Prediction problems

- Given: input-output pairs $(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_m, \mathbf{y}_m),$ where the $\mathbf{x}_i \in \mathcal{X}$ and the $\mathbf{y}_i \in \mathcal{Y}$.
- Produce: a function $\hat{f}: \mathcal{X} \mapsto \mathcal{Y}$ that produces the "correct" \mathbf{y} for any $\mathbf{x} \in \mathcal{X}$.
- This is called prediction, supervised learning, function approximation.
 - Often, we imagine that there is a "true" $f: \mathcal{X} \mapsto \mathcal{Y}$, and $\mathbf{y}_i = f(\mathbf{x}_i)$.

Examples

input	output
DNA sequence	Does TF z bind there? (yes/no)
Tumor	Malignant/benign?
Tumor	Life expectancy of patient? (real value)
Expression of a gene under some conditions	Expression under other conditions? (real value)
Pair of proteins	Do they interact? (yes/no)
One protein	With what does it interact?

Steps to solving a supervised learning problem

- 1. Decide what your input-output pairs are.
- 2. Decide how to encode inputs and outputs.
 - This defines the input space \mathcal{X} , and the output space \mathcal{Y} .
 - Nearness in $\mathcal X$ should reflect nearness in $\mathcal Y$.
- 3. Choose a class of functions/representations \mathcal{F} for approximating f.
 - ullet Each possible $\hat{f} \in \mathcal{F}$ is a function from \mathcal{X} to \mathcal{Y} .
- 4. Choose an error/cost function, \mathcal{E} , which measures how good each $\hat{f} \in \mathcal{F}$ is.
- 5. Apply a learning algorithm to find an \hat{f} . (Ideally, minimizing \mathcal{E} .)

Example

Wisconsin Breast Tumor data set from UC-Irvine Machine Learning repository.

- Thirty real-valued variables per tumor that can be used for prediction.
- Two variables that can be predicted:
 - Outcome (R=recurrence, N=non-recurrence)
 - Time (until recurrence, for R, time healthy, for N).

tumor size	texture	perimeter	 outcome	time
18.02	27.6	117.5	N	31
17.99	10.38	122.8	N	61
20.29	14.34	135.1	R	27

. . .

Terminology

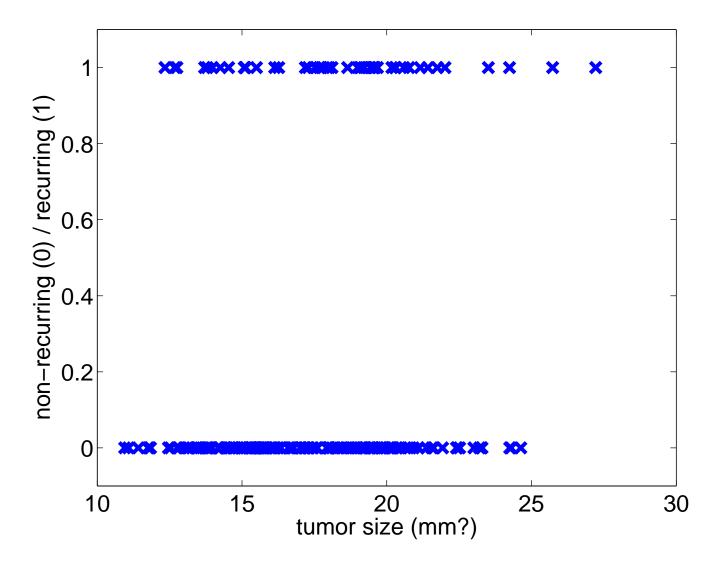
tu	mor size	texture	perimeter		outcome	time
	18.02	27.6	117.5		N	31
	17.99	10.38	122.8		Ν	61
	20.29	14.34	135.1		R	27
				ı	l	

- Rows are [training] examples, samples.
- Columns (tumor size, texture, ...) are features, attributes, [independent] variables, inputs.
- Outcome and time are dependent variables, targets, outputs, target outputs.
- Predicting outcome is a [binary] classification problem.
- Predicting time is a *regression* problem.

Nearest-neighbor methods with application to the Wisconsin Breast Cancer data

Problem formulation

- 1. Predict outcome based on tumor size.
- 2. Tumor size is taken as is providing a single, real-valued input. Outcomes are coded as N=0, R=1.
- 3. Any function $\hat{f}: \Re \mapsto \{0,1\}$ is allowed.
- 4. Error function...to be discussed
- 5. Learning algorithm: variants of nearest neighbor.



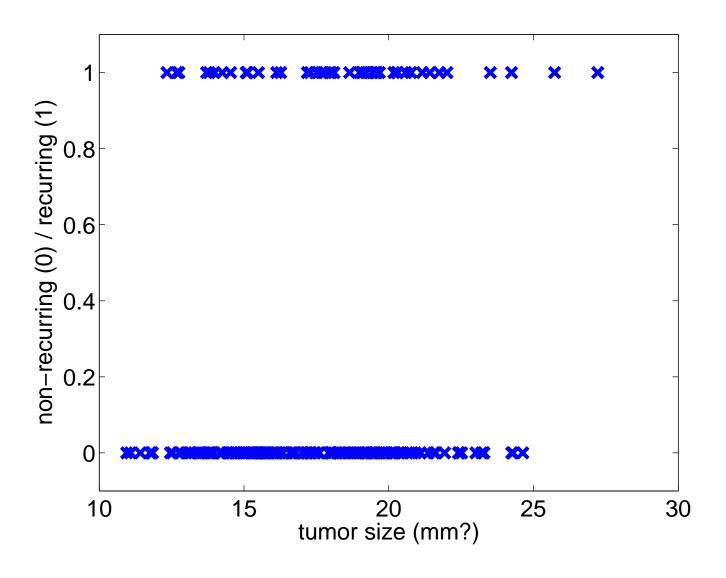
[Single] nearest neighbor

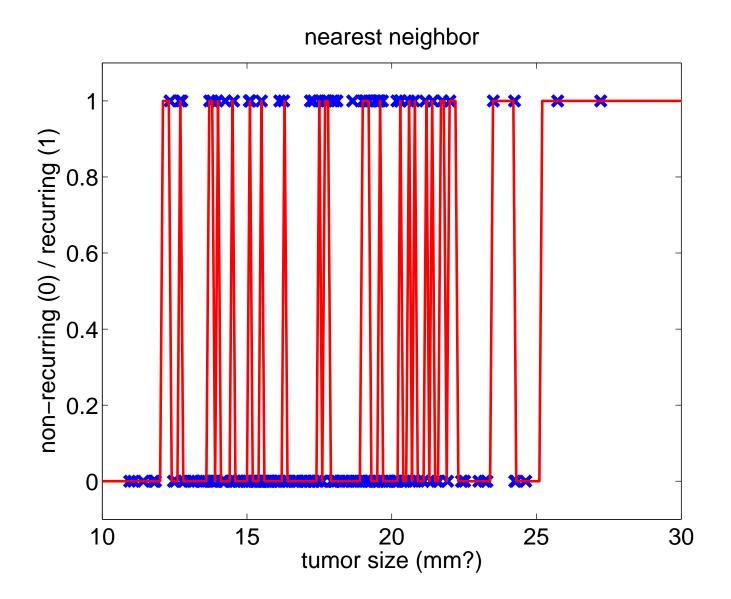
- Given: Training data $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$, distance metric d on \mathcal{X} .
- Learning: Nothing to do!
- ullet Prediction: for $\mathbf{x} \in \mathcal{X}$
 - Find nearest training sample to x.

$$i \in \arg\min_i d(\mathbf{x}_i, \mathbf{x})$$

- Predict $y = y_i$.

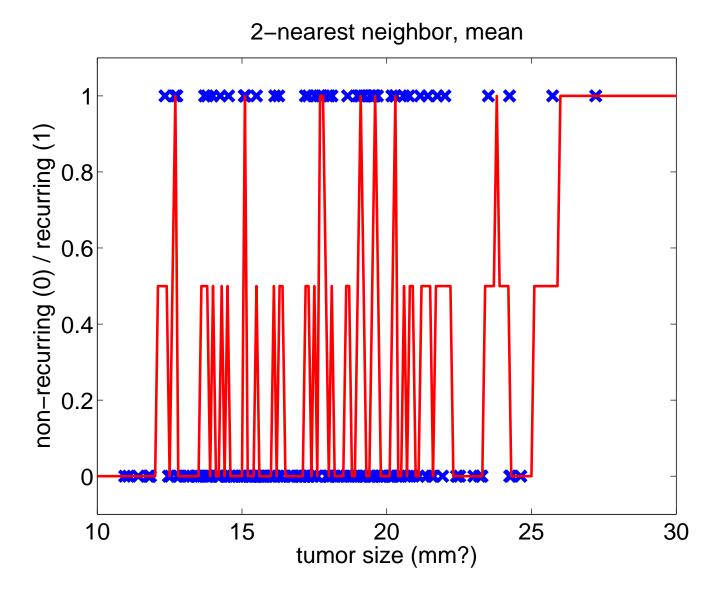
How will it look?



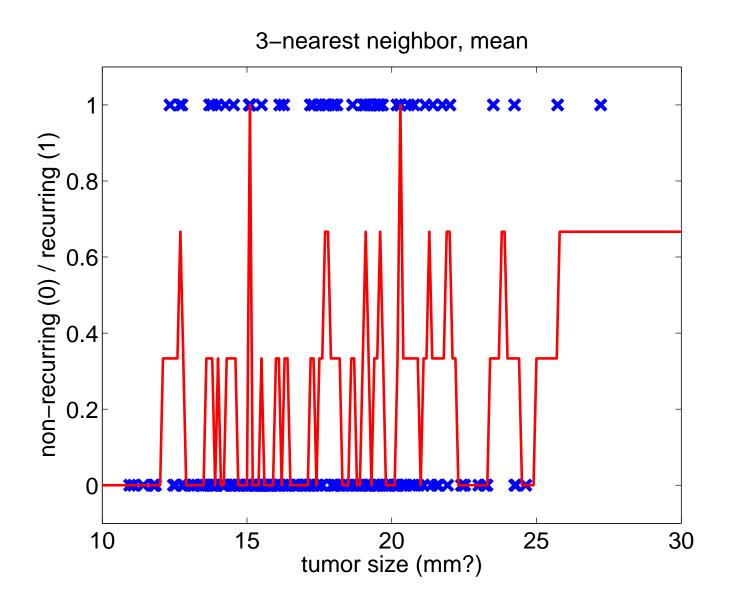


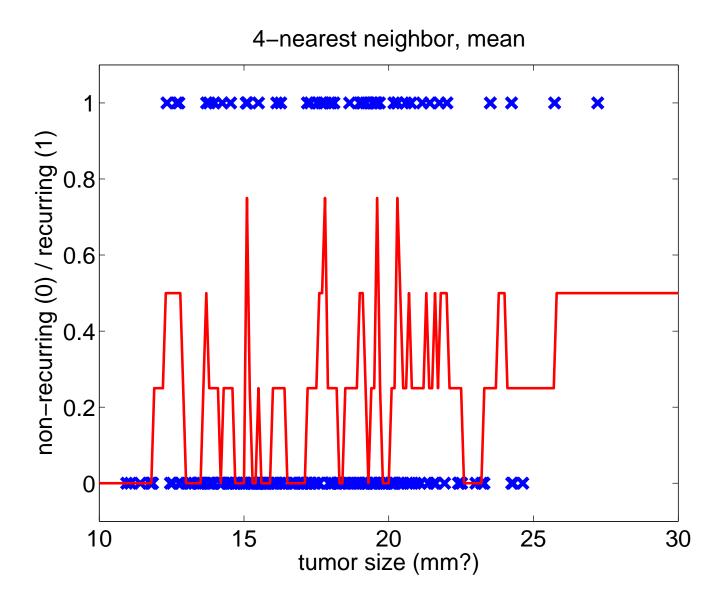
k-nearest neighbor

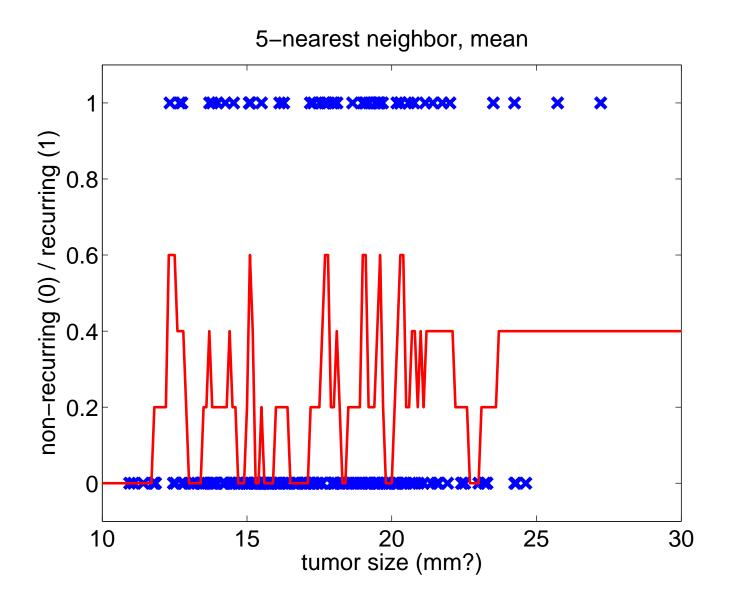
- Given: Training data $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$, distance metric d on \mathcal{X} .
- Learning: Nothing to do!
- ullet Prediction: for $\mathbf{x} \in \mathcal{X}$
 - Find the k nearest training samples to \mathbf{x} . Let their indeces be i_1, i_2, \ldots, i_k .
 - Predict \mathbf{y} =mean/median/mode of $\{\mathbf{y}_{i_1}, \mathbf{y}_{i_2}, \dots, \mathbf{y}_{i_k}\}$.

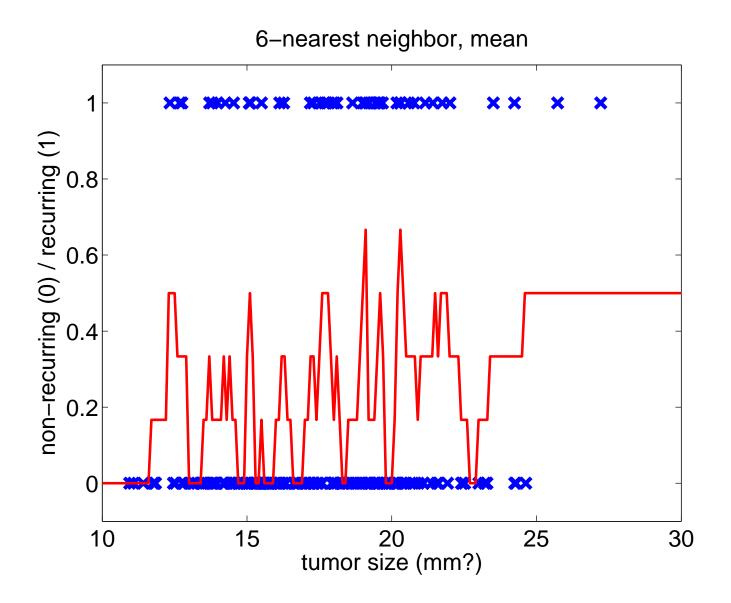


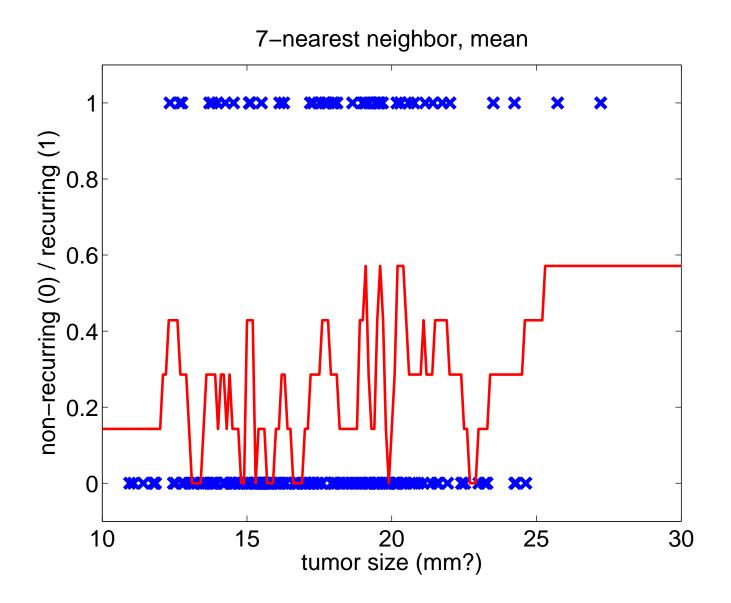
Smoother... but what does 0.5 mean?

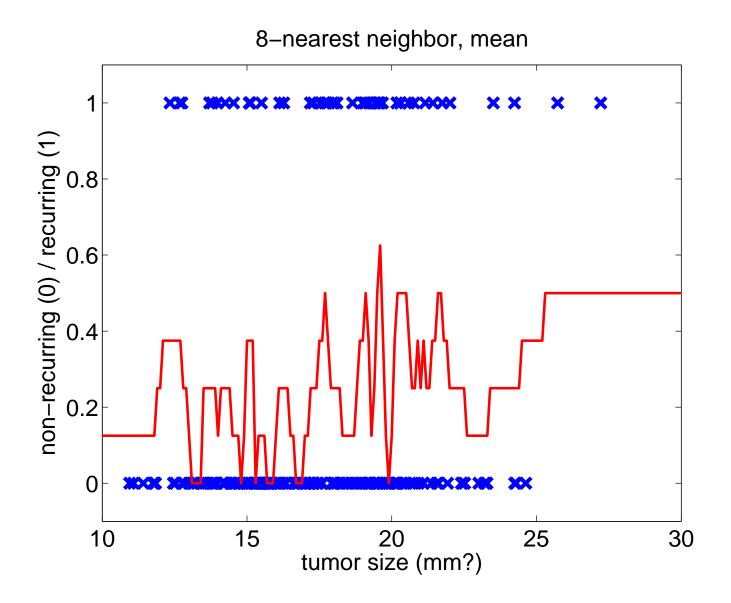


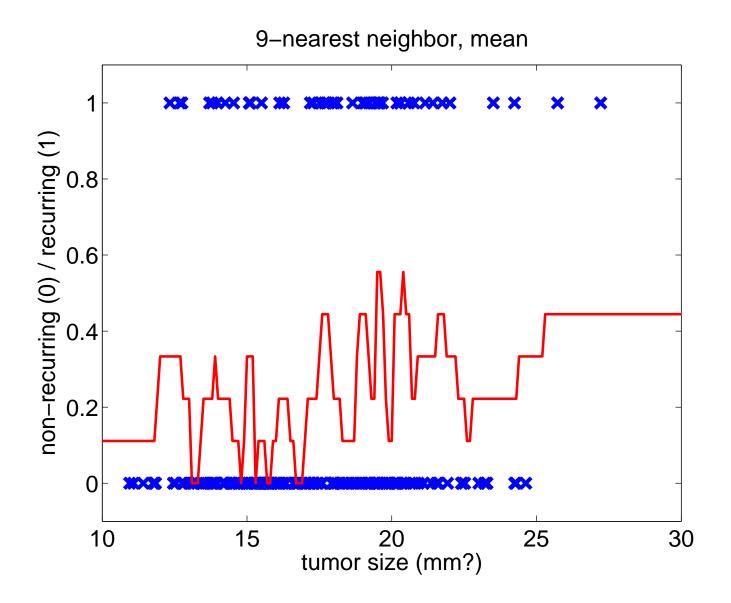


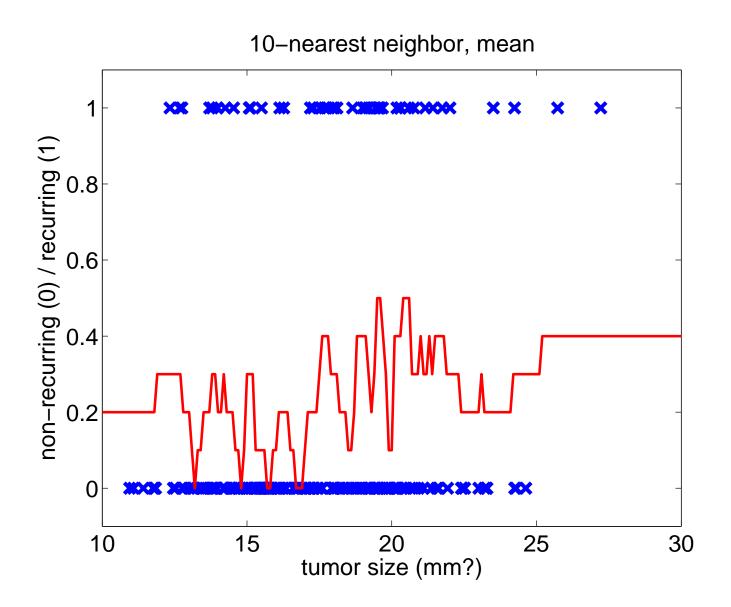


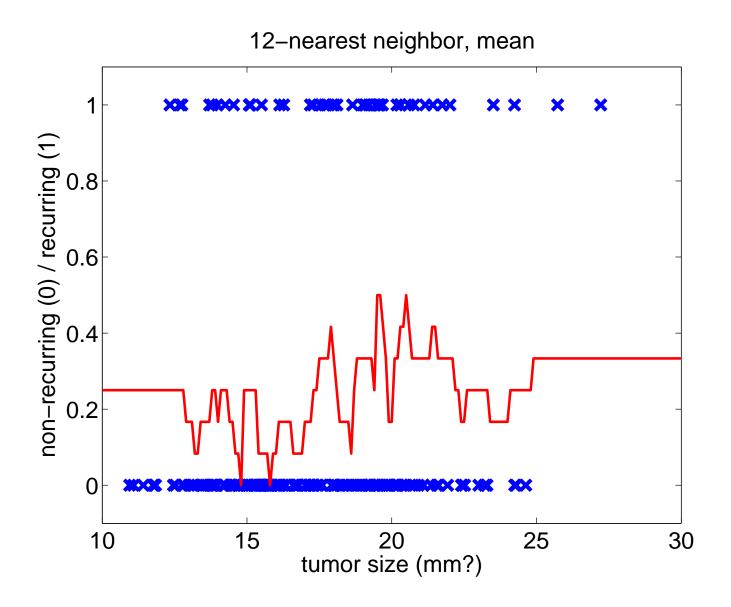


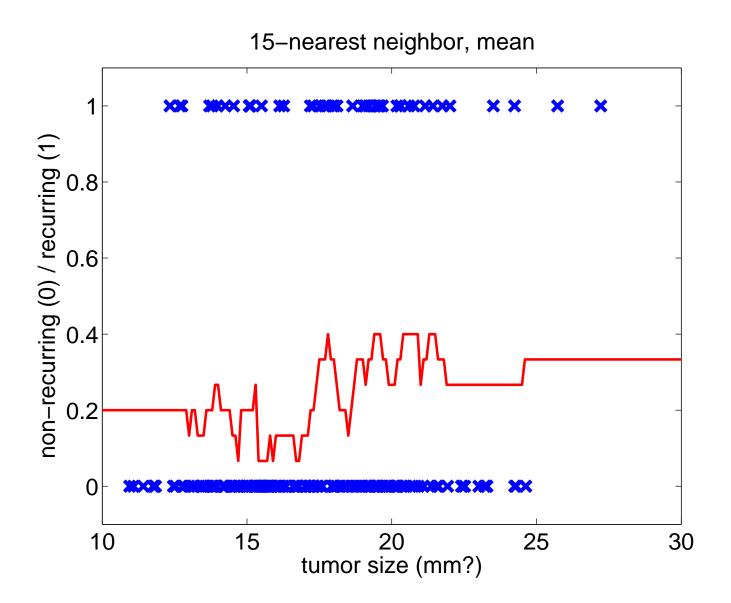


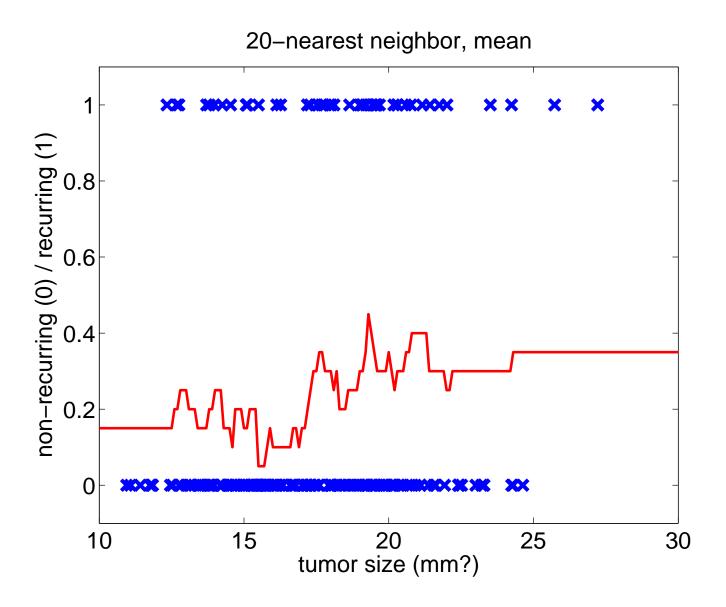












Questions

- What is the best choice of *k*?
- What are we optimizing? What should we be optimizing?

What we should be optimizing

- Suppose there is a true $f: \mathcal{X} \mapsto \mathcal{Y}$.
- For $\mathbf{x} \in \mathcal{X}$, $\mathbf{y}_1, \mathbf{y}_2 \in \mathcal{Y}$, let $\mathcal{E}_0(\mathbf{x}, \mathbf{y}_1, \mathbf{y}_2)$ be the error/cost associated to predicting \mathbf{y}_1 for input \mathbf{x} when the correct prediction is \mathbf{y}_2 .
- Suppose sample inputs are drawn from a distribution P on \mathcal{X} .
- Then we can evaluate a candidate \hat{f} by its expected prediction error:

$$\mathcal{E}(\hat{f}) = \int_{\mathbf{x}} \mathcal{E}_0(\mathbf{x}, \hat{f}(\mathbf{x}), f(\mathbf{x})) P(\mathbf{x}) d\mathbf{x}$$

- Draw picture!
- Comments?

Unfortunately...

We cannot evaluate

$$\mathcal{E}(\hat{f}) = \int_{\mathbf{x}} \mathcal{E}_0(\mathbf{x}, \hat{f}(\mathbf{x}), f(\mathbf{x})) P(\mathbf{x}) d\mathbf{x}$$

because

- ullet We do not know f
- ullet We do not know P
- We probably could not compute the integral even if we did know f and P.

Monte Carlo estimation of the integral

- Suppose our sample inputs x_i are drawn according to P.
- Suppose $\mathbf{y}_i = f(\mathbf{x}_i)$.
- Then for any \hat{f} the *training error*

$$\mathcal{E}_{train} = \sum_{i=1}^{m} \mathcal{E}_0(\mathbf{x}_i, \hat{f}(\mathbf{x}_i), \mathbf{y}_i)$$

is an unbiased estimate of the expected prediction error, ${\mathcal E}$ of $\hat f$.

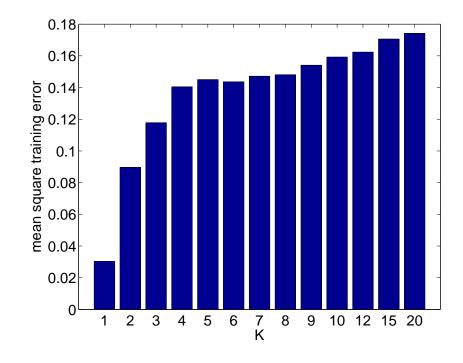
• Great! So we just choose \hat{f} to minimize \mathcal{E}_{train} !

Application to choosing k

- Suppose we run k-nearest neighbor for $k=1,2,\ldots,m$, producing m candidate functions $\hat{f}_1,\hat{f}_2,\ldots,\hat{f}_m$.
- Compute \mathcal{E}_{train} for each one.
- Which is the optimal k?

Application to choosing k

- Suppose we run k-nearest neighbor for $k=1,2,\ldots,m$, producing m candidate functions $\hat{f}_1,\hat{f}_2,\ldots,\hat{f}_m$.
- Compute \mathcal{E}_{train} for each one.
- Which is the optimal k?



What is the problem?

What is the problem?

- There is no true f? (True f is stochastic/depends on other factors.)
- Noise in the x_i or y_y ?
- Noise in \mathcal{E}_{train} due to small sample size?
- "Overfitting?" ($\mathcal{E}_{train}(\hat{f}_1) < \mathcal{E}_{train}(\hat{f}_2)$ but $\mathcal{E}(\hat{f}_1) > \mathcal{E}(\hat{f}_2)$.)

Validation sets

- \bullet Our goal is to build a predictor \hat{f} with low error on new, unseen samples.
- We can simulate unseen samples by splitting our original data set into two: a (new, smaller) training set and a validation set.
- The new training set is used to learn \hat{f} , and the validation set is used to evaluate \hat{f} .
- Cross-validation...

