COMP 364- Lecture 12 (Jan 30)
Announcements

· Homework 1 solutions posted, marking still in progress
· Lecture Notes posted
Today

· Arrays and Hashes (2 types of variables that Perl supports)
· Reading: Chapter 4 in Moorhouse & Barry, Chapter 3 in Jamison

Variables in Perl

· Scalar: string or number

· Arrays: List of scalars. Associates scalars with numbers.
· Scalars can be numbers, strings, and variables.

· This is the way it is written

· Ex: (“asdf”, “ted”, 3.14, $Num, “end”)

· It’s a way to put the items in numerical order. The first one being 0.

· From example above:

· Element 0: “asdf”

· Element 1: “ted”

· Element 2: 3.14

· Element 3: $Num (It will hold the value of $Num)

· Element 4: “end”

· Hashes: List of scalars. Associates scalars with strings

	
	

	“abc”
	

	“def”
	

	“xyz”
	

· So when you use a Hash, you can ask what is the scalar associated with 1
· Answer: “abc”

Arrays
· Can be used to store more interesting types of data.

· For example: all the students in the class and for each one, their mark

· Can be sorted. Elements can be operated on.

· Can be searched for elements that satisfy certain criteria
· Array & Hashes are used in many biological research methods
Note:

Arrays -> In Perl, also called “Lists”

Hashes -> In Perl, also called “Associative Arrays” or “Arrays”

Working with Arrays

@Arr = (“abc”, “xyz”, 3.14);

Note: @ NOT $

print “@Arr”

-> abc xyz 3.14

Prints with spaces between each element

print @Arr;

-> abcxyz3.14

Prints without spaces between each element

@Arr2 = @Arr; (array assignment)

@Arr3 = (“ted”, @Arr2, “perkins”);

-> @Arr3 becomes (“ted”, “abc”, “xyz”, 3.14 , “perkins”);

-> Does not put the array @Arr2 as 1 element. Instead, each element of @Arr2 is added to @Arr3. The new array has 5 elements

-> So, we should not be getting (“ted”, (“abc”, “xyz”, 3.14) , “perkins”), where there are only 3 elements.

e.g.

@Arr = (1,2,3);

Add 4 to end?

Try:

@Arr2 = (@Arr, 4); OR
@Arr = (@Arr, 4);

e.g. Create a list of even numbers between 0 and 100?

	Command
	@Arr

	@Arr = ();
	()

	@count = 0;
	

	@Arr = (@Arr, $count);
	(0)

	$count += 2;
	

	@Arr = (@Arr, $count);
	(0, 2)

	$count += 2;
	

	@Arr = (@Arr, $count);
	(0, 2, 4)

	$count += 2;
	

	@Arr = (@Arr, $count);
	(0, 2, 4, 6)

Alternative method using while loop:

@Arr = ();

$count = 0;

while ($count <= 100){

@Arr = (@Arr, $count);

$count+=2;

}
Similarly,

@Arr = ();

$count = 0;

while ($count <= 50){

@Arr = (@Arr, 2*$count);

$count++;

}

Adding, Removing from ends of Arrays

Pop, push, shift, and unshift (Can be used in adding elements at end of array but more useful for removing at front or end)
push – adds an element

push @Arr, $count;
(same as @Arr = (@Arr, $count))

@Arr = (1,2,3);

push @Arr, (4,5,6);

-> @Arr is (1,2,3,4,5,6)
pop – removes last element from array (and assign it to another variable if needed)

@Arr = (1,2,3,4);

pop @Arr;

(@Arr is (1,2,3))

$Num = pop @Arr;
(@Arr is (1,2) and $Num is 3)
unshift – adds on element(s) to start of array

shift – removes

@Arr = (2,4,6);

unshift @Arr, “ted”;

(@Arr is (“ted”, 2, 4, 6))

$str = shift @Arr;

(@Arr is (2, 4, 6) and $str is “ted”)

e.g. Even program

	Command
	
	
	

	$count = 100;
	
	
	

	@Arr = ();
	
	
	

	while ($count >=0){
	100>0
	98>0
	96>0

	 unshift @Arr, $count;
	@Arr = (98,100)
	@Arr = (98,100)
	@Arr = (96,98,100)

	 $count -=2;
	$count = 96
	$count = 96
	$count = 94

	}
	
	
	

End result: (0,2,4, …, 96,98,100)

Other useful array functions

Length of an array

@Arr = (1,2,3);

$Num = @Arr;

Puts the length of the array @Arr in $Num. (3 in this case)

Scalar @Arr

Produces length of array

Following can be used to see if array is empty:

if (@Arr){

print “Array not empty”;

}

Reverse
@Arr = (1,2,3,4);

@Arr2 = reverse @Arr;

-> @Arr2 is (4,3,2,1)

e.g. Given array of numbers, find the largest number in that array.

@Arr = (1,3,4,6,-3,10,12,3,6)

	Command
	1st loop
	2nd loop
	3rd loop
	4th loop
	5th loop

	$Big = unshift @Arr;
	$Big=1
	
	
	
	

	while (@Arr){
	
	
	
	
	

	 $Next = shift @Arr;
	$Next=3
	$Next=4
	$Next=6
	$Next=-3
	$Next=10

	 if ($Next > $Big){
	True
	True
	True
	False
	True

	 $Big = $Next;
	$Big=3
	$Big=4
	$Big=6
	
	$Big=10

	 }
	
	
	
	
	

	}
	
	
	
	
	

And so on...

End result: $Big = 12

