
Probabilistic Modeling



Today

• Discrete random variables

• Continuous random variables

• P.d.f.’s and c.d.f.’s

• Mean and variance

• Dependence and independence; joint and marginal probabilities



What is/why probabilistic modeling?



What is a random variable?

• Something that has not happened yet.

– Does a tossed coin come up heads or tails?

– Does the cancer recur or not?

• Something you do not know . . .

– Did a tossed coin come up heads of tails?

– Is X a transcription factor for gene Y?

– How does the protein fold?

. . . because you have not/cannot observe it directly or compute
it definitively from what you have observed.



Discrete random variables



Examples

A discrete r.v. X takes values from a discrete set ΩX .

• X = result of a coin toss; ΩX = {Head,Tail}.

• X = roll of a die; ΩX = {1, 2, 3, 4, 5, 6}.

• X = nucleotide a position 1, chromosome 1, in a particular
person; ΩX = {A,C, G, T}.

• X = amino acid 12 in a particular person’s hemoglobin; ΩX =
{A, R,N, D,C, Q, E,G,H, I, L,K, M, F, P, S, T, W, Y, V }.

• X = copy number of gene Z in a particular person;
ΩX = {0, 1, 2, 3, . . .}.



Probabilities

• For a discrete r.v. X , each value x ∈ ΩX has a probability of
occurring, denoted variously by

Prob(X = x) ProbX(x) Prob(x)

Pr(X = x) PrX(x) Pr(x)

P(X = x) PX(x) P(x)

• 0 ≤ P(x) ≤ 1

•

∑

x∈ΩX
P(x) = 1

• P(X) denotes the probability distribution function for r.v. X . It
can be thought of as a table.

x A C G T
P(x) 0 0.2 0.7 0.1



Cumulative distribution functions

• If X takes values from an ordered set ΩX (such as integers)
then the cumulative distribution function is

c.d.f.(x) = P(X ≤ x) =
∑

x′≤x

P(x)

• For example, if X is the roll of a die, then:

x 1 2 3 4 5 6
P(x) 1/6 1/6 1/6 1/6 1/6 1/6

c.d.f.(x) 1/6 2/6 3/6 4/6 5/6 1



Mean and variance

• If ΩX is a set of numbers, then the expected value of X is

E(X) =
∑

x∈ΩX

xP(x)

• The variance of X is

Var(X) = E(X2) − (E(X))2

=

(

∑

x

x2P(x)

)

−

(

∑

x

xP(x)

)2

≥ 0

• Example: If X is a die roll, then the mean value is 3.5 and the
standard deviation is approximately 3.4157.



Continuous random variables



Examples

A continuous r.v. X takes real values.

• X = expression level for a gene as reported by a microarray.

• X = time until a patient’s cancer recurs.

• X = size of a tumor.

• X = mass of a peptide as reported by mass-spec.

• X = binding energy between a TF and DNA. (?)

• X = fraction of time a TF is bound to DNA.



Cumulative distribution functions

• Any continuous r.v. X has a cumulative distribution function

c.d.f.(x) = P(X ≤ x)

• c.d.f.(x) is a non-decreasing function; c.d.f.(x) ≤ c.d.f.(x′)
whenever x ≤ x′.

• limx→−∞ c.d.f.(x) = 0.

• limx→+∞ c.d.f.(x) = 1.

• Example: The c.d.f. of a mean-zero, variance-one Gaussian r.v.:
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Probability density functions

• If c.d.f.(x) is continuous and differentiable (at least, in most
places) then it’s derivative is the probability density function,
analogous to the probability distribution function of a discrete r.v.

d

dx
c.d.f.(x) = p.d.f.(x) = P(x)

• P(x) is the “probability”, or more properly, likelihood that X
takes value x.

• 0 ≤ P(x) < ∞. Observe that P(x) > 1 is allowed, unlike for
discrete r.v.’s.

•

∫

x
P(x)dx = 1, similar to discrete r.v.’s.



Gaussian random variables

X ∼ N(µ, σ) has mean µ and standard deviation σ.
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Exponential random variables

X ∼ Exp(λ) has mean 1/λ and standard deviation 1/λ.

c.d.f. p.d.f.
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Uniform random variables

X ∼ U(a, b) has mean a+b
2

and standard deviation (b−a)√
12

.

c.d.f. p.d.f.
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A continuous r.v. with no p.d.f.

• Suppose X equal to zero with probability 1
2

and otherwise is
distributed according to N(0, 1).

• Then the c.d.f. is
c.d.f.(x) =

{

1
2
f(x) x < 0

1
2
f(x) + 1

2
x ≥ 0

where f(x) denotes the c.d.f. of a N(0, 1) r.v.
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• There is no p.d.f. because of the discrete jump in the c.d.f.



Mean and variance

• We will almost always restrict attention to continuous r.v.’s with
p.d.f.’s.

• Then, the expected value is defined as

E(X) =

∫

x

xP(x)dx

• Variance is

Var(X) = E(X2) − (E(X))2

=

∫

x

x2P(x)dx −

(
∫

x

xP(x)dx

)2

≥ 0



[In]dependent random variables



Example

• Let X1 = true iff a rolled die comes out even.

• Let X2 = true iff the same rolled die comes out odd.

P(X1 = true) = P(X1 = false) =
1

2

P(X2 = true) = P(X2 = false) =
1

2

• What is the probability P(X1 = true and X2 = true)?

• We know it is zero.

• But there is no way of knowing just from P(X1) and P(X2).

⇒ There are several ways we can specify the relationships
between variables. They all come down to specifying joint
probability distributions/densities.
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Joint probabilities

• When considering r.v.’s X1, X2, . . . , Xm, the joint probability
function specifies the probability of every combination of values.

P(X1 = x1 and X2 = x2 and . . . and Xm = xm)

• When the r.v.’s are discrete, the joint probability can be viewed
as a table.

even=true odd=true

odd=true 0 1/2
odd=false 1/2 0

die=1 2 3 4 5 6

even=true 0 1/6 0 1/6 0 1/6
even=false 1/6 0 1/6 0 1/6 0



Marginal probabilities

Given r.v.’s X1, X2, . . . Xm with joint probability P(x1, x2, . . . , xm).

• The marginal probability of a r.v. Xi is

P(Xi = xi) =
∑

x1,x2,...,xi−1,xi+1,...,xm

P(x1, x2, . . . , xm)

• That is, you get the marginal probability by summing (or
integrating) over all possible values of the other r.v.’s.

die=1 2 3 4 5 6 P(even)

even=true 0 1/6 0 1/6 0 1/6 1/2
even=false 1/6 0 1/6 0 1/6 0 1/2

P(die) 1/6 1/6 1/6 1/6 1/6 1/6

• Similarly for the marginal probability of a subset of the r.v.’s.



Independent r.v.’s

• Two r.v.’s X and Y are independent if and only if

P(X = x and Y = y) = P(X = x)P(Y = y)

for all x and y.

• This is often abbreviated as P(X, Y ) = P(X)P(Y ).



Conditional probablity

• For two r.v.’s X and Y , P(X = x|Y = y) denote the probability
that X = x given that Y = y.

– P(die=1|odd = true) = 1/3.

– P(die=1|odd = false) = 0.

• The conditional probability can be defined (and computed) as

P(x|y) =
P(x, y)

P(y)

as long as P(y) > 0.

• This is sometimes used as

P(x) =
∑

y

P(x, y) =
∑

y

P(x|y)P(y)



Conditional probability (2)

Conditional probabilities are interesting because we often observe
something and want to infer something/make a guess about
something unobserved but related.

• P(cancer recurs|tumor measurements)

• P(TF binds|TF and DNA properties)

• P(Gene expressed > 1.3|TF concentrations)



Bayes’ Rule

(Or possibly Bayes’s Rule.)

• Bayes’ Rule: P(x|y) = P(y|x)P(x)

P(y)
.

• E.g., suppose we know based on past data collected:

P(tumor measurements|cancer)

P(tumor measurements|not cancer)

P(cancer P(not cancer)

P(cancer|tumor meas.) =
P(tumor meas.|cancer)P(cancer)

P(tumor meas.)

=
P(tumor meas.|cancer)

P(tumor meas.|cancer)P(cancer) + P(tumor meas.|not cancer)P(not cancer)


