
Today

• Revisit justification of sum squared error.

• [Quasi-]linear models for classification:

– The perceptron

– Logistic regression



[Quasi-]linear models for classification

• Recall: in a binary classification problem the outputs, y
i
, take

one of two discrete values. (As convenient, we will assume they
are −1 and +1, or 0 and 1.)

• Can we develop linear models for classification as we did for
regression?

• What happens if we just apply linear regression as is?
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Using linear regression for classification

• Sometimes it works okay. . .

• One issue: how do we interpret the output?

– As a probability?

– Or do we predict the most likely class?

• “Probabilities” greater than one or less than zero may be a
problem.

• Another issue: what is the justification for minimizing sum
squared error?



Two alternatives

• We can non-linearly transform the linear output.

• If we threshold it, typically as

f̂(x) = sgn(x ·w) =

{

+1 if x ·w > 0

−1 otherwise

then we have a Perceptron. The output is taken as the predicted
class.

• In logistic regression, we use:

f̂(x) =
1

1 + e−x·w
,

the output of which is taken as the probability that y = 1.

• Either way, x ·w can be thought of as the “evidence for” class
+1. (Positive=evidence for, negative=evidence against.)



Perceptrons



The Perceptron

• We seek w which maximize the number of correctly classified
samples. (E=number of samples misclassified.)

• Correctly classifying sample i means yi(xi ·w) > 0, where
yi ∈ {−1, 1}.

• How do we find an optimal w?



The perceptron criterion

• Gradient descent on E is impossible — the gradient is zero
everywhere.

• Linear programming (LP) can be used to find w.

– If E = 0 for some w, LP will find such a w.
(In this case, the data is called linearly separable.)

– Otherwise, LP can find a w which minimizes the perceptron
criterion:

∑

{i:yi(xi·w)<0}

−yi(xi ·w)

• However, often gradient descent on the perceptron criterion is
used.



The perceptron learning rule

• For example, stochastic gradient descent on the perceptron
criterion:

– Initialize w somehow.

– While some misclassified samples remain:
1. Choose a misclassified sample, i.
2. w← w + αyixi, where α is a step-size parameter.

• If the data is linearly separable, then under appropriate
conditions on α this converges to a w with zero error.

• If the data is not linearly separable. . . convergence is not
guaranteed?



Logistic regression

. . . will be presented later.


