What is dimensionality reduction?

Mapping data objects to (short) real vectors

For visualization, comparison, outlier detection

For further machine learning

Some techniques:

Principal components analysis (linear)
Independent components analysis (linear or nonlinear)
Self-organizing maps (nonlinear)

Multi-dimensional scaling (nonlinear, allows non-numeric
data objects)



Good case




Not too bad case




Hard case




Forget it!
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Today

® Reviewing some basic stats
e Principal components analysis

e Refs for today’s material:
— Duda, Hart, Stork pp. 114-117
— Hastie, Tibshirani, Friedman pp. 485-491



Reviewing some basic stats




Expected value, sample average

e For a numeric random variable X, the expected value (mean) is

E(X) = ZazP(X =x) or /azp(az)daz or /azdp(az)

T X T

e |f we take m samples from the same distribution/density,
xi,...,Tn,then the sample average

™m
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is an unbiased estimated of F(X).
(Thatis, E (£ Y7, @) = E(X).)



Variance

e The variance of X is

Var(X) = BE(X? — (E(X))?) = E(X?) — (B(X))?

e The variance of X is non-negative and captures how “spread
out” X's distribution is.
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Estimating variance

e The sample variance is sometimes

1 — )
i=1
1

where = — > """ x5

e [t turns out that this underestimates the true variance by a factor
of (m — 1)/m.

e An alternative definition of sample variance,
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is an unbiased estimator of Var(X).




Covariance

e Covariance quantifies a linear relationship (if any) between two
random variables X and Y.

Cov(X,Y) = E{(X — E(X))(Y — E(Y))}
e Given m samples of X and Y, covariance can be estimated as

1_ 1 D (@i = px)(yi — py)

m

where ux =Y " xiand uy =) " yi.
e Note: Cov(X, X) = Var(X).
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Examples — all on the same scale
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Principal components analysis




PCA for reduction to 1D

e Given: m data objects, each a length-n real vector.

® Suppose we want a 1-dimensional representation of that data,
iInstead of n-dimensional.

e Specifically, we will:
— Choose a line in R™ that “best represents” the data.
— Assign each data object to a point along that line.



Which line is best?




How do we assign points to lines?




Reconstruction error

Let our line be represented as b + awv for b,v € ", a € R.
For later convenience, assume ||v|| = 1.

Each data vector x; is assigned a point on the line
T; = b+ ayv.

The (squared Euclidean) reconstruction error for data object ¢ is

n

|z — & = (i) — 34(5))°

g=1

Choose b, v, and the «a; to minimize the total reconstruction
error over all data points:

m
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Minimizing reconstruction error

e Suppose we fix v. A little calculus reveals that (an) optimal
choice for b is

and for any o,

SOZIAZi:b—I—?J'(ZEi—b).



Minimizing reconstruction error: b and the «;

e Suppose we fix v. A little calculus reveals that (an) optimal
choice for b is

and for any o,

SOZIAZi:b—I—?J'(ZEi—b).

e [ntuitively:
— The line goes through the centroid of the data.

— Data points are mapped to the point on the line closest to
them in Euclidean distance. (They are projected onto the
line.)



Example data




Example with v o< (1,0.3)




Example with v o< (1, —0.3)




Minimizing reconstruction error: the scatter matrix

e Substituting back into the formula for R shows v should
maximize

T
v Sv,

where S is an n X n matrix with
S(k,1) = Z(aﬁi(k) — b(k))(xi(1) — b(1))

e S(k,l) is proportional to the estimated covariance between
element k and element [ in the data.

® S is the scatter matrix.



Optimal choice of v

e Recall: an eigenvector u of a matrix A satisfies Au = A\u,
where \ € R is the eigenvalue.

e Fact: the scatter matrix, .S, has n non-negative eigenvalues and
n orthogonal eigenvectors.

e The v that maximizes v’ Swv is the eigenvector of S with the
largest eigenvalue.



Example with optimal line: b = (0.54,0.52), v x (1, 0.45)




Comments

e The line b + aw is the first principal component.

e The variance of the data along the line b + aw is as large as
along any other line.

® b, v, and the «; can be computed in polynomial time.



Reduction to d dimensions

e More generally, we can create a d-dimensional representation
of our data by projecting our data points onto a hyperplane

b—l—Oél?Jl —|—...+advd.

e |f we assume the v; are of unit length and orthogonal, then the
optimal choices are:
— b is the centroid of the data (as before)

— The v; are orthogonal eigenvectors of S corresponding to
S'’s d-largest eigenvalues.

— Each data point is assigned to the nearest (in Euclidean
distance) point on the hyperplane.



Comments

e ), the v; (and the corresponding eigenvalues), and the
projections of the data points can all be computing in polynomial
time.

e The magnitude of the jth—largest eigenvalue, \;, tells you how

much variability in the data the jth principal component
captures — giving you feedback on how to choose d!



A; = 0.0938, Ay = 0.0007




A\, = 0.1260, Ay, = 0.0054







A, = 0.0881, Ay = 0.0769




