Probabilistic Modeling




Today

Discrete random variables
Continuous random variables
P.d.f’s and c.d.f’s

Mean and variance

Dependence and independence; joint and marginal probabilities



What is/why probabilistic modeling?




What is a random variable?

e Something that has not happened yet.
— Does a tossed coin come up heads or tails?
— Does the cancer recur or not?

e Something you do not know ...
— Did a tossed coin come up heads of tails?
— Is X a transcription factor for gene Y?
— How does the protein fold?

... because you have not/cannot observe it directly or compute
it definitively from what you have observed.



Discrete random variables




Examples

A discrete r.v. X takes values from a discrete set €2 x.
e X = result of a coin toss; 2x = {Head,Tail}.
e X =rollofadie; Qx ={1,2,3,4,5,6}.

e X = nucleotide a position 1, chromosome 1, in a particular
person; Qx ={A,C,G, T}

e X — amino acid 12 in a particular person’s hemoglobin; Q2 x =
{A,R,N,D,C,Q,F,G,H,I,L,K, M,F,P,S, T, W,Y,V}.

e X — copy number of gene Z in a particular person;
Qx =40,1,2,3,...}.



Probabilities

For a discrete r.v. X, each value x € {2x has a probability of
occurring, denoted variously by

Prob(X x) Probx (x) Prob(x)
( ) PrX(x (37

P(X=2)  Px(z)  P(z)
0<P(zx)<1

Z;UGQX P(r) =1

P(X) denotes the probability distribution function for r.v. X. It
can be thought of as a table.

T A C G T
P(a:) O 0.2 0.7 0.1




Cumulative distribution functions

e If X takes values from an ordered set {2 x (such as integers)
then the cumulative distribution function is

cdi(z) =P(X <z)= ) P(a

z/ <z

e For example, if X is the roll of a die, then:

x 1 2 3 4 5 6
P(x) 1/6 1/6 1/6 1/6 1/6 1/6
cdf(x) | 1/6 2/6 3/6 4/6 5/6 1




Mean and variance

e If (2x is a set of numbers, then the expected value of X is

E(X) = Z P (x)

iCEQX

e The variance of X is

var(X) = E(X?) - (E(X))?

E(
- (Z;ﬁp@:)) = (Z a:P(az))Q

T X

>

e Example: If X is a die roll, then the mean value is 3.5 and the
standard deviation is approximately 3.4157.



Continuous random variables




Examples

A continuous r.v. X takes real values.
e X — expression level for a gene as reported by a microarray.
e X — time until a patient’s cancer recurs.
e X — size of a tumor.
e X — mass of a peptide as reported by mass-spec.
e X — binding energy between a TF and DNA. (?)

e X — fraction of time a TF is bound to DNA.



Cumulative distribution functions

Any continuous r.v. X has a cumulative distribution function

c.df.(z) = P(X < )

c.d.f.(z) is a non-decreasing function; c.d.f.(xz) < c.d.f.(z")
whenever z < .

limz_,_ oo c.d.f.(x) = 0.
limg,_— 4+ o0 c.d.f.(x) = 1.

Example: The c.d.f. of a mean-zero, variance-one Gaussian r.v.:




Probability density functions

If c.d.f.(x) is continuous and differentiable (at least, in most
places) then it’s derivative is the probability density function,
analogous to the probabillity distribution function of a discrete r.v.

%c.d.f.(az) = p.df(z) = P(z)

P(x) is the “probability”, or more properly, likelihood that X
takes value .

0 < P(x) < co. Observe that P(x) > 1 is allowed, unlike for
discrete r.v.’s.

fm P(x)dx = 1, similar to discrete r.v.s.



Gaussian random variables

X ~ N(u, o) has mean p and standard deviation .

c.d.f.

formula

p.d.f.




Exponential random variables

X ~ Exp(A) has mean 1/ and standard deviation 1/A\.

c.d.f. p.d.f.
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Uniform random variables

(b—a)

atbd iati
X ~ U(a,b) has mean “I= and standard deviation 75

graph

formula

c.d.f. p.d.f.
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A continuous r.v. with no p.d.f.

e Suppose X equal to zero with probability % and otherwise is
distributed according to NV (0, 1).

e Thenthec.d.f. is 1f(£13) x <0
df(z) =4 32
cate) { /(@) +3 220

where f(x) denotes the c.d.f. ofa N(0,1) r.v.
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e There is no p.d.f. because of the discrete jump in the c.d.f.



Mean and variance

e We will almost always restrict attention to continuous r.v.'s with
p.d.fs.

e Then, the expected value is defined as
E(X) = /xP(az)dw

e Variance is

Var(X)
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[In]dependent random variables




Example

e Let X7 = true iff a rolled die comes out even.

e Let Xo = true iff the same rolled die comes out odd.
P(X; =true) = P(X; = false) =

P(Xs2 = true) = P(Xq = false) =

N — N~

e What is the probability P(X; = true and X3 = true)?



Example

Let X1 = true iff a rolled die comes out even.

Let X = true iff the same rolled die comes out odd.

P(X; =true) = P(X; = false) =

N — N~

P(Xs2 = true) = P(Xq = false) =

What is the probability P(X; = true and X5 = true)?
We know it is zero.
But there is no way of knowing just from P(X;) and P(X2).

There are several ways we can specify the relationships
between variables. They all come down to specifying joint
probability distributions/densities.



Joint probabilities

e When considering r.v's X1, Xo, ..., X,,, the joint probability
function specifies the probability of every combination of values.

P(X1 =z1and Xo =z2and ... and X,,, = x,)

e \When the r.v.s are discrete, the joint probability can be viewed
as a table.

even=true odd=true
odd=true 0 1/2
odd=false 1/2 0

die=1 2 3 4 5 6
even=true 0 1/6 0 1/6 0 1/6
even=false 1/6 0 1/6 0 1/6 0




Marginal probabilities

Givenr.v's X1, Xa, ... X,, with joint probability P(x1, T2, ..., Tm).
e The marginal probability of ar.v. X is

P(Xq: :azi) = Z P(CEl,xQ,...,CIZm)

.CUl,$2,...,$i_1,$i+1,...,$m

e That is, you get the marginal probability by summing (or
Integrating) over all possible values of the other r.v.’s.

die=1 2 3 4 5 6 | P(even)

even=true 0 1/6 0 1/6 0 1/6 1/2
even=false 1/6 0 1/6 0 1/6 0 1/2

P(die) 1/6 1/6 1/6 16 1/6 1/6

e Similarly for the marginal probability of a subset of the r.v.'s.



Independent r.v.s

e Twor.v's X and Y are independent if and only if
P X=zandY =y) =P(X =x)P(Y =y)
for all x and y.

e This is often abbreviated as P(X,Y ) = P(X)P(Y).



Conditional probablity

e Fortworv's X and Y, P(X = z|Y = y) denote the probability
that X = x giventhat Y = y.

— P(die=1|odd = true) = 1/3.
— P(die=1|odd = false) = 0.
e The conditional probability can be defined (and computed) as

P(z,y)
P(y)

P(z|ly) =

as long as P(y) > 0.

® This Is sometimes used as

P(z) =) P(z,y)=» P(z[y)P(y)



Conditional probability (2)

Conditional probabilities are interesting because we often observe
something and want to infer something/make a guess about
something unobserved but related.

e P(cancer recurs|tumor measurements)
e P(TF binds|TF and DNA properties)

e P(Gene expressed > 1.3|TF concentrations)



Bayes’ Rule

(Or possibly Bayes’s Rule.)

P(y|z)P(z)
Py)

e Bayes’ Rule: P(z|y) =

e E.g., suppose we know based on past data collected:
P(tumor measurements|cancer)

P(tumor measurements|not cancer)
P(cancer P(not cancer)

P(tumor meas.|cancer)P(cancer)

P(cancer|tumor meas.) = P (tumor meas.)

P(tumor meas. |cancer)

P (tumor meas.|cancer)P(cancer) + P(tumor meas.|not cancer)P(not cancer)



