
Homework 3 Sample Solutions
COMP 766-001 – Machine Learning for Bioinformatics

[1] (A) The weights, optimized byfminsearch in Matlab, are

Class w0 w1 w2

0 1.7542 -0.0131 -0.0061
1 -0.2251 -0.2226 0.0056
2 -3637.8 101.5724 -6.7142

wherew0 is the offset term,w1 multipliesx1 (bicoid expression), andw2 multipliesx2 (caudal expression).

(B) The three plots below show the data again and the contours of the fit logstic surface for classesi ∈
{0, 1, 2}. For eachi, the examples of that class are plotted as a “+” and the other examples as an “o”.
The dark line is the decision boundary, and the redder lines indicate regions with higher probability of
membership in classi. (Note that the decision boundary for classi = 0 does not appear within the region
plotted, so cannot be seen.)
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(C) The plot below shows, by the color of the dots, which class is the most likely (i.e. which logistic
evaluates highest) in different regions of the input space.
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(D) The class 0 logistic is very broad, and not that informative.The logistic for class 1 captures the fact
that the class 1 points are towards the upper left. Interestingly, the decision boundary occurs further to the
left (smallx1) than all the actual class 1 examples. This, apparently, is because there are also a number of
class 0 examples at the extreme left, preventing a clear decision. This is a case where we might want to add
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as a feature—alllowing the classification to be nonmonotonic in x1, in particular, so that an intermediate
range ofx1 could be selected as most likely for class 1. The logistic forclass 2 is able to exactly separate
the “+” and “-” points, resulting in a sharp decision boundary. This is what is called alinearly separable
classification problem, and is not to be expected as the general case. In part C, we see that the difficulty in
capturing class 1 makes it nowhere the most likely class. Class 2 is the most likely class on the right side of
the corresponding logistic’s decision boundary.

[2] (A) The means and covariance matrcies of the maximum likelihoodGaussian fits two the three classes
are given below, alongside plots of the Gaussians.

µ0 =

[

13.83
81.75

]

Σ0 =

[

106.51 -244.20
-244.20 1039.94

]

µ1 =

[

4.70
105.20

]

Σ1 =

[

1.59 -17.60
-17.60 557.72

]

µ2 =

[

41.89
21.42

]

Σ2 =

[

6.73 -0.18
-0.18 166.19

]
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(B), (C) The most likely class, as a function of the two input variables is shown below. The left plot assumes
equal priors for the classes. The right plot assumes priors taken from the empirical frequencies.
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(D) The three-class Gaussian fit is more satisfying than the logistic fits, mainly because all three classes have
regions where they are most probable. By adding the quadratic terms to the logistic regression, one could
probably get the same effect. However, the three-class Gaussian fits are also very computationally efficient.
To me, it also just seems a more natural way of analyzing data with more than two possible output classes.

[3] The follow analysis assumes uniform priors,P (y = i) = 1

3
for i ∈ {0, 1, 2}, and thatx is a lengthd

vector.
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P (y = i|x) > P (y = j|x)

⇐⇒ P (x|y = i)P (y = i)/P (x) > P (x|y = j)P (y = j)/P (x)

⇐⇒ P (x|y = i) > P (x|y = j)

⇐⇒
1

(2π)d/2|Σi|
exp(−

1

2
(x − µi)

T σ−2I(x − µi)) >
1

(2π)d/2|Σj |
exp(−

1

2
(x − µj)

T σ−2I(x − µj))

⇐⇒ exp(−
1

2σ2
‖x − µi‖

2) > exp(−
1

2σ2
‖x − µj‖

2)

⇐⇒ −
1

2σ2
‖x − µi‖

2 > −
1

2σ2
‖x − µj‖

2

⇐⇒ ‖x − µi‖
2 > ‖x − µj‖

2

So, a pointx is more likely to be a member of classi than of classj if x is nearer, in term of Euclidean
distance, to the classi mean,µi, than it is to the classj mean,µj. More generally, the most likely class for
a pointx depends simply on whichever class mean is nearest. The inputspace is thus divided into regions
according to the Voronoi diagram based on the class means.

I don’t need the extra credit, so here’s just a hint of the solutions to those problems:

Extra credit 1: Visually, the data does not support equal covariance matrices—and particularly not of the
form σ2I. So, no, I don’t think such an assumption is justified.

Extra credit 2: Briefly, something like the Voronoi diagram will describe the regions—they will be sepa-
rated by straight lines. But the exact location of those lines will depend on the covariance matrix.
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