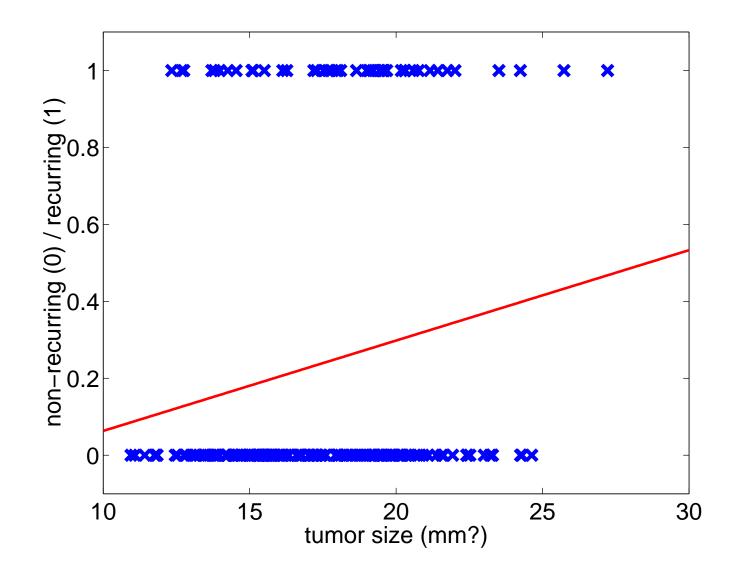
Today

- Revisit justification of sum squared error.
- [Quasi-]linear models for classification:
 - The perceptron
 - Logistic regression

[Quasi-]linear models for classification

- Recall: in a binary classification problem the outputs, y_i , take one of two discrete values. (As convenient, we will assume they are -1 and +1, or 0 and 1.)
- Can we develop linear models for classification as we did for regression?
- What happens if we just apply linear regression as is?



Using linear regression for classification

- Sometimes it works okay...
- One issue: how do we interpret the output?
 - As a probability?
 - Or do we predict the most likely class?
- "Probabilities" greater than one or less than zero may be a problem.
- Another issue: what is the justification for minimizing sum squared error?

Two alternatives

- We can non-linearly transform the linear output.
- If we threshold it, typically as

$$\hat{f}(\mathbf{x}) = \operatorname{sgn}(\mathbf{x} \cdot \mathbf{w}) = \begin{cases} +1 & \text{if } \mathbf{x} \cdot \mathbf{w} > 0 \\ -1 & \text{otherwise} \end{cases}$$

then we have a *Perceptron*. The output is taken as the predicted class.

• In logistic regression, we use:

$$\hat{f}(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{w}}} ,$$

the output of which is taken as the probability that y = 1.

• Either way, $\mathbf{x} \cdot \mathbf{w}$ can be thought of as the "evidence for" class +1. (Positive=evidence for, negative=evidence against.)

Perceptrons

The Perceptron

- We seek w which maximize the number of correctly classified samples. (*E*=number of samples misclassified.)
- Correctly classifying sample *i* means $\mathbf{y}_i(\mathbf{x}_i \cdot \mathbf{w}) > 0$, where $\mathbf{y}_i \in \{-1, 1\}$.
- How do we find an optimal w?

The perceptron criterion

- Gradient descent on \mathcal{E} is impossible the gradient is zero everywhere.
- Linear programming (LP) can be used to find w.
 - If $\mathcal{E} = 0$ for some w, LP will find such a w. (In this case, the data is called *linearly separable*.)
 - Otherwise, LP can find a w which minimizes *the perceptron criterion:*

$$\sum_{\{i:\mathbf{y}_i(\mathbf{x}_i\cdot\mathbf{w})<0\}} -\mathbf{y}_i(\mathbf{x}_i\cdot\mathbf{w})$$

• However, often gradient descent on the perceptron criterion is used.

The perceptron learning rule

- For example, stochastic gradient descent on the perceptron criterion:
 - Initialize w somehow.
 - While some misclassified samples remain:
 - 1. Choose a misclassified sample, *i*.
 - 2. $\mathbf{w} \leftarrow \mathbf{w} + \alpha \mathbf{y}_i \mathbf{x}_i$, where α is a step-size parameter.
- If the data is linearly separable, then under appropriate conditions on α this converges to a w with zero error.
- If the data is not linearly separable...convergence is not guaranteed?

Logistic regression

... will be presented later.