
Bayesian Networks



Today

• Why do we need Bayesian networks (Bayes nets)?

• “Factoring” the joint probability

• Conditional independence

• What is a Bayes net?

– Mostly, we discuss discrete r.v.’s

• What can you do with a Bayes net?



Exponential growth of joint probability tables

• The size of a table representing the joint probabilities of discrete
r.v.’s is exponential in the number of r.v.’s.

recur not recur

0.24 0.76

recur not recur

big cells 0.16 0.33
little cells 0.08 0.43

recur not recur

rough cells smooth cells rough cells smooth cells

big cells 0.06 0.10 0.17 0.16
little cells 0.02 0.06 0.18 0.25



• Large joint probability tables are:

– Awkward or impossible to store and maintain, if there are
many r.v.’s.

– Difficult to reason about or visualize.

– Computing marginal or conditional probabilities requires
intractably large summations.

– Difficult to learn. (Because there are so many free
parameters!)

• To represent an arbitrary joint probability distribution, an
exponentially-large table is necessary.

• But. . .



• The world is not arbitrarily complex!

– “Effects” have a limited number of “causes”.

– R.v.’s have limited relationships with other r.v.’s.

• Bayes nets are a technique for representing and reasoning
about “big” joint probability distributions in a compact way. They
rely on two things:

1. Writing the joint probability as a produce of conditional
probabilities.

2. Simplifying based on conditional independence.



Rewriting the joint as a product of conditionals

• By the definition of conditional probability, any joint probability
can be rewritten as

P (X1, X2, . . . , Xm)

= P (X1|X2, . . . , Xm)P (X2, . . . , Xm)

= P (X1|X2, . . . , Xm)P (X2|X3, . . . , Xm)P (X3, . . . , Xm)

= P (X1|X2, . . . , Xm)P (X2|X3, . . . , Xm) · · ·P (Xm−1|Xm)P (Xm)

• We can “factor” the joint probability into a product of conditional
probabilities in different ways. Another one is:

P (X1, X2, . . . , Xm)

= P (Xm|X1, . . . , Xm−1)P (X1, . . . , Xm−1)

= P (Xm|X1, . . . , Xm−1)P (Xm−1|X1, . . . , Xm−2) · · ·P (X2|X1)P (X1)



Example

• Recur = whether or not the cancer recurs.

• Size = whether tumor cells are big or little.

• Texture = whether tumor cells are rough or smooth.

P (Recur, Size, Texture)

= P (Recur|Size, Texture)P (Size|Texture)P (Texture)

= P (Recur|Size, Texture)P (Texture|Size)P (Size)

= P (Size|Recur, Texture)P (Recur|Texture)P (Texture)

= P (Size|Recur, Texture)P (Texture|Recur)P (Recur)

= P (Texture|Recur, Size)P (Recur|Size)P (Size)

= P (Texture|Recur, Size)P (Size|Recur)P (Size)

• With m variables, there are m! ways of doing this.



Viewing it graphically

• A factorization can be depicted graphically.

– Nodes correspond to r.v.’s.

– Arcs to a r.v. come from the r.v.’s upon which it is conditioned.

• P (Recur|Size, Texture)P (Size|Texture)P (Texture):



Space savings? None yet. . .

• If we imagine the terms, P , are represented by tables, there is
no advantage to rewriting.

P (Recur, Size, Texture)
︸ ︷︷ ︸

23=8 cells

= P (Recur|Size, Texture)
︸ ︷︷ ︸

23=8 cells

P (Size|Texture)
︸ ︷︷ ︸

22=4 cells

P (Texture)
︸ ︷︷ ︸

2 cells



Conditional independence — a generalization of independen ce

• Let X , Y , and Z each represent one or more r.v.’s

• X is conditionally independent of Y given Z if

P (X|Y,Z) = P (X|Z)

That is, if we know Z, knowing Y too doesn’t help us predict X
any better.

• Examples: Is there conditional independence or not?

– X = die roll, Y = roll is even, Z = roll is odd.

– X = die roll, Y = roll is even, Z = roll is prime.

– X = coin flip, Y = another coin flip, Z = X and Y match.

• Independence of X and Y is conditional independence with
Z = ∅.



Taking advantage of conditional independencies

• If there are conditional independencies between r.v.’s, and if we
factor the joint correctly, we can represent the joint more
compactly.

• Example, if W , X , Y , and Z are independent binary r.v.s:

P (W, X, Y, Z)
︸ ︷︷ ︸

16 cells

= P (W |X, Y,Z)P (X|Y,Z)P (Y |Z)P (Z)

= P (W )
︸ ︷︷ ︸

2 cells

P (X)
︸ ︷︷ ︸

2 cells

P (Y )
︸ ︷︷ ︸

2 cells

P (Z)
︸ ︷︷ ︸

2 cells

• For m independent binary random variables, the space
requirement goes from 2m to 2m.



Example: Markov chains

• Let Xt denote the state of a dynamical system at time t.

• The Markov assumption: Xt+1 is conditionally independent of
X0, . . . , Xt−1 given Xt.

• P (X1, X2, . . . , XT ) = P (X1)P (X2|X1) · · ·P (XT |XT−1)



Example: Hidden markov model

• Let Xt denote the unobserved state of a dynamical system at
time t.

• Let Ot denote an observation made at time t.

• P (X1, O1, . . . , XT , OT ) =
P (X1)P (O1|X1)P (X2|X1)P (O2|X2) · · ·P (XT |XT−1)P (OT |XT )



Example: Prediction problems

• Let X1, . . . , Xm represent input features and Y the r.v. to be
predicted.

• We might assume the Xi are independent, but Y depends on
them.



What is a Bayes net?

• It is a representation for a joint probability in terms of conditional
probabilities.

P (W, X, Y,Z) = P (W )P (Y |W )P (X|W )P (Z|Y,X)

• The corresponding graphical structure is a directed, acyclic
graph.



What is a Bayes net (2)?

• For discrete r.v.’s, conditional probabilities can be represented
as tables (CPTs) or in more compact forms, such as trees.

• Continuous r.v.’s can be included too, with conditional
probabilities represented, e.g., parametrically.



What do we do with Bayes nets?

Mainly, we compute conditional probabilities after observing some
data.

• Diagnosis: What’s the probability of cancer, given symptoms
x, y, z?

• Prediction/causal reasoning: What’s the probability of
recurrence, given measurements x, y, z?

• What’s the probability of a UFO sighting being a true alien
spaceship?



Advantages of Bayes nets

• Represent the joint compactly.

• Marginal and conditional probabilities can be computed more
efficiently than by naive summing-out over the joint. (at least if
all r.v.’s are discrete)

• Provides a visual representation for the relationships between
variables.

• Generalizes the prediction problem, allowing other forms of
reasoning.


