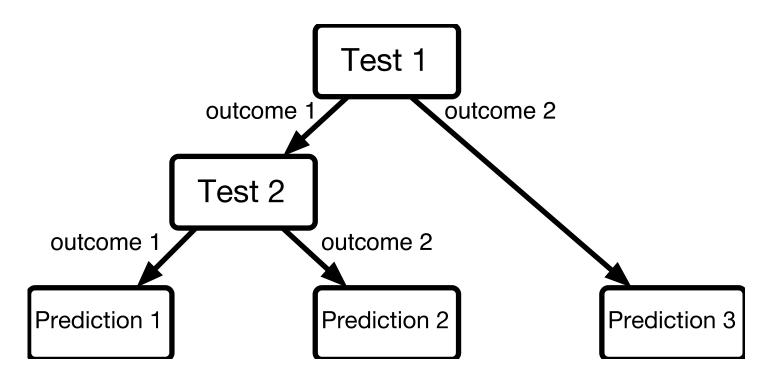
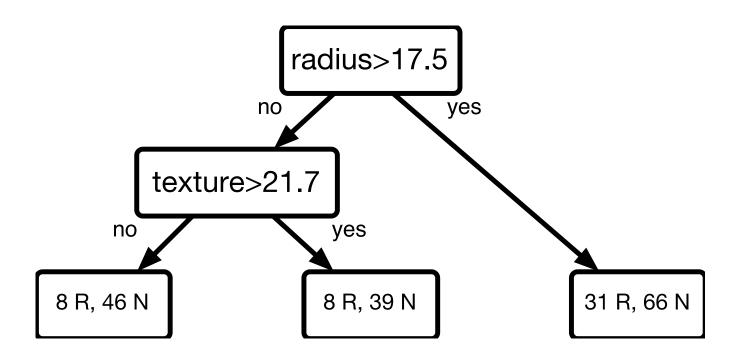
# **Decision and Regression Trees**

## What is a decision/regression tree?



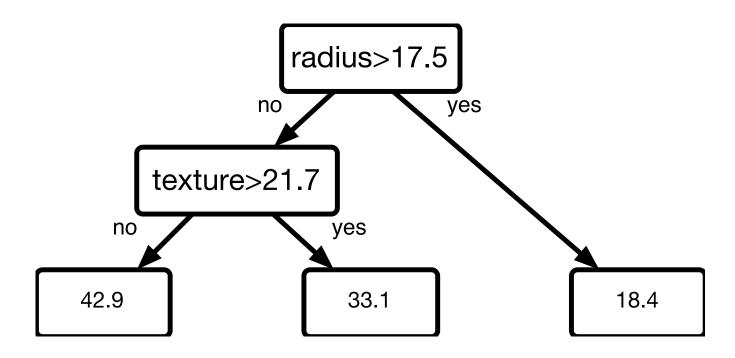
- Internal nodes perform discrete-outcome "tests" based on input features.
- Leaf nodes are predictions.

#### Example 1: A decision tree for predicting cancer recurrence



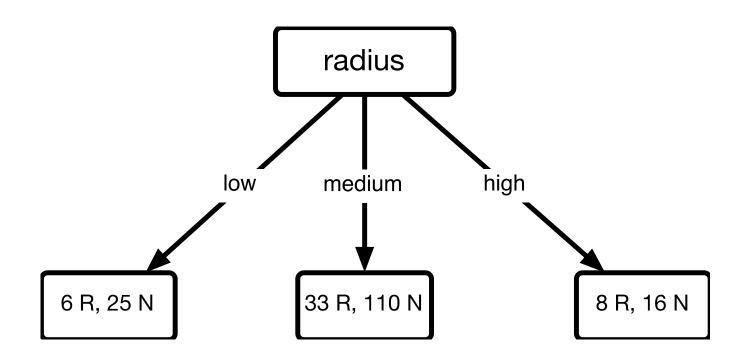
- Each training example  $(\mathbf{x}_i, \mathbf{y}_i)$  falls in precisely one leaf.
- For a new input, x, one can predict majority (N/R) or probabilities of N,R for corresponding leaf.

## Example 2: A regression tree for predicting time-to-recurrence



• The prediction for a leaf can be the mean (shown here), mean and variance, a linear regression fit...

## **Example 3: Predicting time-to-recurrence with discrete features.**



#### What are tests?

- $\bullet$  For a discrete attribute j, one can branch on
  - all possible values, corresponding to a test  $\mathbf{x}(j) = ?$
  - inclusion in a subset,  $\mathbf{x}(j) \in A$ ?
- For a real-valued attribute j or attributes, one can branch on
  - comparison to a threshold,  $\mathbf{x}(j) > c$ ?
  - output of a perceptron,  $\mathbf{x} \cdot \mathbf{w} + w_0 > c$ ?

## Finding a good tree

- One could exhaustively enumerate all trees and tests (if finite in number), and use a validation set to estimate which is best, but...
  - There are many possible trees.
  - We'd probably overfit the data anyway.
- Usually, decision/regression trees are constructed in two phases:
  - An incremental top-down procedure "grows" a tree, until the training data is completely fit.
  - The tree is "pruned" back to avoid overfitting.

## Picking a test for the root (1)

- Suppose the data is  $D = \{(\mathbf{x}_i, \mathbf{y}_i)\}$ , and there are a finite number of possible tests  $\tau_k$  we can pick for the root of the tree.
- For discrete-valued features, there can only be a finite number of tests.
- For real-valued features, the values  $\mathbf{x}_i(j)$  determine possible choices for c in comparison tests  $\mathbf{x}(j) > c$ .
  - We can restrict attention to mid-points between adjacent  $\mathbf{x}_i(j)$ .



 If y is discrete-valued, we can restrict attention to mid-points between adjacent pairs at which the output changes.



## Picking a test for the root (2)

- Intuition: if the  $y_i$  are all the same, or nearly all the same, then prediction is easy.
- Heuristic: the best test moves us towards constant  $y_i$ , conditional on the test.



• How to measure (in)homogeneity?

## **Measuring (in)homogeneity**

- Suppose a test  $\tau$  splits the data  $D = \{(\mathbf{x}_i, \mathbf{y}_i)\}$  into k groups,  $D_1, \ldots, D_k$ .
- If  $y_i$  is real, one measure of the goodness of that split is the variance of  $y_i$  in the resulting groups:

$$\sum_{j=1}^k \operatorname{var}(\mathbf{y}_i \in D_j), \text{ or }$$

$$\sum_{j=1}^{k} \frac{|D_j|}{|D|} \operatorname{var}(\mathbf{y}_i \in D_j),$$

either of which should be minimized.

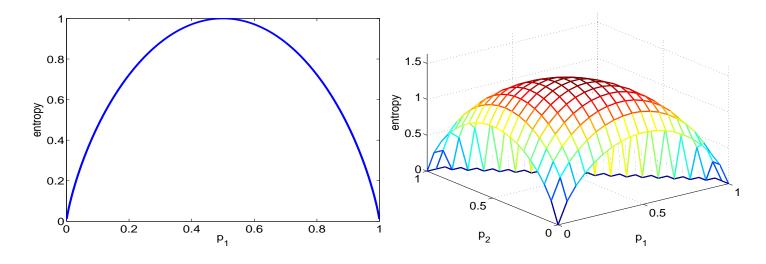
## **Measuring (in)homoeneity (2)**

• If  $y_i$  is discrete-valued, then empirical entropy can be used to measure the goodness of a set of splits  $D_1, \ldots, D_k$  created by a test.

to be continued...

# **Entropy**

- Entropy captures the uncertainty in the outcome of a random variable.
- With k possible outcomes, the entropy is  $-\sum_{l=1}^{k} p_l \log_2 p_l$ .
- Entropy is maximal when all  $p_l = \frac{1}{k}$ , and equals  $\log_2 k$ .
- Entropy is minimal when any  $p_l = 1$ , and equals zero.



## (Empirical) entropy

- Let  $\{y_i\}_{i=1}^m$  be a sequence of discrete values.
- Let  $p_l$  be the empirical frequency of value l,

$$p_l = \frac{|\{\mathbf{y}_i = l\}|}{m}$$

• Then the (empirical) entropy of the  $\mathbf{y}_i$  is  $-\sum_l p_l \log_2 p_l$ .

| example sequence | entropy |
|------------------|---------|
| 000011111        | 0.991   |
| 101010101        | 0.991   |
| 000111111        | 0.918   |
| 011111111        | 0.503   |
| 001112222        | 1.531   |

### Measuring (in)homoeneity (2) continued

- If  $y_i$  is discrete-valued, then empirical entropy can be used to measure the goodness of a set of splits  $D_1, \ldots, D_k$  created by a test.
- One measure is the expected empirical entropy

$$\sum_{j} \frac{|D_{j}|}{|D|} \operatorname{entropy}(\mathbf{y}_{i} \in D_{j})$$

which is low for a good split.

• For historical reasons, information gain is often used

$$\operatorname{entropy}(\mathbf{y}_i \in D) - \sum_j \frac{|D_j|}{|D|} \operatorname{entropy}(\mathbf{y}_i \in D_j)$$

which is large for a good split.

### Incremental tree construction and pruning

- We assume a finite number of possible tests  $\tau_j$ , data  $D = \{(\mathbf{x}_i, \mathbf{y}_i)\}$ , and purity measure P.
- Construct a tree which exactly fits the data :
  - If  $y_i = y$  for some y and all i, stop.
  - Otherwise, evaluate each possible test  $\tau_i$  according to P.
  - Split the data into subsets  $D_1, \ldots, D_K$  according to  $\tau_j$ .
  - Recursively build a tree on each subset.
- Prune the tree by repeating:
  - Estimate the generalization performance of the tree using a validation set.
  - Replace any subtree with a single node, as long as doing so improves estaimted generalization performance.

## Some pros and cons of trees (1)

#### Modeling power:

- The overall decision boundary / prediction is nonlinear in the inputs.
- Typically, tests are on single variables, and constitute axis-parallel cuts.

#### Comprehensibility:

- Small trees are easy to understand.
- Trees can be converted into lists of conjunctive rules.
- Variables occurring in test may be the more relevant ones.
- However, the structure of the tree and variables appearing in it can be quite sensitive to the data.

## Some pros and cons of trees (2)

#### • Efficiency:

- Finding a tree by incremental growth and pruning can be done very rapidly.
- Though trees are not necessarily optimal.