
Announcements

• Recall: if you are registered or auditing (on at least a
semiregular basis), email me from you preferred email address.

• Check the class web page for a more detailed schedule,
optional readings, class slides.

• For next time: Read Eisen et al. (1998) “Cluster analysis and
display of genome-wide expression patterns.” Proceedings of
the National Academy of Sciences of the USA, Vol. 95, pp.
14863–14868, and write a 1-2 page critique.

• Today: Hierarchical clustering, SOMs, Multi-dimensional
scaling.



Hierarchical clustering

• Organizes data objects into trees.

• For visualization, exploratory data analysis.

• “Agglomerative” methods build the tree bottom-up, successively
grouping together clustering deemed most similar.

• “Divisive” methods build the tree top-down, recursively
partitioning the data.



What is a hierarchical clustering?

• Given data objects D = {x1, x2, . . . , xn}.

• A hierarchical clustering is a set of subsets (clusters) of D,
C = {C1, C2, . . . , Cm}, where

– D ∈ C

– The Cj can be assigned to the nodes of a tree such that the
cluster at any node is precisely the union of the clusters at
the node’s children (if any).



Example of a hierarchical clustering

• Suppose D = {1, 2, 3, 4, 5, 6, 7}.

• One hierarchical clustering is C =
{{1}, {2, 3}, {4, 5}, {1, 2, 3, 4, 5}, {6, 7}, {1, 2, 3, 4, 5, 6, 7}}.

• Leaves of the tree need not correspond to single data objects.

• The branching factor of the tree is not limited.

⇒ However, most hierarchical clustering algorithms produce binary
trees, and take single data objects as the smallest clusters.



Agglomerative clustering

• Inputs: A set of data objects, and pairwise distances d(x, x′)
between them.

• Outputs: A hierarchical clustering

• Algorithm:

– Begin by putting each object as its own cluster on a working
list W .

– Repeat
∗ Find the two clusters in W that are most “similar”.
∗ Remove them from W .
∗ Add their union to W .
Until W contains a single cluster with all the data objects.

– The hierarchical clustering comprises all clusters appearing
in W at any stage of the algorithm.



How do we measure similarity between clusters?

Let C1 = {x1, x2, . . . , xm} and C2 = {x′
1, x

′
2, . . . , x

′
n}.

Three common measures of the dissimilarity are:

• Distance between nearest objects (“Single-linkage” agglomerative
clustering, or “nearest neighbor”):

min
x∈C1,x′∈C2

d(x, x
′)

• Distance between farthest objects (“Complete-linkage” agglomerative
clustering, or “furthest neighbor”):

max
x∈C1,x′∈C2

d(x, x
′)

• Average distance between objects (“Group-average” agglomerative
clustering):

1

mn

∑

x∈C1,x′∈C2

d(x, x
′)



[Show examples!]



Dendrograms and Monotonicity

• Single-linkage, complete-linkage and group-average
dissimilarity measure all share a monotonicity property:

– Let A, B, C be clusters.

– Let DS be one of the dissimilarity measures.

– If DS(A, B) < DS(A, C) and DS(A, B) < DS(B, C),
then DS(A, B) < DS(A ∪B,C).

• Implication: every time agglomerative clustering merges two
clusters, the dissimilarity of those clusters is ≥ the dissimilarity
of all previous merges.

• Dendrograms (trees depicting hierarchical clusterings) are often
drawn so that the height of a node corresponds to the
dissimilarity of the merged clusters.



Dendrogram for single-linkage clustering of Example 1
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Dendrogram for complete-linkage clustering of Example 1
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Dendrogram for average-linkage clustering of Example 1
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Dendrogram for single-linkage clustering of Example 2
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Dendrogram for complete-linkage clustering of Example 2
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Dendrogram for average-linkage clustering of Example 2
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Some notes

• We can form a flat clustering by cutting of the tree at any height.

• Jumps in the height of the dendrogram can suggest natural
cutoffs.



Divisive clustering

• Works by recursively partitioning the data objects.

• Dividing the objects to optimize one of the agglomerative criteria
is computationally hard.

• Many heuristics for partitioning data objects have been
proposed . . . but many violate monotonicity, making it hard to
draw dendrograms.

• (See Hastie, Tibshirani, Friedman p.480 for an example of a
divisive clustering algorithm that does have the monotonicity
property.)



Segue to dimensionality reduction



Motivation for dimensionality reduction.

• Clustering, flat or hierarchical, can group the data according to
similarity, aiding visualization and discovery.

• But we still can’t plot high-dimensional (or non-numeric) data.
(The 2D graphs I’ve been showing are a bit misleading.)

• Dimensionality reduction (or embedding) techniques:

– Assign data objects coordinates new coordinates, typically in
2D or 3D.

– Approximately preserve similarity/distance relationships
between objects.

– Allow us to “see” distance relationships more directly.

• We briefly look at self-organizing maps (SOMs) and
multi-dimensional scaling (MDS).



Self-organizing maps

• Assume the data objects are real vectors of length n.

• Try to stretch a “grid” of points in n-dimensional space to
approximate the data.

• The grid points are iteratively moved, ”pulled”, by data points,
similar to how the centroids of K-means clustering move
around.

• The data can then be visualized by mapping each object to the
nearest grid point.



Self-organizing maps

• Inputs:

– A set D = {x1, x2, . . . , xm} of n-dimensional real vectors.

– A dimension for the grid (1,2 or 3 if we want to plot it.)

– Number of grid points along each dimension.

• Output: Coordinates G in <n for each grid-point.
(E.g., for the 2D grid case, G(i, j) ∈ <n specifies the coordinates of
grid-point (i, j).)



One of the simplest SOM algorithms (1D Case)

• Initialize the G(i) somehow.

• Repeat

– Choose a data point xl at random.

– Find the nearest grid-point:

i = arg min
i
‖G(i)− xl‖

– Find the “neighborhood” of i

N(i) = {(i′) : ‖i′ − i)‖ < r

– Move all points in the neighborhood towards xl:

G(i′)← (1− α)G(i′) + αxl for all i′ ∈ N(i)

• Typically, α→ 0 and r → 1 over time.



Notes

• If the data approximately lies on a curve or surface, the SOM
may capture that structure, but:

– Different runs can find different solutions.

– If we try to fit data on a 2D surface with a 1D grid, well. . .

• More sophisticated versions of SOMs use different updating
rules.



Multi-dimensional scaling

• SOMs try to stretch a (1D,2D or 3D) grid of points to fit
high-dimensional data.

• MDS directly assigns each data object to a point in a
low-dimensional Euclidean space so that pairwise distances in
that space reflect a given measure of dissimilarity.



Multi-dimensional scaling

• Input:

– For m data objects, a dissimilarity matrix DS, where
DS(i, j) is the distance between objects i and j.

– Desired dimension d of the embedding.

• Output:

– Coordinates Z(i) ∈ <d for each data object i which (as
much as possible) minimizes a stress function.
The stress function quantifies the disagreement between
distances specified by DS and the distances in <d.



• Common stress functions include:

– The least-squares or Kruskal-Shephard criterion:
∑

i6=i′

(DS(i, i′)− ‖Z(i)− Z(i′)‖)2

– The Sammon mapping:

∑

i6=i′

(DS(i, i′)− ‖Z(i)− Z(i′)‖)2

DS(i, i′)

• Usually, one resorts to a gradient-based optimization to find
Z(i) which minimize the stress function.



Summary

• Hierarchical clustering organizes data objects into a tree based
on similarity.

– Agglomerative (bottom-up) tree construction is most popular.

– There are several choices of linkage criterion.

– Monotonicity allows us to draw dendrograms in which the height of
a node corresponds to the dissimilarity of the clusters merged.

– Trees can be cut off at some level, to generate a flat partitioning of
the data.

• Dimensionality reduction techniques are another way of helping
us visualize similarity/distance between data objects.

– Self-organizing maps stretch a grid to fit high-dimensional
data, then project the data onto the grid for low-dimensional
viewing.

– Multi-dimensional scaling directly maps data objects into a
low-dimensional space, trying to preserve dissimilarities.


