, it will repeat the sequence T forever.
Simulating a LBA for gng™ steps is enough as if it did not halt after that the next step will surely
make it enter a loop.

Let S be the set of all strings of length less than 100. Note that S is finite as |S| = Z?io |
Take any ordering sg, s1, S2, . .., S, of the strings in S.

We can create a decider D, for L, in the following way.

Dy,:
on input < M >
for:=1tondo
for j =1 to qng™ do
Simulate M on s; for j steps

if M accepts s; then
ACCEPT < M >
end if
end for
end for
REJECT < M >

We claim that D, is a decider for L,:

Proof. D, will always halt as the set of strings is finite and we run M on each of them for a finite
number of steps.

D, accepts < M > = M accepts a string s; € S
= M accepts a string with length less than 100
=< M >e L,

D, rejects < M > = M does not accept any string € S
= M does not accept a string with length less than 100
=< M >¢ L,

Therefore D, is a decider for L, which implies that L, is decidable.

Note that there is a total of ¢2|w|g?/™! possible tape configurations if we have 2|w| cells available.
Therefore, we will use the loop detection scheme defined in a) to limit the number of steps in the
simulations.

We define a decider D, for L, as follow:

Dbi
on input < M, w >
for j =1 to ¢2|w|g?*! do
Simulate M on w for j steps.
if the head is beyond the first 2|w| cells of the tape then
REJECT < M,w >
end if
if M has halted then
ACCEPT < M,w >
end if
end for
ACCEPT < M,w >

We claim that Dy is a decider for Ly:

Proof. Dy, will always halt as D, simulate M for a finite number of steps and it accept afterwards
(if it did not halt during the simulation).

Dy accepts < M, w >=M halted or M is in a loop,
both without the head moving past the first 2|w| cells of the tape.
=< M,w >€ L

If M halted without having the head move past the first 2|w| cells of the tape, then clearly
< M,w >€ L. If M is in a loop, then 3 a sequence T' = {¢;,tit1,tit2, .-, titn, t;} that M will
repeat. Since < M, w > was not rejected on the first pass of the sequence, then M will never move

the head beyond the first 2|w| cells of the tape while repeating 7' and it will repeat T forever.
Therefore < M,w >€ L.

Dy, rejects < M,w > = The head moved past the first 2|w| cells of the tape while simulating M on w
=>< M,w>¢& Ly

O

Therefore Dy, is a decider for L which implies that L; is decidable.

4. Since B # 0, Ja € B and since B # X*, dr ¢ B. We create the following reduction from A to B:

a ifweA
f(“’):{ roifwd A

We claim that f is a reduction:

Proof. f is total (it always halts) because A is decidable. Thus, we can verify if w € A or not in finite
time.

weA= flw)=a=a€B= flw)eB

wégA= flwy=r=r¢B= f(w)¢B
Therefore, w € A < f(w) € B. O

f is thus a valid reduction from A to B (A <, B).

5. First, we show the following lemma.

A<,, Bs A° <, B®

Proof. A is reducible to B (A <,, B) if and only if w € A & f(w) € B, which can be rewritten as
we A= f(w) € Band f(w) € B= w € A. Then,

fwyeB=weA
wg A= f(w) € B using transposition
w e A° = f(w) € B

weA= f(w) eB
flw)dB=w¢gA using transposition
f(w) € B® = we A¢

Therefore, (w € A < f(w) € B) = (w € AY & w € BY). We can do (w € A < w € BY) = (w €
A & f(w) € B) similarly. O

We know that A <,, A using the lemma. Since A is recursively enumerable, then so is A®. We have
that both A and A® are recursively enumerable, therefore A is decidable.

6. Let Dy and D be the decider for Ly U Ly and L1 N Ly respectively. Let Ry and Ry be the recognizers
for Ly and Lo respectively. Then we can create a decider Dy for L; as follow:

D]_Z

on input x
Run Dy on x
if Dy rejects then
REJECT x
end if
Run DA on x
if DA accepts then
ACCEPT x
else
Run R; and R, on x simultaneously.
if Ry accepts then
ACCEPT x
end if
if Ry accepts then
REJECT x
end if
end if

o Ifx g L1 ULy =z ¢ L and Dy will reject when running Dy, on x.

o Ifx € L1NLy = x € Ly, then Dy will not reject when running D, and will accept when running
DA on x.

o If x € Ly but x & L1 N Ly then Dy will not reject when running Dy, not accept when running
Dn and will accept when Ry accepts (since x is not in the intersection, Ry will not accept it).

o If x ¢ Ly but x € Ly U Ly then Dy will not reject when running Dy, not accept when running
D and will reject when Rs accepts (since x is not in the intersection, R; will not accept it).

Since D, always halts and correctly decide every input, D is a decider for L.

7. a) We will prove that K is undecidable by contradiction. Assume K is decidable, then there exists a
decider D for it. We will create a decider Dy, for L using Dg:

DLZ

on input p

Let g=p> -1

Run Dg on g

if Dk accepts then
REJECT p

else
ACCEPT p

end if

We claim that Dy, is decider for L
Proof. Dy, always halt, because Dk always halt.

p € L = 3z such that p(z) = 0.
= pz(x) =0 squaring does not change the roots of a polynomial
= pA(r)—1<0
= Dy rejects p* — 1
= Dy, accepts p

p & L = Ax such that p(x) =0

= Ax such that pQ(x) =0 squaring does not change the roots of a polynomial
=p>>0

=p?>1 -,+, —on integers yields an integer
=p*-1>0

= Dy accepts p> — 1
= Dy, rejects p

O

Therefore, Dy, is a decider for L. We know L is undecidable, therefore Dy, cannot exists and thus
the assumption that K is decidable is false. We can conclude that K is undecidable.

We will prove that K is undecidable by contradiction. Assume K is decidable, then there exists
a decider D+ for it. We will create a decider Dy for K using Dy+:

First we define f(p, S) where p is a polynomial and S is a subset of its variables V' to return a new
polynomial ¢ such that:

V occurences of s € S in p, we replace s by (-s) in q, otherwise q stays the same as p

If we let © € N, we can see f(p,S) as simulating a negative input for the variables in S. More
formally, let = {xg,z1,...,2,} € Z" and define S = {z;|z; < 0}. Then p(z) = f(p, S)(z’) where
' = {|xol, |z1], - - -, |zn|} because x = sign(z)|x|.

DK:
on input p
Let V be the set of variables in p
for all S CV do
Run Dg+ on f(p,S)
if Dy + rejects then
REJECT p
end if
end for
ACCEPT p

We claim that D is decider for K

Proof. Dk always halts since the number of subsets of a finite set is finite and Dy + always halts.
p € K = p is positive on integers
= Vf(p,S), Dg+ will not reject. see explanations below
= Dy accepts p
If Dg+ rejects f(p,S) then Iz’ € N™ such that f(p, S)(z’) < 0. But we can create x € Z" such
that z = 2’ and for each z; € S we negate the entry in z. Then, p(z) < 0 which is a contradiction
with the fact that p € K.
p &€ K = Jx € Z" such that p(x) <0
= 35 C V such that Vz; € S,z; < 0 and 2’ = {|zo|,|21],...,|zal} € N"
= f(p,S)(z") <0
= D+ rejects this f(p, S)
= Dg rejects p

Therefore, Dk is a decider for K, but we have seen in a) that K is undecidable. We have a
contradiction, so our assumption that K is decidable was false and thus K+ is undecidable.

