
Announcements

• Recall: if you are registered or auditing (on at least a
semiregular basis), email me from you preferred email address.

• Check the class web page for a more detailed schedule,
optional readings, class slides.

• For next time: Read Eisen et al. (1998) “Cluster analysis and
display of genome-wide expression patterns.” Proceedings of
the National Academy of Sciences of the USA, Vol. 95, pp.
14863–14868, and write a 1-2 page critique.

• Today: Hierarchical clustering, SOMs, Multi-dimensional
scaling.

Hierarchical clustering

• Organizes data objects into trees.

• For visualization, exploratory data analysis.

• “Agglomerative” methods build the tree bottom-up, successively
grouping together clustering deemed most similar.

• “Divisive” methods build the tree top-down, recursively
partitioning the data.

What is a hierarchical clustering?

• Given data objects D = {x1, x2, . . . , xn}.

• A hierarchical clustering is a set of subsets (clusters) of D,
C = {C1, C2, . . . , Cm}, where

– D ∈ C

– The Cj can be assigned to the nodes of a tree such that the
cluster at any node is precisely the union of the clusters at
the node’s children (if any).

Example of a hierarchical clustering

• Suppose D = {1, 2, 3, 4, 5, 6, 7}.

• One hierarchical clustering is C =
{{1}, {2, 3}, {4, 5}, {1, 2, 3, 4, 5}, {6, 7}, {1, 2, 3, 4, 5, 6, 7}}.

• Leaves of the tree need not correspond to single data objects.

• The branching factor of the tree is not limited.

⇒ However, most hierarchical clustering algorithms produce binary
trees, and take single data objects as the smallest clusters.

Agglomerative clustering

• Inputs: A set of data objects, and pairwise distances d(x, x′)
between them.

• Outputs: A hierarchical clustering

• Algorithm:

– Begin by putting each object as its own cluster on a working
list W .

– Repeat
∗ Find the two clusters in W that are most “similar”.
∗ Remove them from W .
∗ Add their union to W .
Until W contains a single cluster with all the data objects.

– The hierarchical clustering comprises all clusters appearing
in W at any stage of the algorithm.

How do we measure similarity between clusters?

Let C1 = {x1, x2, . . . , xm} and C2 = {x′
1, x

′
2, . . . , x

′
n}.

Three common measures of the dissimilarity are:

• Distance between nearest objects (“Single-linkage” agglomerative
clustering, or “nearest neighbor”):

min
x∈C1,x′∈C2

d(x, x
′)

• Distance between farthest objects (“Complete-linkage” agglomerative
clustering, or “furthest neighbor”):

max
x∈C1,x′∈C2

d(x, x
′)

• Average distance between objects (“Group-average” agglomerative
clustering):

1

mn

∑

x∈C1,x′∈C2

d(x, x
′)

[Show examples!]

Dendrograms and Monotonicity

• Single-linkage, complete-linkage and group-average
dissimilarity measure all share a monotonicity property:

– Let A, B, C be clusters.

– Let DS be one of the dissimilarity measures.

– If DS(A, B) < DS(A, C) and DS(A, B) < DS(B, C),
then DS(A, B) < DS(A ∪B,C).

• Implication: every time agglomerative clustering merges two
clusters, the dissimilarity of those clusters is ≥ the dissimilarity
of all previous merges.

• Dendrograms (trees depicting hierarchical clusterings) are often
drawn so that the height of a node corresponds to the
dissimilarity of the merged clusters.

Dendrogram for single-linkage clustering of Example 1

6976617062737879716572756367806877667464 8 1 560 91342444150495643464555524748575459185320 658511217 314 233312336243726344025392829353021382732 71019221615 411
0

0.1

0.2

Dendrogram for complete-linkage clustering of Example 1

69766170627378796471 863687767806572756674 233243726344028293035152231 71019213827321623362539 1 560 411 658 94555515213424944461853415056434754594857 314122017
0

0.2

0.4

0.6

0.8

1

1.2

Dendrogram for average-linkage clustering of Example 1

69766170627378796471 863687767806572756674 233312437263440282930351522 71019213827321623362539 411 1 560 658 9134244464150564943185320455552514759485754 3141217
0

0.1

0.2

0.3

0.4

0.5

0.6

Dendrogram for single-linkage clustering of Example 2

 64 91 58 75 63 67 85 78 87 51 57 69 97100 60 82 94 98 53 59 66 93 73 52 71 55 86 62 99 65 79 89 80 54 72 83 56 81 92 96 61 88 68 70 74 95 76 77 84 90 1 17 18 5 20 13 34 37 45 41 3 11 28 40 43 6 14 32 9 23 12 47 4 46 7 10 33 48 19 35 16 22 44 36 38 49 2 15 26 27 30 39 50 29 25 8 31 24 21 42
0

0.05

0.1

Dendrogram for complete-linkage clustering of Example 2

 64 91 85 60 82 94 98 51 57 69 97100 53 59 66 1 17 18 5 20 13 34 37 45 41 6 14 32 9 23 12 58 75 63 67 78 87 73 93 76 77 84 90 2 26 27 30 15 39 50 29 22 44 49 8 31 24 21 42 25 68 70 74 95 3 11 28 40 43 47 4 46 38 7 35 10 33 48 16 19 36 52 71 55 86 62 99 65 79 89 80 54 72 83 56 61 81 92 96 88
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dendrogram for average-linkage clustering of Example 2

 64 91 85 60 82 94 98 51 57 69 97100 53 59 66 58 75 63 67 78 87 73 93 76 77 84 90 1 17 18 5 20 13 34 37 45 41 6 14 32 9 23 12 3 11 28 40 43 47 2 26 27 30 15 39 50 29 25 8 31 24 21 42 68 70 74 95 4 46 38 7 10 33 48 19 35 16 36 22 44 49 52 71 55 86 62 99 65 79 89 80 54 72 83 56 81 92 96 61 88
0

0.2

0.4

Some notes

• We can form a flat clustering by cutting of the tree at any height.

• Jumps in the height of the dendrogram can suggest natural
cutoffs.

Divisive clustering

• Works by recursively partitioning the data objects.

• Dividing the objects to optimize one of the agglomerative criteria
is computationally hard.

• Many heuristics for partitioning data objects have been
proposed . . . but many violate monotonicity, making it hard to
draw dendrograms.

• (See Hastie, Tibshirani, Friedman p.480 for an example of a
divisive clustering algorithm that does have the monotonicity
property.)

Segue to dimensionality reduction

Motivation for dimensionality reduction.

• Clustering, flat or hierarchical, can group the data according to
similarity, aiding visualization and discovery.

• But we still can’t plot high-dimensional (or non-numeric) data.
(The 2D graphs I’ve been showing are a bit misleading.)

• Dimensionality reduction (or embedding) techniques:

– Assign data objects coordinates new coordinates, typically in
2D or 3D.

– Approximately preserve similarity/distance relationships
between objects.

– Allow us to “see” distance relationships more directly.

• We briefly look at self-organizing maps (SOMs) and
multi-dimensional scaling (MDS).

Self-organizing maps

• Assume the data objects are real vectors of length n.

• Try to stretch a “grid” of points in n-dimensional space to
approximate the data.

• The grid points are iteratively moved, ”pulled”, by data points,
similar to how the centroids of K-means clustering move
around.

• The data can then be visualized by mapping each object to the
nearest grid point.

Self-organizing maps

• Inputs:

– A set D = {x1, x2, . . . , xm} of n-dimensional real vectors.

– A dimension for the grid (1,2 or 3 if we want to plot it.)

– Number of grid points along each dimension.

• Output: Coordinates G in <n for each grid-point.
(E.g., for the 2D grid case, G(i, j) ∈ <n specifies the coordinates of
grid-point (i, j).)

One of the simplest SOM algorithms (1D Case)

• Initialize the G(i) somehow.

• Repeat

– Choose a data point xl at random.

– Find the nearest grid-point:

i = arg min
i
‖G(i)− xl‖

– Find the “neighborhood” of i

N(i) = {(i′) : ‖i′ − i)‖ < r

– Move all points in the neighborhood towards xl:

G(i′)← (1− α)G(i′) + αxl for all i′ ∈ N(i)

• Typically, α→ 0 and r → 1 over time.

Notes

• If the data approximately lies on a curve or surface, the SOM
may capture that structure, but:

– Different runs can find different solutions.

– If we try to fit data on a 2D surface with a 1D grid, well. . .

• More sophisticated versions of SOMs use different updating
rules.

Multi-dimensional scaling

• SOMs try to stretch a (1D,2D or 3D) grid of points to fit
high-dimensional data.

• MDS directly assigns each data object to a point in a
low-dimensional Euclidean space so that pairwise distances in
that space reflect a given measure of dissimilarity.

Multi-dimensional scaling

• Input:

– For m data objects, a dissimilarity matrix DS, where
DS(i, j) is the distance between objects i and j.

– Desired dimension d of the embedding.

• Output:

– Coordinates Z(i) ∈ <d for each data object i which (as
much as possible) minimizes a stress function.
The stress function quantifies the disagreement between
distances specified by DS and the distances in <d.

• Common stress functions include:

– The least-squares or Kruskal-Shephard criterion:
∑

i6=i′

(DS(i, i′)− ‖Z(i)− Z(i′)‖)2

– The Sammon mapping:

∑

i6=i′

(DS(i, i′)− ‖Z(i)− Z(i′)‖)2

DS(i, i′)

• Usually, one resorts to a gradient-based optimization to find
Z(i) which minimize the stress function.

Summary

• Hierarchical clustering organizes data objects into a tree based
on similarity.

– Agglomerative (bottom-up) tree construction is most popular.

– There are several choices of linkage criterion.

– Monotonicity allows us to draw dendrograms in which the height of
a node corresponds to the dissimilarity of the clusters merged.

– Trees can be cut off at some level, to generate a flat partitioning of
the data.

• Dimensionality reduction techniques are another way of helping
us visualize similarity/distance between data objects.

– Self-organizing maps stretch a grid to fit high-dimensional
data, then project the data onto the grid for low-dimensional
viewing.

– Multi-dimensional scaling directly maps data objects into a
low-dimensional space, trying to preserve dissimilarities.

