Learning Bayesian Networks

(from completely observed data)




The Problem

e \We are considering m r.v.'s, X1,..., Xm.

e \We have a data set of n joint samples,

(x%7a’;%7 73371'71)7
D (x%7x%7 733’7271)7
(21,22, Tm)

e \We want to build a Bayes net that models the joint probability
distribution.



Example, from the Wisconsin breast cancer data

Size = mean tumor cell size, real or discretized into {Little,Big}.

Texture = mean tumor cell texture (roughness), real or

discretized into {Smooth,Rough}.

Recur = whether or not the cancer recurred, true or false.

Time, real or discretized {1yr, 2yr, 3yr,. ..},

time to recurrence
time free of cancer

If Recur
if not Recur

Size

Texture

Recur

Time

18.02
20.29

27.60
14.34

false
true

31
27




Size and Texture

e Consider modeling the relationship between discretized size

and discretized texture.

Counts | Little Big
Smooth 62 51
Rough 39 46
Estimated probs. | Little Big
Smooth 0.31 0.26 | 0.57
Rough 0.20 0.23 | 0.43
0.51 0.49

e \What Bayes net structures are possible?




Three possible Bayes nets structures

o P(Size,Texture) = P(Size)P(Texture)

( Size ) (Texture)

e P(Size,Texture) = P(Size)P(Texture|Size)

( Size )—»(Texture)

e P(Size,Textures) = P(Size|Texture)P(Texture)

( Size HTexture)

e Which is best? Are the variables statistically related?




Are the variables related?

Little Big
Smooth | 62 (57.6) 51 (55.4)
Rough | 39 (43.4) 46 (42.6)

o A XQ-test gives little reason to reject independence.

S = 1.56, p-value > 0.1



Are the variables related?

Little Big
Smooth | 62 (57.6) 51 (55.4)
Rough | 39 (43.4) 46 (42.6)

o A XQ-test gives little reason to reject independence.

S = 1.56, p-value > 0.1

e But suppose we allow for a relationship anyway. . .

( Size HTexture)

e How do we fill in the parameters of the Bayes net? P(Size) and

P(Texture|Size)?




Maximum likelihood solution

In general, suppose we have settled on a Bayes net structure
for m variables, X1,..., Xm.

Let m; C {X1,..., X} denote the parents of X.

Let a:f denote the value of r.v. X; in sample j.

Assuming the data is i.i.d., its probability is

LP(X1=a),...,Xm =x),) = ILILP(X;=2)|Xs, =)
= ILILP(X; = 2| Xx, = xL.)

To maximize the probability of the data, we can maximize each
II; P(X; = x]| X7, = x2.) independently.

It's like solving m independent supervised learning problems.



For the Size and Texture model

- Counts | Little Bi
( o HTeXture) Smooth 62 53
Rough 39 46
P(Big) = z5rz551763 = 0-49
P(Little) = zg—gei21—5 = 0.51
P(Rough|Little) = 39?3362 = 0.39
P(Smooth|Little) = 396f62 = 0.61
P(Rough|Big) = 51%:546 = 0.47
P(Smooth|Big) = 5151146 = 0.53




Real-valued Texture

® Suppose we use discretized size, but leave texture real-valued.
e P(Size) is fit the same.

e What do we do about P(Texture|Size)?

Texture when Size=Little Texture when Size=Big
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Real-valued Texture

® Suppose we use discretized size, but leave texture real-valued.

e P(Size) is fit the same.

e What do we do about P(Texture|Size)? Gaussian fit?
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Real-valued Texture 2

P(Big)=0.49 (as before)
P(Little)=0.51 (as before)
P(Texture|Big)=Normal(u = 22.9,0 = 4.6)

P(Texture|Little)=Normal(; = 21.7,0 = 3.9)



How do we make inferences?

( Size HTexture)

When texture is discretized:

e What is P(Texture=Rough|Size=Big)?

e What is P(Size=Big|Texture=Rough)?
When texture is real-valued:

e What is P(Texture=17|Size=Big)?

e What is P(Size=Big|Texture=17)?



How can we model all four r.v./s?

Size = mean tumor cell size, real or discretized into {Little,Big}.

Texture = mean tumor cell texture (roughness), real or

discretized into {Smooth,Rough}.

Recur = whether or not the cancer recurred, true or false.

Time, real or discretized {1yr, 2yr, 3yr,. ..},

{

time to recurrence
time free of cancer

If Recur
If not Recur



Summary

e Bayes net structures can be chosen based on:
— The meaning of the r.v.s
— Statistical tests
— Convenience
e Once the structure is given, the parameters (conditional p.d.f’s

for each r.v.) can be optimized independently according to
maximum likelihood.



