Jan 16th 2008 COMP 364 Notes

1 Announcement:

a) Homework is due this Friday;

b) Today’s topic:

 -More on strings

 -More on numbers

 -Input from keyboard

 -Madlibs

2 Strings:

a) Difference between double-quotation marks and single-quotation marks

If you enter: print ‘asdf$var’;

The computer simply prints the string between the single-quotation marks

If you enter: print “asdf$var”;

The computer will interpret what you put between the double-quotation marks

b) Rule of interpretation:

 -Variables (eg: $var) are replaced by values;

 -A special case: “escape”

Entries
Interpretation
Example
Others

\n
Open a new line

\t
Tab

\u
Next character is printed in upper case
\uabc  Abc

\U
Rest of the string will be in upper case
\Uabc  ABC

\l
Next character will be in lower case

\L
Rest of the string will be in lower case

\L ends \U

\U overpowers \l and

\L overpowers \u

\E
Turns off \U and \L

Let’s see an example:

 “abc\ude\UfgHIJK\LMN\uO\EP\lQ”

  abcDeFGHIJKmnoPq

we can see that \u is overpowered by \L

Another Example:

 $Str = "i am little\n";

print "\U$Str";

[ezhou][lab7-10][~/Desktop/Jan16] perl Input1.pl

I AM LITTLE

c) Execution of a terminal command

 Enter: print `ls –l` (note: ` can be found in your upper left corner)

 It shows: total 16

-rw------- 1 ezhou 18651 27 Jan 16 20:51 Input1.pl

-rw------- 1 ezhou 18651 41 Jan 16 12:38 Muffin.pl

-rw------- 1 ezhou 18651 29 Jan 16 13:01 Pwd.pl

-rwx------ 1 ezhou 18651 68 Jan 16 13:28 Upper.pl

/home/2008/ezhou/Desktop/Jan16

3 Taking input from the keyboard:

 $Str = < >; (This command takes one line of input from the keyboard)

 Let’s see an example:

$Str = <>;

print $Str;

After running this command, a blank shows up and you can write whatever you want there.

4 Using the Madlibs

 Here is an example:

 Inside nano, you enter;

$ADJ1="interesting";

$ADJ2="cool";

$NOUN1="bioinformatics";

$NOUN2="computational biology";

print "Programming is $ADJ1,\n";

print "Life science $ADJ2,\n";

print "$NOUN1 is sweet,\n and so is $NOUN2\n";

It will show as:

Programming is interesting,

Life science cool,

bioinformatics is sweet,

 and so is computational biology

Another Example:

$ADJ1=<>;

$ADJ2=<>;

$NOUN1=<>;

$NOUN2=<>;

print "Programming is $ADJ1,\n";

print "Life science $ADJ2,\n";

print "$NOUN1 is sweet,\n and so is $NOUN2\n";

Run the commands, then enter 2 adjectives and 2 nouns, the computer shows:

[ezhou][lab7-10][~/Desktop/Jan16] perl Rose.pl

fantastic

amazing

Ribose

Deoxyribose

Programming is fantastic

,

Life science amazing

,

Ribose

 is a sugar,

 and so is Deoxyribose

[ezhou][lab7-10][~/Desktop/Jan16]

You find the format is not the one you expect, right?

To solve this problem, “chomp” can be used. “chomp” applies to a string; it replaces the “\n” from the end, if there is one.

Let’s see an example:

In nano, you enter;

$ADJ1=<>;

chomp $ADJ1;

$ADJ2=<>;

chomp $ADJ2;

$NOUN1=<>;

chomp $NOUN1;

$NOUN2=<>;

chomp$NOUN2;

print "Programming is $ADJ1,\n";

print "Life science $ADJ2,\n";

print "$NOUN1 is a sugar,\n and so is $NOUN2\n";

Run these commands, you will find:

[ezhou][lab7-10][~/Desktop/Jan16] perl Rose.pl

cool

hot

Pentose

Hexose

Programming is cool ,

Life science hot,

Pentose is a sugar,

 and so is Hexose

[ezhou][lab7-10][~/Desktop/Jan16]

So now the format is good and you are happy.

5 Scalar Variables: a string or a number

 Numbers

 $Num1=10;

 $Num2=14; (“=” assigns a value to the variable)

a) Add to a number

 $Num1 +=6; (NOTE: there is NO space between + and =)

 $Num1 +=$Num2

 $Num1 +=$Num1

b) Subtraction: simply replace the + with -)

c) Other calculations:

 * (multiplication)

 ** (exponential)

 / (division)

 + (addition)

· (subtraction)

% (modulus, the remainder after division)

 for example: 10%3=1

 11%3=2

 12%3=0…ect…

cos() (cosine)

sin() (sin)

