Decision and Regression Trees

What is a decision/regression tree?

- Internal nodes perform discrete-outcome "tests" based on input features.
- Leaf nodes are predictions.

Example 1: A decision tree for predicting cancer recurrence

- Each training example $(\mathbf{x}_i, \mathbf{y}_i)$ falls in precisely one leaf.
- For a new input, x, one can predict majority (N/R) or probabilities of N,R for corresponding leaf.

Example 2: A regression tree for predicting time-to-recurrence

• The prediction for a leaf can be the mean (shown here), mean and variance, a linear regression fit...

Example 3: Predicting time-to-recurrence with discrete features.

What are tests?

- \bullet For a discrete attribute j, one can branch on
 - all possible values, corresponding to a test $\mathbf{x}(j) = ?$
 - inclusion in a subset, $\mathbf{x}(j) \in A$?
- For a real-valued attribute j or attributes, one can branch on
 - comparison to a threshold, $\mathbf{x}(j) > c$?
 - output of a perceptron, $\mathbf{x} \cdot \mathbf{w} + w_0 > c$?

Finding a good tree

- One could exhaustively enumerate all trees and tests (if finite in number), and use a validation set to estimate which is best, but...
 - There are many possible trees.
 - We'd probably overfit the data anyway.
- Usually, decision/regression trees are constructed in two phases:
 - An incremental top-down procedure "grows" a tree, until the training data is completely fit.
 - The tree is "pruned" back to avoid overfitting.

Picking a test for the root (1)

- Suppose the data is $D = \{(\mathbf{x}_i, \mathbf{y}_i)\}$, and there are a finite number of possible tests τ_k we can pick for the root of the tree.
- For discrete-valued features, there can only be a finite number of tests.
- For real-valued features, the values $\mathbf{x}_i(j)$ determine possible choices for c in comparison tests $\mathbf{x}(j) > c$.
 - We can restrict attention to mid-points between adjacent $\mathbf{x}_i(j)$.

 If y is discrete-valued, we can restrict attention to mid-points between adjacent pairs at which the output changes.

Picking a test for the root (2)

- Intuition: if the y_i are all the same, or nearly all the same, then prediction is easy.
- Heuristic: the best test moves us towards constant y_i , conditional on the test.

• How to measure (in)homogeneity?

Measuring (in)homogeneity

- Suppose a test τ splits the data $D = \{(\mathbf{x}_i, \mathbf{y}_i)\}$ into k groups, D_1, \ldots, D_k .
- If y_i is real, one measure of the goodness of that split is the variance of y_i in the resulting groups:

$$\sum_{j=1}^k \operatorname{var}(\mathbf{y}_i \in D_j), \text{ or }$$

$$\sum_{j=1}^{k} \frac{|D_j|}{|D|} \operatorname{var}(\mathbf{y}_i \in D_j),$$

either of which should be minimized.

Measuring (in)homoeneity (2)

• If y_i is discrete-valued, then empirical entropy can be used to measure the goodness of a set of splits D_1, \ldots, D_k created by a test.

to be continued...

Entropy

- Entropy captures the uncertainty in the outcome of a random variable.
- With k possible outcomes, the entropy is $-\sum_{l=1}^{k} p_l \log_2 p_l$.
- Entropy is maximal when all $p_l = \frac{1}{k}$, and equals $\log_2 k$.
- Entropy is minimal when any $p_l = 1$, and equals zero.

(Empirical) entropy

- Let $\{y_i\}_{i=1}^m$ be a sequence of discrete values.
- Let p_l be the empirical frequency of value l,

$$p_l = \frac{|\{\mathbf{y}_i = l\}|}{m}$$

• Then the (empirical) entropy of the \mathbf{y}_i is $-\sum_l p_l \log_2 p_l$.

example sequence	entropy
000011111	0.991
101010101	0.991
000111111	0.918
011111111	0.503
001112222	1.531

Measuring (in)homoeneity (2) continued

- If y_i is discrete-valued, then empirical entropy can be used to measure the goodness of a set of splits D_1, \ldots, D_k created by a test.
- One measure is the expected empirical entropy

$$\sum_{j} \frac{|D_{j}|}{|D|} \operatorname{entropy}(\mathbf{y}_{i} \in D_{j})$$

which is low for a good split.

• For historical reasons, information gain is often used

$$\operatorname{entropy}(\mathbf{y}_i \in D) - \sum_j \frac{|D_j|}{|D|} \operatorname{entropy}(\mathbf{y}_i \in D_j)$$

which is large for a good split.

Incremental tree construction and pruning

- We assume a finite number of possible tests τ_j , data $D = \{(\mathbf{x}_i, \mathbf{y}_i)\}$, and purity measure P.
- Construct a tree which exactly fits the data :
 - If $y_i = y$ for some y and all i, stop.
 - Otherwise, evaluate each possible test τ_i according to P.
 - Split the data into subsets D_1, \ldots, D_K according to τ_j .
 - Recursively build a tree on each subset.
- Prune the tree by repeating:
 - Estimate the generalization performance of the tree using a validation set.
 - Replace any subtree with a single node, as long as doing so improves estaimted generalization performance.

Some pros and cons of trees (1)

Modeling power:

- The overall decision boundary / prediction is nonlinear in the inputs.
- Typically, tests are on single variables, and constitute axis-parallel cuts.

Comprehensibility:

- Small trees are easy to understand.
- Trees can be converted into lists of conjunctive rules.
- Variables occurring in test may be the more relevant ones.
- However, the structure of the tree and variables appearing in it can be quite sensitive to the data.

Some pros and cons of trees (2)

• Efficiency:

- Finding a tree by incremental growth and pruning can be done very rapidly.
- Though trees are not necessarily optimal.