
Decision and Regression Trees

What is a decision/regression tree?

• Internal nodes perform discrete-outcome “tests” based on input
features.

• Leaf nodes are predictions.

Example 1: A decision tree for predicting cancer recurrence

• Each training example (xi,yi) falls in precisely one leaf.

• For a new input, x, one can predict majority (N/R) or
probabilities of N,R for corresponding leaf.

Example 2: A regression tree for predicting time-to-recurrence

• The prediction for a leaf can be the mean (shown here), mean
and variance, a linear regression fit. . .

Example 3: Predicting time-to-recurrence with discrete fe atures.

What are tests?

• For a discrete attribute j, one can branch on

– all possible values, corresponding to a test x(j) =?

– inclusion in a subset, x(j) ∈ A?

• For a real-valued attribute j or attributes, one can branch on

– comparison to a threshold, x(j) > c?

– output of a perceptron, x · w + w0 > c?

Finding a good tree

• One could exhaustively enumerate all trees and tests (if finite in
number), and use a validation set to estimate which is best,
but. . .

– There are many possible trees.

– We’d probably overfit the data anyway.

• Usually, decision/regression trees are constructed in two
phases:

– An incremental top-down procedure “grows” a tree, until the
training data is completely fit.

– The tree is “pruned” back to avoid overfitting.

Picking a test for the root (1)

• Suppose the data is D = {(xi,yi)}, and there are a finite
number of possible tests τk we can pick for the root of the tree.

• For discrete-valued features, there can only be a finite number
of tests.

• For real-valued features, the values xi(j) determine possible
choices for c in comparison tests x(j) > c.

– We can restrict attention to mid-points between adjacent
xi(j).

– If y is discrete-valued, we can restrict attention to mid-points
between adjacent pairs at which the output changes.

Picking a test for the root (2)

• Intuition: if the yi are all the same, or nearly all the same, then
prediction is easy.

• Heuristic: the best test moves us towards constant yi,
conditional on the test.

• How to measure (in)homogeneity?

Measuring (in)homogeneity

• Suppose a test τ splits the data D = {(xi,yi)} into k groups,
D1, . . . , Dk.

• If yi is real, one measure of the goodness of that split is the
variance of yi in the resulting groups:

k∑

j=1

var(yi ∈ Dj), or

k∑

j=1

|Dj |

|D|
var(yi ∈ Dj),

either of which should be minimized.

Measuring (in)homoeneity (2)

• If yi is discrete-valued, then empirical entropy can be used to
measure the goodness of a set of splits D1, . . . , Dk created by
a test.

to be continued. . .

Entropy

• Entropy captures the uncertainty in the outcome of a random
variable.

• With k possible outcomes, the entropy is −
∑k

l=1
pl log

2
pl.

• Entropy is maximal when all pl = 1

k
, and equals log

2
k.

• Entropy is minimal when any pl = 1, and equals zero.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p
1

en
tro

py

0

0.5

1

0

0.5

1
0

0.5

1

1.5

p
1

p
2

en
tro

py

(Empirical) entropy

• Let {yi}
m
i=1 be a sequence of discrete values.

• Let pl be the empirical frequency of value l,

pl =
|{yi = l}|

m

• Then the (empirical) entropy of the yi is −
∑

l
pl log

2
pl.

example sequence entropy

0 0 0 0 1 1 1 1 1 0.991
1 0 1 0 1 0 1 0 1 0.991
0 0 0 1 1 1 1 1 1 0.918
0 1 1 1 1 1 1 1 1 0.503
0 0 1 1 1 2 2 2 2 1.531

Measuring (in)homoeneity (2) continued

• If yi is discrete-valued, then empirical entropy can be used to
measure the goodness of a set of splits D1, . . . , Dk created by
a test.

• One measure is the expected empirical entropy

∑

j

|Dj |

|D|
entropy(yi ∈ Dj)

which is low for a good split.

• For historical reasons, information gain is often used

entropy(yi ∈ D) −
∑

j

|Dj |

|D|
entropy(yi ∈ Dj)

which is large for a good split.

Incremental tree construction and pruning

• We assume a finite number of possible tests τj , data
D = {(xi,yi)}, and purity measure P .

• Construct a tree which exactly fits the data :

– If yi = y for some y and all i, stop.

– Otherwise, evaluate each possible test τj according to P .

– Split the data into subsets D1, . . . , DK according to τj .

– Recursively build a tree on each subset.

• Prune the tree by repeating:

– Estimate the generalization performance of the tree using a
validation set.

– Replace any subtree with a single node, as long as doing so
improves estaimted generalization performance.

Some pros and cons of trees (1)

• Modeling power:

– The overall decision boundary / prediction is nonlinear in the
inputs.

– Typically, tests are on single variables, and constitute
axis-parallel cuts.

• Comprehensibility:

– Small trees are easy to understand.

– Trees can be converted into lists of conjunctive rules.

– Variables occurring in test may be the more relevant ones.

– However, the structure of the tree and variables appearing in
it can be quite sensitive to the data.

Some pros and cons of trees (2)

• Efficiency:

– Finding a tree by incremental growth and pruning can be
done very rapidly.

– Though trees are not necessarily optimal.

