COMP 364 - Lecture 16 Notes
February 8th 2008
Hashes – [> refers to a command]
· A hash is represented as %H

· To add a key-value set to a hash: > $H {“tom”} = 42

· > $H{“ted”} returns the value corresponding to “ted”, if the value exists in the hash table; else returns as false (this is a way to test of an element exists in the hash)

· To delete an entry: > delete $H {“ted”}
· > keys%H gives an array of all the keys, ex: (ted, tom, ann)

· > values%H gives an array with all the values, ex: (92, 42, 6)

· The data output will not necessarily be in the same order as it was entered into the hash.

Q – How to find the no. of rows in a hash?

 Ex: @A = (1, 2, 5, 6)

 $Num = @A ($Num = 4 (this is the length of the array)

For hashes: %H = (Ted, 92, tom, 46)

If we use: > $Num = %H …

1) $Num is ‘true’ if %H is not empty

2) $Num is ‘false’ is %H is empty
The correct approach is as follows:

1) %H is a hash
@A = keys%H;

$Num = @A;

Print $Num

2) %H is a hash

$Num = keys%H;

Print $Num

Looping through the elements of a hash –
1) %H is ……; Output
@K = keys%H; ted – 92

Foreach $keys (@K) { tom - 42

 $value = %H {$key}; ann - 87

 Print “$key - $vaue \n”;

}

2) %H is ……;

@K = keys%H;

@V = values%H;

$Len = @K;

$Count = 0

While (%Count < $Len) {

 Print $K [$Count], “-“, $V [$Count], “\n”;

 $Count ++;

}

The “proper” way –
> while (($key,$value) = each%H) {

 Print “$key - $value \n”;

 }

· This loops through all the key – value pairs, then “while” ends
· Remember: do not change %H when using this command

· “each” assigns the first row of %H to an array with two elements, then assigns the 1st element to $key and the 2nd to $value

· It then prints “$key - $value \n”;

· For the next row of %H, it repeats the procedure till it reaches the end of the hash, where the condition becomes ‘false’ and the ‘while’ loop ends.

· The ‘each’ command “remembers” the last array it assigned, so it can move to the next.

· If we change %H, the new key – value will be added randomly into the hash and ‘each’ will “forget” where it was.

Q – Given @A, count the no. of occurrences for unique string

A – See posted solution on COMP 364 course page:

Terminal Log: comp364_lec16_terminal.txt
Perl Programs: PrintHash.pl PrintHash2.pl PrintHash3.pl CountWords.pl
