Bayesian Networks




Today

Why do we need Bayesian networks (Bayes nets)?
“Factoring” the joint probability
Conditional independence

What is a Bayes net?
— Mostly, we discuss discrete r.v.'s

What can you do with a Bayes net?



Exponential growth of joint probability tables

® The size of a table representing the joint probabilities of discrete
r.v.s is exponential in the number of r.v.'s.
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e Large joint probability tables are:

— Awkward or impossible to store and maintain, if there are
many r.v.’s.

— Difficult to reason about or visualize.

— Computing marginal or conditional probabilities requires
Intractably large summations.

— Difficult to learn. (Because there are so many free
parameters!)

e To represent an arbitrary joint probability distribution, an
exponentially-large table is necessary.

e But...



e The world is not arbitrarily complex!
— “Effects” have a limited number of “causes”.
— R.v/s have limited relationships with other r.v.’s.

e Bayes nets are a technigque for representing and reasoning

about “big” joint probability distributions in a compact way. They
rely on two things:

1. Writing the joint probability as a produce of conditional
probabilities.

2. Simplifying based on conditional independence.



Rewriting the joint as a product of conditionals

e By the definition of conditional probability, any joint probability
can be rewritten as

P(X1,X2,...,Xm)
= P(X1|X2,...,Xm)P(Xa,...,Xm)
P(X1|X2,...,Xm)P(X2|Xs, ..., Xm)P(Xs, ..., Xm)
P(X1|X2,..., Xm)P(X2|X3, ..., Xm)  P(Xm—1|Xm)P(Xm)

e \We can “factor” the joint probability into a product of conditional
probabilities in different ways. Another one is:

P(X1,X2,...,Xm)
P(Xm|X1, .., X 1)P(X1, .., Xme1)
P(Xm| X1, o, Xee 1) P(Xmne1| X1, - oy Xn—2) - - P(X2|X1)P(X1)



Example

e [Recur = whether or not the cancer recurs.
e Size = whether tumor cells are big or little.

e ['exture = whether tumor cells are rough or smooth.

P(Recur, Size, Texture)

P(Recur|Size, Texture) P(Size|Texture) P(Texture)
P(Recur|Size, Texture) P(Texture|Size)P(Size)
P(Size|Recur, Texture) P(Recur|Texture)P(Texture)
P(Size|Recur, Texture) P(Texture| Recur)P(Recur)
P(Texture|Recur, Size) P(Recur|Size)P(Size)
P(Texture|Recur, Size) P(Size|Recur)P(Size)

e With m variables, there are m! ways of doing this.



Viewing it graphically

e A factorization can be depicted graphically.
— Nodes correspond to r.v.'s.
— Arcs to ar.v. come from the r.v.'s upon which it is conditioned.

o P(Recur|Size, Texture)P(Size|Texture)P(Texture):



Space savings? None yet. ..

e If we imagine the terms, P, are represented by tables, there is
no advantage to rewriting.

P(Recur, Size, Texture)
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Conditional independence — a generalization of independen ce

e Let X, Y, and Z each represent one or more r.v.s
e X is conditionally independent of Y given Z if
P(X\|Y,Z)=P(X|2)

That is, if we know Z, knowing Y too doesn’t help us predict X
any better.
e Examples: Is there conditional independence or not?
— X =dieroll, Y =rollis even, Z = roll is odd.
— X =dieroll, Y =rollis even, Z = roll is prime.
— X =coinflip, Y = another coin flip, Z = X and Y match.

e Independence of X and Y is conditional independence with
Z =10.



Taking advantage of conditional independencies

e |f there are conditional independencies between r.v.s, and if we
factor the joint correctly, we can represent the joint more
compactly.

e Example, if W, X, Y, and Z are independent binary r.v.s:
PW. XY, Z) = PW|X,Y,Z)P(X|Y,Z)P(Y|Z)P(Z)
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e For m independent binary random variables, the space
requirement goes from 2™ to 2m.



Example: Markov chains

e Let X, denote the state of a dynamical system at time ¢.

e The Markov assumption: X1 is conditionally independent of
Xo,...,X¢—1 given X;.

® P Xl,XQ,.. XT = P X1 X2|X1) (XT|XT_1)

OO0



Example: Hidden markov model

e Let X; denote the unobserved state of a dynamical system at
time ¢.

e Let O; denote an observation made at time .

oP(Xl,Ol,.. XT,OT)
P(X1)P(O1|X1)P(X2| X1)P(Os| Xs) - - - P(X7| X1—1)P(Or| X1)



Example: Prediction problems

e Let X4,...,.X,, represent input features and Y the r.v. to be
predicted.

e \We might assume the X; are independent, but Y depends on
them.



What is a Bayes net?

® |tis a representation for a joint probability in terms of conditional
probabllities.

P(W,X,Y,Z) = P(W)P(Y|W)P(X|W)P(Z|Y, X)

® The corresponding graphical structure is a directed, acyclic

graph.



What is a Bayes net (2)?

e For discrete r.v.'s, conditional probabilities can be represented
as tables (CPTs) or in more compact forms, such as trees.

e Continuous r.v.’s can be included too, with conditional
probabilities represented, e.g., parametrically.



What do we do with Bayes nets?

Mainly, we compute conditional probabilities after observing some
data.

e Diagnosis: What's the probability of cancer, given symptoms
aj? y? Z’)

e Prediction/causal reasoning: What's the probability of
recurrence, given measurements x, y, z?

e What's the probability of a UFO sighting being a true alien
spaceship?



Advantages of Bayes nets

Represent the joint compactly.

Marginal and conditional probabilities can be computed more
efficiently than by naive summing-out over the joint. (at least if
all r.v’s are discrete)

Provides a visual representation for the relationships between
variables.

Generalizes the prediction problem, allowing other forms of
reasoning.



