What is dimensionality reduction?

- Mapping data objects to (short) real vectors
- For visualization, comparison, outlier detection
- For further machine learning
- Some techniques:
 - Principal components analysis (linear)
 - Independent components analysis (linear or nonlinear)
 - Self-organizing maps (nonlinear)
 - Multi-dimensional scaling (nonlinear, allows non-numeric data objects)

Good case

Not too bad case

Hard case

Forget it!

Today

- Reviewing some basic stats
- Principal components analysis
- Refs for today's material:
 - Duda, Hart, Stork pp. 114–117
 - Hastie, Tibshirani, Friedman pp. 485-491

Reviewing some basic stats

Expected value, sample average

ullet For a numeric random variable X, the expected value (mean) is

$$E(X) = \sum_{x} x P(X = x)$$
 or $\int_{x} x p(x) dx$ or $\int_{x} x dp(x)$

• If we take m samples from the same distribution/density, x_1, \ldots, x_n , then the sample average

$$\frac{1}{m} \sum_{i=1}^{m} x_i$$

is an unbiased estimated of E(X).

(That is,
$$E\left(\frac{1}{m}\sum_{i=1}^{m}x_i\right)=E(X)$$
.)

Variance

ullet The variance of X is

$$Var(X) = E(X^{2} - (E(X))^{2}) = E(X^{2}) - (E(X))^{2}$$

 The variance of X is non-negative and captures how "spread out" X's distribution is.

Estimating variance

The sample variance is sometimes

$$\frac{1}{m} \sum_{i=1}^{m} (x_i - \mu)^2 \;,$$

where
$$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i$$
.

- It turns out that this underestimates the true variance by a factor of (m-1)/m.
- An alternative definition of sample variance,

$$\frac{1}{m-1} \sum_{i=1}^{m} (x_i - \mu)^2 ,$$

is an unbiased estimator of Var(X).

Covariance

 Covariance quantifies a linear relationship (if any) between two random variables X and Y.

$$Cov(X, Y) = E\{(X - E(X))(Y - E(Y))\}$$

ullet Given m samples of X and Y, covariance can be estimated as

$$\frac{1}{m-1} \sum_{i=1}^{m} (x_i - \mu_X)(y_i - \mu_Y) ,$$

where
$$\mu_X = \sum_{i=1}^m x_i$$
 and $\mu_Y = \sum_{i=1}^m y_i$.

• Note: Cov(X, X) = Var(X).

Examples — all on the same scale

Principal components analysis

PCA for reduction to 1D

- ullet Given: m data objects, each a length-n real vector.
- Suppose we want a 1-dimensional representation of that data, instead of n-dimensional.
- Specifically, we will:
 - Choose a line in \Re^n that "best represents" the data.
 - Assign each data object to a point along that line.

Which line is best?

How do we assign points to lines?

Reconstruction error

- Let our line be represented as $b + \alpha v$ for $b, v \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$. For later convenience, assume ||v|| = 1.
- Each data vector x_i is assigned a point on the line $\hat{x}_i = b + \alpha_i v$.
- The (squared Euclidean) reconstruction error for data object *i* is

$$||x_i - \hat{x}_i||^2 = \sum_{j=1}^n (x_i(j) - \hat{x}_i(j))^2$$

 \Rightarrow Choose b, v, and the α_i to minimize the total reconstruction error over all data points:

$$R = \sum_{i=1}^{m} ||x_i - \hat{x}_i||^2$$

Minimizing reconstruction error

• Suppose we fix v. A little calculus reveals that (an) optimal choice for b is

$$b = \frac{1}{m} \sum_{i=1}^{m} x_i ,$$

and for any α_i ,

$$\alpha_i = v \cdot (x_i - b)$$

So
$$\hat{x}_i = b + v \cdot (x_i - b)$$
.

Minimizing reconstruction error: b and the $lpha_i$

• Suppose we fix v. A little calculus reveals that (an) optimal choice for b is

$$b = \frac{1}{m} \sum_{i=1}^{m} x_i ,$$

and for any α_i ,

$$\alpha_i = v \cdot (x_i - b)$$

So
$$\hat{x}_i = b + v \cdot (x_i - b)$$
.

- Intuitively:
 - The line goes through the centroid of the data.
 - Data points are mapped to the point on the line closest to them in Euclidean distance. (They are projected onto the line.)

Example data

Example with $v \propto (1,0.3)$

Example with $v \propto (1, -0.3)$

Minimizing reconstruction error: the scatter matrix

ullet Substituting back into the formula for R shows v should maximize

$$v^T S v$$
,

where S is an $n \times n$ matrix with

$$S(k,l) = \sum_{i=1}^{m} (x_i(k) - b(k))(x_i(l) - b(l))$$

- S(k,l) is proportional to the estimated covariance between element k and element l in the data.
- S is the scatter matrix.

Optimal choice of v

- Recall: an eigenvector u of a matrix A satisfies $Au = \lambda u$, where $\lambda \in \Re$ is the eigenvalue.
- ullet Fact: the scatter matrix, S, has n non-negative eigenvalues and n orthogonal eigenvectors.
- The v that maximizes v^TSv is the eigenvector of S with the largest eigenvalue.

Example with optimal line: b=(0.54,0.52), $v\propto(1,0.45)$

Comments

- The line $b + \alpha v$ is the *first principal component*.
- The variance of the data along the line $b+\alpha v$ is as large as along any other line.
- b, v, and the α_i can be computed in polynomial time.

Reduction to d dimensions

- More generally, we can create a d-dimensional representation of our data by projecting our data points onto a hyperplane $b + \alpha^1 v_1 + \ldots + \alpha^d v_d$.
- If we assume the v_j are of unit length and orthogonal, then the optimal choices are:
 - b is the centroid of the data (as before)
 - The v_j are orthogonal eigenvectors of S corresponding to S's d-largest eigenvalues.
 - Each data point is assigned to the nearest (in Euclidean distance) point on the hyperplane.

Comments

- b, the v_j (and the corresponding eigenvalues), and the projections of the data points can all be computing in polynomial time.
- The magnitude of the j^{th} -largest eigenvalue, λ_j , tells you how much variability in the data the j^{th} principal component captures giving you feedback on how to choose d!

$\lambda_1 = 0.0938, \lambda_2 = 0.0007$

$\lambda_1 = 0.1260, \lambda_2 = 0.0054$

$\lambda_1 = 0.0884, \lambda_2 = 0.0725$

$\lambda_1 = 0.0881, \lambda_2 = 0.0769$

