
COMP 652 - Lecture 19 1 / 37

COMP 652: Machine Learning

Lecture 19

Today

COMP 652 - Lecture 19 2 / 37

! Estimating value functions for large state spaces
(Via Monte Carlo and supervised learning)

! Approximate policy iteration
! Relating state values – Bellman equations, Bellman optimality equations
! Model-based reinforcement learning
! Model-free reinforcement learning

Recall: Markov Decision Process (MDP)

COMP 652 - Lecture 19 3 / 37

An MDP is defined by:

! Set of states S
! Set of actions A(s) available in each state s
! Rewards:

ra
ss′ = E

{
rt+1|st = s, at = a, st+1 = s′

}

! Transition probabilities

pa
ss′ = P

(
st+1 = s′|st = s, at = a

)

Recall: Policy and action-value functions

COMP 652 - Lecture 19 4 / 37

! A deterministic policy maps every state to an action: π : S !→ A.

! The value function of a policy is the expected return the agent receives if
following π, conditioned on the state in which the environment starts:

V π(s) = E{rt+1 + γrt+2 + γ2rt+3 + . . . |st = s, at′ = π(st′) for all t′ ≥ t}
= Eπ{rt+1 + γrt+2 + γ2rt+3 + . . . |st = s}

! The action-value function of a policy the expected return of choosing an
action and following the policy afterwards, conditioned on the state in
which the environment starts:

Qπ(s, a) = Eπ{rt+1 + γrt+2 + γ2rt+3 + . . . |st = s, at = a}

! (These are for γ ∈ (0, 1], though finiteness for γ = 1 requires extra
conditions.)

Policy iteration

COMP 652 - Lecture 19 5 / 37

! Last time, we describe Monte Carlo methods for estimating V π and Qπ

! We showed the policy iteration algorithm, which alternates:

– Estimating Qπ

– Updating π to be “greedy” with respect to Qπ

! Policy iteration terminates at a globally optimal policy, π∗

– For all s and all π′, V π∗(s) ≥ V π′(s)
– For all s, all a, and all π′, Qπ∗(s, a) ≥ Qπ′(s, a)

! The Monte Carlo approach uses data quite inefficiently. . . a problem to
which we return shortly.

! What if S is too large, even infinite, so that we cannot represent V π

explicitly?

Dealing with large/continuous state spaces

COMP 652 - Lecture 19 6 / 37

! Consider the problem of V π estimation when |S| is too large /
continuous, so that explicit, tabular representation is not possible.

! What can we do?

Estimating V π by supervised learning

COMP 652 - Lecture 19 7 / 37

! Consider a sample trajectory s0, a0, r1, s1, a1, r2, . . . taken under policy π

! Suppose we represent states by some feature mapping φ(s)

! We can formulate the supervised learning (regression) problem:

input output
φ(s0) r1 + γr2 + γ2r3 + . . .
φ(s1) r2 + γr3 + γ2r4 + . . .
φ(s2) r3 + γr4 + γ2r5 + . . .
φ(s3) r4 + γr5 + γ2r6 + . . .

...
...

! We can fit this data with any regressor: linear/polynomial regression,
neural network, nearest-neighbor, regression tree, . . .

! If we have multiple trajectories, each one contributes data similarly.

Estimating Qπ by supervised learning

COMP 652 - Lecture 19 8 / 37

! Estimating Qπ is slightly trickier. How can we do it?

Estimating Qπ by supervised learning

COMP 652 - Lecture 19 9 / 37

! Can define a feature mapping φ(s, a)

! One way (Monte Carlo exploring starts):

– Generate multiple trajectories, τ1, τ2, . . . , τm

– Trajectory τi =< si
0, a

i
0, r

i
1, s

i
1, a

i
1, r

i
2, . . . > generated by choosing

random initial state si
0, random initial action ai

0, and following π
afterwards

– Supervised learning data is:
input output

φ(s1
0, a

1
0) r1

1 + γr1
2 + γ2r1

3 + . . .
φ(s2

0, a
2
0) r2

1 + γr2
2 + γ2r2

3 + . . .
φ(s3

0, a
3
0) r3

1 + γr3
2 + γ2r3

3 + . . .
...

...

! Alternatively, one can define a state-feature mapping, φ(s), and learn a
separate approximator for each action’s value (as a function of state).

Approximate policy iteration

COMP 652 - Lecture 19 10 / 37

! This enables approximate policy iteration, one version of which is:

– Start with an arbitrary initial policy π0

– Repeat the following steps:

1. Approximate Qπi for the current policy, πi, by generated Monte
Carlo Exploring Starts (MCES) data, and applying some
supervised learning method.

2. Define πi+1(s) implicitly as arg maxa Qπi(s, a)

! Does it converge?
! Does it converge to an optimal policy?

Approximate policy iteration

COMP 652 - Lecture 19 11 / 37

! This enables approximate policy iteration, one version of which is:

– Start with an arbitrary initial policy π0

– Repeat the following steps:

1. Approximate Qπi for the current policy, πi, by generated Monte
Carlo Exploring Starts (MCES) data, and applying some
supervised learning method.

2. Define πi+1(s) implicitly as arg maxa Qπi(s, a)

! Does it converge?
⇒ In general, no. For certain kinds of MDPs and/or function approximators,

though, it does.
! Does it converge to an optimal policy?
⇒ In general, no. Though one can bound degree of suboptimality in terms of

error in Qπ approximation.

Relationships between state values

COMP 652 - Lecture 19 12 / 37

! V π(s) an expected sum of future rewards
! But intuitively, a state’s value must by related to the states to which it

leads

s

s'

s'

s'
a

r?
r

r

Relationships between state values (II)

COMP 652 - Lecture 19 13 / 37

V π(s) = Eπ{rt+1 + γrt+2 + γ2rt+3 + . . . |st = s}
=

∑

s′

P (st+1 = s′|st = s)Eπ{rt+1 + γrt+2 + γ2rt+3 + . . . |st = s, st+1 =

=
∑

s′

pπ(s)
ss′ [rπ(s)

ss′ + γEπ{rt+2 + γrt+3 + . . . |st = s, st+1 = s′}]

=
∑

s′

pπ(s)
ss′ [rπ(s)

ss′ + γV π(s′)]

! These are called the Bellman equations for policy value

! Treating the V π(s) as a set of |S| variables, the above gives a linear
system of |S| equations with |S| unknowns.

⇒ We can use linear system solvers to find V π(s), if we know pa
ss′ and ra

ss′ .
(There’s other ways to do it too, though.)

! Are solutions unique?

Uniqueness of solutions for V π

COMP 652 - Lecture 19 14 / 37

! Let rπ be a the expected immediate reward upon following policy π in
state s:

rπ(s) =
∑

s′

pπ(s)
ss′ rπ(s)

ss′

We will treat rπ as a length |S| column vector

! Let P π(s, s′) = pπ(s)
ss′ be the probability that state s′ follows state s, when

agent acts according to π.

We will treat this as an |S|× |S| matrix.

! Then considering V π as a length |S| column vector, the equation of the
previous slide says that:

V π = rπ + γP πV π

Uniqueness of solutions for V π (I)

COMP 652 - Lecture 19 15 / 37

! Rearranging, we find that:

(I − γP π)V π = rπ

! P π is a Markov matrix. If it describes a non-terminating chain, its largest
eigenvalue is 1. If it describe a terminating chain, its largest eigenvalue is
< 1.

! If P π is non-terminating and γ < 1, or if P π is terminating, then the
largest eigenvalue of (I − γP π) is < 0.

! Thus, it is invertible, and V π is uniquely determined as:

V π = (I − γP π)−1V π

An alternative approach to computing V π

COMP 652 - Lecture 19 16 / 37

! Matrix inversion is computationally expensive
! Iterative approaches are more commonly used for computing value

functions, e.g.:

– Initialize V π(s) arbitrarily
– Repeat, until changes are sufficiently small:

V π(s) ←
∑

s′

pπ(s)
ss′ (rπ(s)

ss′ + γV π(s′)) for all s

! This can be shown to converge exponentially quickly to the correct values.
(Aside: What does “exponentially quickly” mean?)

Example

COMP 652 - Lecture 19 17 / 37

! Imagine the simple deterministic “maze” below
! Goal is to get into the dotted square in the lower right room
! Reward of +1 upon arrival to goal
! Discount factor γ = 0.9
! π is correct, optimal policy
! Initialize V π(s) = 0 for all s, except goal, which is set to +1
! Figure shows values by dots of radius proportional to value

Iteration #1 Iteration #2 Iteration #3

Action-value functions

COMP 652 - Lecture 19 18 / 37

! Similar reasoning holds for action-value functions.
! First, note that V π(s) = Qπ(s, π(s)). Then:

Qπ(s, a) = Eπ{rt+1 + γrt+2 + γ2rt+3 + . . . |st = s, at = a}
=

∑

s′

pa
ss′ [r

a
ss′ + γEπ{rt+2 + γrt+3 + . . . |st = s, at = a, st+1 = s′

=
∑

s′

pa
ss′ [r

a
ss′ + γV π(s′)]

=
∑

s′

pa
ss′ [r

a
ss′ + γQπ(s′, π(s′))]

! We have
∑

s |A(s)| linear equations in the same number of unknowns.
! A similar matrix argument shows the solution, Qπ, is unique.
! An iterative-style algorithm can be used to compute it:

Qπ(s, a) ←
∑

s′

pa
ss′(r

a
ss′ + γQπ(s′, π(s′))

Finding optimal policies

COMP 652 - Lecture 19 19 / 37

! The previous techniques can be used to implement exact policy iteration
! However, there is another approach based on Bellman optimality

equations (see below)
! Recall that there is at least one optimal policy π∗.

(It satisfies V π∗(s) ≥ V π(s) and Qπ∗(s, a) ≥ Qπ(s, a) for all π, s, a.)
! For an optimal policy π∗, we must have:

V π∗
(s) = max

a
Qπ∗

(s, a)

= max
a

[
∑

s′

pa
ss′(r

a
ss′ + γV π∗

(s′))

]

Qπ∗
(s, a) =

∑

s′

pa
ss′(r

a
ss′ + γV π∗

(s′))

=
∑

s′

pa
ss′(r

a
ss′ + γ max

a′
Qπ∗

(s′, a′)

! These are nonlinear systems of equations

Solving the Bellman optimality equations

COMP 652 - Lecture 19 20 / 37

! Solutions can be found by linear programming
! More common, however, is value iteration:

V (s) ← max
a

[
∑

s′

pa
ss′(r

a
ss′ + γV π∗

(s′))

]

! Or action-value iteration:

Q(s, a) ←
∑

s′

pa
ss′(r

a
ss′ + γ max

a′
Qπ∗

(s′, a′)

! These approaches converge exponentially quickly to the optimal value
function V ∗ or action-value function Q∗ (under the same conditions
needed for well-definedness)

Back to reinforcement learning

COMP 652 - Lecture 19 21 / 37

! The previous discussion assumes that we know pa
ss′ and ra

ss′

! What if we don’t?

Back to reinforcement learning

COMP 652 - Lecture 19 22 / 37

! The previous discussion assumes that we know pa
ss′ and ra

ss′

! What if we don’t?

– Model-based value function learning
– Model-free value function learning
– Value function-free learning

Model-based reinforcement learning

COMP 652 - Lecture 19 23 / 37

! Model-based learning algorithms use experience from the environment to
build an approximate model r̂a

ss′ , p̂a
ss′

! Then we pretend the approximate model is correct and use it to compute
the optimal value function/policy as above

! How do we estimate the rewards and transition probabilities?

– If |S| is small enough for tabular representation, r̂a
ss′ can be estimated

as the empirical mean reward from every s − a − r − s′ quadruple in
the data. p̂a

ss′ can be taken to be the empirical probability that s′

follows s − a in the data.
– Otherwise, solutions are ad hoc. For low-dimensional continuous state

spaces, state aggregation or interpolators are often used.

Example

COMP 652 - Lecture 19 24 / 37

+10 S -5

! Followed Rand policy (equal chance of left or right action)
! 10 trajectories
! Estimated rewards and transition probabilities

Results

COMP 652 - Lecture 19 25 / 37

! Reward function exactly correct
! Transition probabilities somewhat correct:

state s 2 3 4 5 6 7 8 9 10

pleft
s,s−1 0.6 0.85714 0.64706 0.95238 0.72 0.78571 0.875 0.8

pleft
s,s+1 0.4 0.14286 0.35294 0.047619 0.28 0.21429 0.125 0.2

pright
s,s−1 0.25 0.2 0.27273 0.26087 0.23529 0.21429 0.083333 0.13333

pright
s,s+1 0.75 0.8 0.72727 0.73913 0.76471 0.78571 0.91667 0.86667

! Q∗ estimate a bit off, but π∗ estimate correct:

state s 2 3 4 5 6 7 8 9 10
Q∗(s, left) 10 9.9999 9.9998 9.9994 9.9926 9.975 9.9104 9.4586
Q∗(s, right) 10 9.9998 9.9996 9.9944 9.9807 9.928 9.5016 7.9525
π∗(s) ← ← ← ← ← ← ← ←

Pros and cons of model-based RL

COMP 652 - Lecture 19 26 / 37

+ Tend to be very data-efficient

+ The models may be of independent interest

+ If reward function changes, or dynamics of only small part of the
environment changes, lots of information can be reused

− If state set S or action set A are very large or infinite, it will be very hard
to estimate the model from data—especially for the transition
probabilities; this can lead to poor performance.

− Even if model is accurate, solving for π∗ can be nontrivial.
(It’s polynomial in |S| and |A|, but if large, can be problematic.)

Model-based RL with state-features

COMP 652 - Lecture 19 27 / 37

! Suppose that we represented every state s with a feature vector φs, of
size k ≤ |S|

! We can represent all the feature vectors, for all the state, in a
feature matrix Φ, of size k × |S|, where the sth column is φs

! Important special case: if each column has exactly one element equal to 1
and all the others are 0, the matrix represents a state partition, where the
state space has been partitioned in k disjoint subsets.

! In general, the features (also called basis functions) can be anything
(Gaussian, sine-cosine, etc)

Bellman equations with features

COMP 652 - Lecture 19 28 / 37

! Consider the Bellman equations:

Vπ = rπ + γPπVπ

where Vπ is a column vector repesenting V π(s), rπ is the expected
rewards following each state, and Pπ is the matrix containing pπ

ss′(s).

! We multiply at the left by Φ:

ΦVπ = Φrπ + γΦPπVπ

! We make ΦVπ appear on the right hand side as well:

PπVπ = PπIVπ = PπΦTΦVπ

! Now we can re-write the Bellman equations:

ΦVπ = Φrπ + γΦPπΦTΦVπ ⇒ (I− γΦPπΦT)ΦVπ = Φrπ

Approximate models

COMP 652 - Lecture 19 29 / 37

! We re-write the above equation as:

ΦVπ = (I− γΦPπΦT)−1Φrπ

(I’m glossing over assumption needed to ensure the inverse exists.)

! Let r̂π = Φrπ; this is a vector of size k, representing the reward for every
feature

! E.g., in the special case of state partitioning, the reward associated with a
partition will be the sum of the rewards for the states in that partition
(why?)

! Let P̂π = ΦPπΦT ; this is a k × k matrix showing transitions between
features

! Since this is typically much smaller than the original matrix, it can be
estimated more accurately with less data

Approximate value function

COMP 652 - Lecture 19 30 / 37

ΦVπ = (I − γΦPπΦT)−1Φrπ

! Let V̂π = ΦVπ; this is the approximation of the value function using the
features

! E.g., in the case of a state partition, each partition will have a value
associated with it, and all states in the partition share the same value

! Obviously, not all value functions can be represented correctly anymore.
! The Bellman equations for approximate values become:

V̂π = (I − γP̂π)r̂π

Trade-off

COMP 652 - Lecture 19 31 / 37

! The above systems has k equations with k unknowns

! Model-based approximate methods will estimate r̂π and P̂π from data

! The smaller k is, the less data we need to do this estimation, and the
easier it is to solve the system

! But the smaller k is, the less accurate will the value function be

! Instead of estimating V π, Qπ can be estimated, leading to an alternative
approximate policy iteration algorithm

Modeling value, not dynamics

COMP 652 - Lecture 19 32 / 37

! In model-free value function-based RL, we directly estimate value
function, but not ra

ss′ or pa
ss′

! The Monte Carlo methods describe last lecture and at the start of this
lecture are one way to do so

! However, the iterative (dynamic programming) approaches to value
function computation provide inspiration for another class of approaches

Modeling value, not dynamics (II)

COMP 652 - Lecture 19 33 / 37

! Consider a trajectory, with actions selected according to policy π:

! The Bellman equation is:

V π(st) = Eπ [rt+1 + γV π(st+1)|st]

which suggested the dynamic programming update:

V (st) ← Eπ [rt+1 + γV (st+1)|st]

! In general, we do not know this expected value, but we do have an
possibly-biased sample estimate of it, rt+1 + γV (st+1)

! We can make an update towards the sample value, with step size α:

V (st) ← (1 − α)V (st) + α (rt+1 + γV (st+1))

Temporal-Difference (TD) Learning

COMP 652 - Lecture 19 34 / 37

! We can rewrite the previous as:

V (st) ← V (st) + α(rt+1 + γV (st+1) − V (st))

! The term after the α is called the “temporal difference” – it is the
difference between what our estimate V (st) suggested we would see, and
rt+1 + γV (st+1)

! Does it converge to V π?

Temporal-Difference (TD) Learning

COMP 652 - Lecture 19 35 / 37

! We can rewrite the previous as:

V (st) ← V (st) + α(rt+1 + γV (st+1) − V (st))

! The term after the α is called the “temporal difference” – it is the
difference between what our estimate V (st) suggested we would see, and
rt+1 + γV (st+1)

! Does it converge to V π? Yes! If:

– We have infinitely much data collected under policy π
– If all states s appear infinitely often in the data
– If learning rate(s) α decrease towards zero at an appropriate rate

(Robbins-Monroe conditions)

Q-Learning

COMP 652 - Lecture 19 36 / 37

! That’s fine for learning V π. A similar procedure can be designed to learn
Qπ.

! What about learning optimal policies?
! Suppose we generate experience (s0, a0, r1, s1, a1, r2, . . .) from the

environment, and update an action-value function as:

Q(st, at) ← (1 − α)Q(st, at) + α(rt+1 + γ max
a′

Q(st+1, a
′))

! This is motivated by the Bellman optimality equation:

Q∗(s, a) =
∑

s′

pa
ss′(r

a
ss′ + γ

′max
a

Q∗(s′, a′))

! This is called Q-Learning

Q-Learning convergence

COMP 652 - Lecture 19 37 / 37

! Does Q-Learning converge? Yes!
! The experience can be generated under any policy π at all – or not even

according to a policy, strictly speaking
! We need infinitely much data
! Every possible state-action pair must occur infinitely many times
! Learning rates need to be scheduled appropriately

