
What is dimensionality reduction?

• Mapping data objects to (short) real vectors

• For visualization, comparison, outlier detection

• For further machine learning

• Some techniques:

– Principal components analysis (linear)

– Independent components analysis (linear or nonlinear)

– Self-organizing maps (nonlinear)

– Multi-dimensional scaling (nonlinear, allows non-numeric
data objects)



Good case



Not too bad case



Hard case



Forget it!



Today

• Reviewing some basic stats

• Principal components analysis

• Refs for today’s material:

– Duda, Hart, Stork pp. 114–117

– Hastie, Tibshirani, Friedman pp. 485–491



Reviewing some basic stats



Expected value, sample average

• For a numeric random variable X , the expected value (mean) is

E(X) =
∑

x

xP(X = x) or

∫

x

xp(x)dx or

∫

x

xdp(x)

• If we take m samples from the same distribution/density,
x1, . . . , xn, then the sample average

1

m

m
∑

i=1

xi

is an unbiased estimated of E(X).

(That is, E
(

1

m

∑m

i=1
xi

)

= E(X).)



Variance

• The variance of X is

V ar(X) = E(X2 − (E(X))2) = E(X2) − (E(X))2

• The variance of X is non-negative and captures how “spread
out” X ’s distribution is.
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Estimating variance

• The sample variance is sometimes

1

m

m
∑

i=1

(xi − µ)2 ,

where µ = 1

m

∑m

i=1
xi.

• It turns out that this underestimates the true variance by a factor
of (m − 1)/m.

• An alternative definition of sample variance,

1

m − 1

m
∑

i=1

(xi − µ)2 ,

is an unbiased estimator of V ar(X).



Covariance

• Covariance quantifies a linear relationship (if any) between two
random variables X and Y .

Cov(X, Y ) = E{(X − E(X))(Y − E(Y ))}

• Given m samples of X and Y , covariance can be estimated as

1

m − 1

m
∑

i=1

(xi − µX)(yi − µY ) ,

where µX =
∑m

i=1
xi and µY =

∑m

i=1
yi.

• Note: Cov(X, X) = V ar(X).



Examples — all on the same scale
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Principal components analysis



PCA for reduction to 1D

• Given: m data objects, each a length-n real vector.

• Suppose we want a 1-dimensional representation of that data,
instead of n-dimensional.

• Specifically, we will:

– Choose a line in <n that “best represents” the data.

– Assign each data object to a point along that line.



Which line is best?

?

?

?



How do we assign points to lines?

?



Reconstruction error

• Let our line be represented as b + αv for b, v ∈ <n, α ∈ <.
For later convenience, assume ‖v‖ = 1.

• Each data vector xi is assigned a point on the line
x̂i = b + αiv.

• The (squared Euclidean) reconstruction error for data object i is

‖xi − x̂i‖
2 =

n
∑

j=1

(xi(j) − x̂i(j))
2

⇒ Choose b, v, and the αi to minimize the total reconstruction
error over all data points:

R =

m
∑

i=1

‖xi − x̂i‖
2



Minimizing reconstruction error

• Suppose we fix v. A little calculus reveals that (an) optimal
choice for b is

b =
1

m

m
∑

i=1

xi ,

and for any αi,
αi = v · (xi − b)

So x̂i = b + v · (xi − b).



Minimizing reconstruction error: b and the αi

• Suppose we fix v. A little calculus reveals that (an) optimal
choice for b is

b =
1

m

m
∑

i=1

xi ,

and for any αi,
αi = v · (xi − b)

So x̂i = b + v · (xi − b).

• Intuitively:

– The line goes through the centroid of the data.

– Data points are mapped to the point on the line closest to
them in Euclidean distance. (They are projected onto the
line.)



Example data



Example with v ∝ (1, 0.3)



Example with v ∝ (1,−0.3)



Minimizing reconstruction error: the scatter matrix

• Substituting back into the formula for R shows v should
maximize

vT Sv ,

where S is an n × n matrix with

S(k, l) =

m
∑

i=1

(xi(k) − b(k))(xi(l) − b(l))

• S(k,l) is proportional to the estimated covariance between
element k and element l in the data.

• S is the scatter matrix.



Optimal choice of v

• Recall: an eigenvector u of a matrix A satisfies Au = λu,
where λ ∈ < is the eigenvalue.

• Fact: the scatter matrix, S, has n non-negative eigenvalues and
n orthogonal eigenvectors.

• The v that maximizes vT Sv is the eigenvector of S with the
largest eigenvalue.



Example with optimal line: b = (0.54, 0.52), v ∝ (1, 0.45)



Comments

• The line b + αv is the first principal component.

• The variance of the data along the line b + αv is as large as
along any other line.

• b, v, and the αi can be computed in polynomial time.



Reduction to d dimensions

• More generally, we can create a d-dimensional representation
of our data by projecting our data points onto a hyperplane
b + α1v1 + . . . + αdvd.

• If we assume the vj are of unit length and orthogonal, then the
optimal choices are:

– b is the centroid of the data (as before)

– The vj are orthogonal eigenvectors of S corresponding to
S’s d-largest eigenvalues.

– Each data point is assigned to the nearest (in Euclidean
distance) point on the hyperplane.



Comments

• b, the vj (and the corresponding eigenvalues), and the
projections of the data points can all be computing in polynomial
time.

• The magnitude of the jth-largest eigenvalue, λj , tells you how
much variability in the data the jth principal component
captures — giving you feedback on how to choose d!



λ1 = 0.0938, λ2 = 0.0007



λ1 = 0.1260, λ2 = 0.0054



λ1 = 0.0884, λ2 = 0.0725



λ1 = 0.0881, λ2 = 0.0769


