
Prediction problems

• Given: input-output pairs (x1,y1), (x2,y2), . . . , (xm,ym),
where the xi ∈ X and the yi ∈ Y .

• Produce: a function f̂ : X 7→ Y that produces the “correct” y

for any x ∈ X .

• This is called prediction, supervised learning, function
approximation.
Often, we imagine that there is a “true” f : X 7→ Y , and yi = f(xi).



Examples

input output

DNA sequence Does TF z bind there? (yes/no)
Tumor Malignant/benign?
Tumor Life expectancy of patient? (real value)
Expression of a gene under Expression under other
some conditions conditions? (real value)
Pair of proteins Do they interact? (yes/no)
One protein With what does it interact?



Steps to solving a supervised learning problem

1. Decide what your input-output pairs are.

2. Decide how to encode inputs and outputs.

• This defines the input space X , and the output space Y .

• Nearness in X should reflect nearness in Y .

3. Choose a class of functions/representations F for
approximating f .

• Each possible f̂ ∈ F is a function from X to Y .

4. Choose an error/cost function, E , which measures how good
each f̂ ∈ F is.

5. Apply a learning algorithm to find an f̂ . (Ideally, minimizing E .)



Example

Wisconsin Breast Tumor data set from UC-Irvine Machine Learning
repository.

• Thirty real-valued variables per tumor that can be used for
prediction.

• Two variables that can be predicted:

– Outcome (R=recurrence, N=non-recurrence)

– Time (until recurrence, for R, time healthy, for N).

tumor size texture perimeter . . . outcome time

18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27

. . .



Terminology

tumor size texture perimeter . . . outcome time

18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27

. . .

• Rows are [training] examples, samples.

• Columns (tumor size, texture, . . . ) are features, attributes,
[independent] variables, inputs.

• Outcome and time are dependent variables, targets, outputs,
target outputs.

• Predicting outcome is a [binary] classification problem.

• Predicting time is a regression problem.



Nearest-neighbor methods

with application to the Wisconsin Breast Cancer data



Problem formulation

1. Predict outcome based on tumor size.

2. Tumor size is taken as is providing a single, real-valued input.
Outcomes are coded as N= 0, R= 1.

3. Any function f̂ : < 7→ {0, 1} is allowed.

4. Error function. . . to be discussed

5. Learning algorithm: variants of nearest neighbor.
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[Single] nearest neighbor

• Given: Training data {(xi,yi)}
m
i=1, distance metric d on X .

• Learning: Nothing to do!

• Prediction: for x ∈ X

– Find nearest training sample to x.

i ∈ arg min
i

d(xi,x)

– Predict y = yi.



How will it look?
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k-nearest neighbor

• Given: Training data {(xi,yi)}
m
i=1, distance metric d on X .

• Learning: Nothing to do!

• Prediction: for x ∈ X

– Find the k nearest training samples to x.
Let their indeces be i1, i2, . . . , ik.

– Predict y =mean/median/mode of {yi1 ,yi2 , . . . ,yik
}.
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2−nearest neighbor, mean

Smoother. . . but what does 0.5 mean?
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Questions

• What is the best choice of k?

• What are we optimizing? What should we be optimizing?



What we should be optimizing

• Suppose there is a true f : X 7→ Y .

• For x ∈ X , y1,y2 ∈ Y , let E0(x,y1,y2) be the error/cost
associated to predicting y1 for input x when the correct
prediction is y2.

• Suppose sample inputs are drawn from a distribution P on X .

• Then we can evaluate a candidate f̂ by its expected prediction
error:

E(f̂) =

∫
x

E0(x, f̂(x), f(x))P (x)dx

• Draw picture!

• Comments?



Unfortunately. . .

We cannot evaluate

E(f̂) =

∫
x

E0(x, f̂(x), f(x))P (x)dx

because

• We do not know f

• We do not know P

• We probably could not compute the integral even if we did know
f and P .



Monte Carlo estimation of the integral

• Suppose our sample inputs xi are drawn according to P .

• Suppose yi = f(xi).

• Then for any f̂ the training error

Etrain =

m∑
i=1

E0(xi, f̂(xi),yi)

is an unbiased estimate of the expected prediction error, E of f̂ .

• Great! So we just choose f̂ to minimize Etrain!



Application to choosing k

• Suppose we run k-nearest neighbor for k = 1, 2, . . . , m,
producing m candidate functions f̂1, f̂2, . . . , f̂m.

• Compute Etrain for each one.

• Which is the optimal k?



Application to choosing k

• Suppose we run k-nearest neighbor for k = 1, 2, . . . , m,
producing m candidate functions f̂1, f̂2, . . . , f̂m.

• Compute Etrain for each one.

• Which is the optimal k?
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What is the problem?



What is the problem?

• There is no true f? (True f is stochastic/depends on other
factors.)

• Noise in the xi or yy?

• Noise in Etrain due to small sample size?

• “Overfitting?” (Etrain(f̂1) < Etrain(f̂2) but E(f̂1) > E(f̂2).)



Validation sets

• Our goal is to build a predictor f̂ with low error on new, unseen
samples.

• We can simulate unseen samples by splitting our original data
set into two: a (new, smaller) training set and a validation set.

• The new training set is used to learn f̂ , and the validation set is
used to evaluate f̂ .

• Cross-validation. . .
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