
Support vector machines (for classification)



Recall: perceptron

• Data is {(xi,yi)}
m
i=1 where xi ∈ <n, yi ∈ {−1,+1}.

• Classification rule for input x is

f̂(x) = sgn(x · w + w0) =







+1 if x · w + w0 > 0

? if x · w + w0 = 0

−1 if x · w + w0 < 0

for weights w, w0.

• The decision boundary, separating the regions of +1 prediction
and -1 prediction, is the hyperplane x · w + w0 = 0.

• An example (xi,yi) is correctly classified if
yi(xi · w + w0) > 0.



Recall: linear separability

• The data is linearly separable if there exists w, w0 such that all
examples are classified correctly.

separable not separable

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9



Recall: perceptron training

• We saw a gradient-descent based rule for choosing the
perceptron weights. If the data is linearly separable, then it finds
weights that correctly classify all the data.

• Weights can also be found by minimizing the perceptron
criterion,

E =
∑

misclassified
examples
(xi,yi)

−yi(xi · w + w0)

using (e.g.) linear programming.



Linear support vector machines

• Linear SVMs are perceptrons whose weights optimize a slightly
different function than the perceptron criterion.

• First, consider the linearly separable case.

– Typically, there is more than one linear decision boundary
which correctly classifies the data.

– The (geometric) margin is two times the distance from the
decision boundary to the nearest training example.
(It is the width of the “strip” around the decision boundary
containing no training examples.)

– SVMs: The best solution is the one with maximum margin!



Computing the margin

• Given w, w0, that classify the data correctly, what is the
distance, δi, from the decision boundary to a point xi?

δi = yi

(

w

‖w‖
· xi +

w0

‖w‖

)

• So half the margin is M = mini δi.

• Alternatively, if the margin is at least 2M , then for all i

yi

(

w

‖w‖
· xi +

w0

‖w‖

)

≥ M



Finding the max-margin classifier

• Formulation as an optimization problem:

maximize M

with respect to w, w0,M

subject to yi

(

w

‖w‖
· xi + w0

‖w‖

)

≥ M for all i

• This problem is underconstrained. If (w, w0, M) is an optimal
solution, then so is (αw, αw0, M) for any α > 0.

• Adding the constraint ‖w‖M = 1 and maximizing M2 instead
of M yields an equivalent optimization problem:

min ‖w‖2

w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1

• This can be solved by standard QP software. Margin = 2/‖w‖.



Example



Form of the solution

• It turns out that the solution for w is always of the form

w =

m
∑

i=1

αiyixi

where the αi are non-negative weighting factors. Thus, the
SVM output is

f̂(x) = sgn

(

m
∑

i=1

αiyixi · x + w0

)

• In the separable case, αi is non-zero if and only if xi lies on the
edge of the margin. That is, if and only if

yi(w · xi + w0) = 1

• Such xi are called the support vectors. They are the training
examples which determine the decision boundary.



Linear SVMs — the non-separable case



If the data is not separable, then no margin is possible (in the
previously-discussed sense).

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Idea: Find a decision boundary that separates some of the data well
(with a large margin), and charge a penalty for the data that is not
separated.



Formulating the optimization problem

• Given w, w0, M , an example (xi,yi) exceeds the margin if

yi

(

w

‖w‖
· xi +

w0

‖w‖

)

≥ M

• If (xi,yi) doesn’t exceed the margin, then we can write

yi

(

w

‖w‖
· xi +

w0

‖w‖

)

≥ M(1 − ζi)

where ζi is the distance, in fractions of M , that (xi,yi) is on
the wrong side of the margin.



Formulating the optimization problem

• We want M to be large, but the ζi’s to be small (zero is best).

• This suggests the optimization problem:

min ‖w‖2 + C
∑

i
ζi

w.r.t. w, w0, ζi

s.t. yi(w · xi + w0) ≥ (1 − ζi)

ζi ≥ 0

(Recall, M = 1/‖w‖. We still call 2M the margin.)

• Compare with the formulation for linearly-separable data:
min ‖w‖2

w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1

• Either can also be solved by quadratic programming.



Example



Solution

• As in the separable case, the solution for w is of the form

w =

m
∑

i=1

αiyixi

where the αi are non-negative weighting factors. Thus,

f̂(x) = sgn

(

m
∑

i=1

αiyixi · x + w0

)

• αi is positive if and only if xi lies on the edge of the margin or
on the wrong side of the margin. That is, if yi(xi ·w+w0) ≤ 1.

• Such an xi is a support vector.



Kernels



Feature expansions and nonlinear decision boundaries

• Linear SVMs always produce a decision boundary that is a
hyperplane. For some data this is not appropriate.

• One way of getting a nonlinear decision boundary in the input
space is to find a linear decision boundary in an expanded
space. (Similar to polynomial regression.)

• That is xi is replaced by φ(xi), where φ : <n 7→ <p, where
p ∈ {1, 2, 3, . . .} or possibly even p = ∞. Also, w ∈ <p.

• If p is finite, then the same SVM algorithm can be applied to find
w.



Example



Dot-products

• In a linear SVM, dot-products in the input space are used to
make a prediction:

f̂(x) = sgn

(

m
∑

i=1

αiyixi · x + w0

)

• Recall, xi · x = cos z‖xi‖‖x‖, where z is the angle between
the two vectors.

• This is partly a measure of “similarity” between xi and x —
specifically how much they point in the same direction — though
it also reflect the lengths of the vectors.



Dot-products (2)

• The optimization problem to find w and w0 can also be
formulated in terms of dot-products in the input space.

min ‖w‖2 + C
∑

i
ζi

w.r.t. w, w0, ζi

s.t. yi(w · xi + w0) ≥ (1 − ζi)

ζi ≥ 0

can be solved by instead solving

max
∑m

i=1
αi −

1

2

∑m

i,j=1
yiyjαiαjxi · xj

w.r.t. αi

s.t. 0 ≤ αi ≤ C
∑m

i=1
αiyi = 0

and using w =
∑m

i=1
αiyixi. w0 can be found in several

ways.



Kernels

• Whenever a learning algorithm (such as SVMs) can be written
in terms of dot-products, it can be generalized to kernels.

• A kernel is any function K : <n ×<n 7→ < which corresponds
to a dot product for some feature mapping. That is,
K(x1,x2) = φ(x1) · φ(x2) for some φ : <n 7→ <p,
p ∈ {1, 2, 3, . . . ,∞}.

• Example Kernels:

– Degree d polynomial: K(x1,x2) = (1 + x1 · x2)
d

– Radial basis/Gaussian: K(x1,x2) = exp(−‖x1 − x2|
2/s)

– Neural network: K(x1,x2) = tanh(c1x1 · x)2 + c2)



Training SVMs with Kernels

• We solve the optimization problem

max
∑m

i=1
αi −

1

2

∑m

i,j=1
yiyjαiαjK(xi,xj)

w.r.t. αi

s.t. 0 ≤ αi ≤ C
∑m

i=1
αiyi = 0

• We evaluate the predictor as

f̂(x) = sgn

(

m
∑

i=1

αiyiK(xi,x) + w0

)



Example



SVM summary

• SVMs are perceptrons which optimize a different criterion than
the usual perceptron.

– The separable case, they maximize the margin between the
+’s and the −’s.

– In the nonseparable case, they seek a large margin but a low
penalty for points on the wrong side of the margin.

• Kernels (and explicit feature expansions) allow for decision
boundaries that are nonlinear in the original input features.

• Standard optimization software can be used to compute optimal
parameters for the classifier.

• To evaluate the classified, one computes a weighted sum of
dot-products (or Kernels) evaluated between a subset of the
training points (the support vectors) and the input point.


