
Peer-to-Peer Content Distribution

Using Smartphones

ECSE 476 - GR6_SP1
Patrick Desmarais (260329253)

Iain Macdonald (260270134)

Guillaume Viger (260309396)

Supervisor: Professor Michael Rabbat

Due December 6, 2011

1

Abstract

The popularity of mobile devices has caused applications and

infrastructure to advance quickly. Many mobile devices require a persistent

network connection; content distribution on mobile phones is contingent on

Internet access, making peer-to-peer mobile networking a compelling access

mechanism. The first phase of our project is a feasibility investigation and the

architecture of an application for sharing content between mobile devices. The

application must manage temporally changing network topologies, use network

protocols, and be user-friendly. Further phases will focus on optimizations of

battery life and file transfer rate. In this report we present an architecture, and

discuss the underlying technologies.

2

Table of Contents

5 Introduction

7 Background

9 Use Cases and Architecture

9 Use Cases

9 Use Case 1

11 Use Case 2

12 High Level Architecture

13 Low Level Architecture

13 Activities

19 Services

21 Content Providers / Local Storage

24 Broadcast Receivers / Emitters

26 Overview

28 Network Protocol

28 NetworkAdapter Interface

30 BluetoothAdapter Class

34 Extensions

37 Development Stages

40 Validation

42 Environmental/Social Impact

44 Conclusion

45 References

49 Appendix

49 Prototype Code

49 Speed Calculation

3

Table of Figures
Figure 1 Page 12 A high-level architecture of the application, based on the

model-view-adapter design pattern.

Figure 2 Page 14 The activities used by the application, which include the “My

Files” activity, and the “Network Files” activity.

Figure 3 Page 15 A prototype version of the “My Files” activity.

Figure 4 Page 16 Prototype versions of the “Network Files” activity, which

includes browsing a list of network files, selecting a file, and
filtering the list of files.

Figure 5 Page 19 A low-level diagram of the services required by the

application.

Figure 6 Page 22 A diagram of the content providers in the application,

including the content providers, and contextual usage
information.

Figure 7 Page 24 A sample storage schema for the file information content

provider.

Figure 8 Page 25 A diagram of the broadcast emitters in the application.

Figure 9 Page 27 A diagram of the complete low-level architecture of the

application.

Figure 10 Page 31 A diagram of the Bluetooth network topology (piconets).

Figure 11 Page 38 A diagram of the development of user stories.

Figure 12 Page 39 A diagram of the user stories and associated tasks.

Figure 13 Page 41 An high-level outline of the intended validation scenarios for

the application.

Figure 14 Page 51 A calculation of the transfer times of several files over
Bluetooth.

4

Introduction

The world is becoming a more highly connected place. New technology like

the Internet and cell phones supply people with a constant stream of

information. As individuals migrate their social lives to Facebook, their movie

rentals to Netflix, and their office work to Google Docs, many of these same users

are upgrading their cellular telephones to smartphones. The smartphone market

has exploded in size, as smartphone sales continue to accelerate through the end

of 2011 [1]. Accompanying this explosion in hardware sales is an equivalent

boom in software sales, with a transition in pricing models from one-time large

purchases to many smaller purchases through an application store. The network

infrastructure which supports these devices is also expanding rapidly, from 2G to

3G to 4G. However, there are still some places where wireless access is not

available, and where these devices experience limited capabilities.

Improvements in mobile routing suggest that some features of the Internet may

be possible without infrastructure by using opportunistic social routing

techniques [2]. Our project involves an investigation into file transfer in the

absence of wireless infrastructure using peer-to-peer networks between mobile

devices.

There are two common cases when a smartphone user might be left

without a mobile broadband connection: when they are in a dead zone, and

when the provider is experiencing a service outage. While coverage is improving

5

in many areas, especially cities, there are still places, such as underground malls

and subway stations, where mobile network connectivity is limited [3].

Additionally, service outages can affect millions of users [4].

Many mobile applications rely on network connectivity, and in the absence

of a connection they become unusable. More specifically, the content distribution

mechanisms these applications rely on are unavailable offline. Recent research

in the area of infrastructure-less mobile routing suggests that peer-to-peer mobile

networks can be used to distribute content between mobile phones [2]. These

methods can achieve reasonable bandwidth, but suffer from high latency. Our

project seeks to provide a means to connect users through ad-hoc networks

for the purpose of exchanging content between mobile devices without relying

on a network infrastructure. The proposed application will provide a content

distribution mechanism in the absence of network connectivity.

6

Background

In this first stage of our project, we researched existing technologies

related to this problem, looked at similar topics, and studied software APIs and

hardware specifications for the technologies we considered using in our

application.

Some of the existing applications we looked at include BumpTM,

PhotoSyncTM, and QwikCardsTM. BumpTM is an application for sharing content

between mobile devices over a wireless network [5]. PhotoSyncTM is an

application for wireless synchronization of an image library between multiple

mobile devices, such as the iPhone, iPad, and iPod Touch [6]. QwikCardsTM is an

application which attempts to mimic index cards, with the ability to synchronize

a user’s cards over Bluetooth on Apple devices [7]. We investigated what these

applications do, and tried to deduce their architecture, implementation details,

and network protocols based on documentation available on the project

websites. After a thorough review of available applications, we were not able to

find any applications which perform the task we are attempting to implement.

Investigating the topic, we found a few helpful papers looking at routing

traffic through temporally changing mobile networks. We consulted three of

these papers in depth. Hui et.al. outline an approach for routing traffic through

temporally changing networks, called BUBBLE [2]. Ioannidis et. al. demonstrate a

scalable, bandwidth optimal content dissemination mechanism over peer-to-peer

7

connections in mobile networks [8]. Ioannidis et. al. also studied the practice of

limiting bandwidth on mobile social networks, while maintaining performance

[9]. We also looked at several other academic papers which are cited throughout

this text.

In looking at candidate hardware and software platforms, we consulted the

Apple iOS Dev Center, and the Android development website [10], [11]. We chose

to develop on the Android platform because of its cross-platform availability and

our access to Android phones. We then spent more time looking at Android

resources, including the Android API and the ‘Dev Guide’ [12], [13]. The details of

Android development are incorporated into the Architecture section of our

report. Outside of the Android API, we looked at information about wireless data

transfer technologies such as Wi-Fi Direct, and Bluetooth [14], [15]. We also

consulted a few books for more information on Bluetooth [16] [17] [18] [19].

8

Use Cases and Architecture

The implementation strategy we adopted was motivated by an

investigation of the use cases of our application. Our goal in developing these use

cases was to make them as trivial as possible, with the primary goal being to

permit transfer of files from one user to another. We concluded that some

privacy mechanism was necessary to preclude a user’s ability to download any

file on any other user’s phone. We also realized that each device in the created

network would need to advertise its list of available files to other devices which

led us to formulate an application layer protocol for our software.

Use Cases

These use cases focus on the actual usage of the application, and assume

that the users have already launched the application and that the device’s

network transceivers are enabled. In this communication model, only public files

may be exchanged between peers to protect each user’s privacy.

Use Case 1 (two peers)

This first use case ignores the fact that there may be multiple peers on the

network, and focuses only on messages sent between two peers: User 1 and User

2. Square brackets are used to indicate network protocol events i.e. events that

9

are dealt with by the application and not the device owner. The ellipses are used

to indicate that the user may continue to use the application before shutting it

down.

User 1
(Downloader)

User 2
(Uploader)

Confirms Bluetooth activation at startup

[Discovers nearby devices]

[Requests a connection]

[Requests list of public files]

Browses list

Requests file F

Receives file F

...

[Closes connection]

[Accepts connection]

[Returns list of public files]

[Sends file F]

…

[Closes connection]

Use Case 2 (per user)

10

The second use case focuses on a single user’s interaction with the system,

and the user’s ability to change the privacy setting of a specific file.

User

Browses list of local files

Changes the availability of a file to public or private

These two brief use cases summarize the basic idea behind our application

clearly and concisely. The application maintains a list of files on the mobile

device. For each of these files, the user may indicate if the file should be shared

publicly, or not. A list of all available files is distributed to each member of the ad-

hoc network. Other users download files available on the created network by

having their phone download it from the appropriate device.

Analysis of these two use cases, and a review of the capabilities and

features of the Android operating system shaped the high-level architecture of

our application.

High-Level Architecture

The high-level architecture follows the model-view-adapter (MVA) pattern

also known as mediating-controller MVC, which is similar to the model-view-

11

controller (MVC) pattern with the added restriction that there is no interaction

between the view module and the model module. The view handles the display

of information to the user. The model handles interactions with files stored on

the device and on remote devices on the network. The mediating controller

manages interactions between the model and the view. Development on the

Android platform lends itself to this design pattern, due to the APIs and tools

made available to programmers.

Figure 1: High-level architecture based on the model-view-adapter pattern.

The network adapter layer in the architecture is used to abstract away

the underlying network technology used. This abstraction will allow the

application to easily switch between BlueTooth, WiFi Direct, or any other data

12

communication protocol.

With the high-level architecture laid out, a further exploration of each

module in the system is possible. In our description of the low-level architecture,

we follow patterns established by the Android platform, and highlight the

mechanisms available for developing applications on Android.

Low-Level Architecture

The description of our low-level architecture follows the four Android

application fundamentals - activities, services, content providers, and broadcast

receivers/emitters. Information about the specific implementation for our

application accompanies the description of each of these fundamental

components.

Activities

An activity is a screen with accompanying user interfaces [20]. An

application typically consists of multiple activities. Each activity offers a user

interface for certain functionality and this user interface is usually defined in a

separate XML file. The activities represent part of the controller in the MVA

architecture as well as the view module.

Our application contains two main activities, which are enclosed in

dashed lines in Figure 2. Within each of these activities, there are user interfaces,

represented by yellow circles.

13

Figure 2: The activities in our application. There are two activities: “My Files” and “Network

Files,” each with user interfaces, represented by yellow circles.

We outline the functionality of each of the activities, My Files, and Network

Files, below.

1. My Files

a. Browse by file name, file type and file size.

i. View additional information about a file, including previous

owner, original owner, and last modified date.

b. Change privacy status of a file

c. Search for files by file name

14

Figure 3: A prototype of the My Files activity.

2. Network Files

a. Browse the list of files, sorting by name, type, or owner.

i. View additional information about the file, including the

original owner, the size, and if the file has already been

downloaded.

ii. Unique identification of the files using a Java-supported

checksum (such as MD5, SHA-1, SHA-256, or others). [21]

b. Search for files by file name

c. Download files available in the local network

i. Downloads proceed one file at a time.

15

Figure 4: Prototype examples of the Network Files activity, including, from left to right, browsing,

selecting a file, and filtering the list.

In later phases of the project, we would like to expand the functionality of

each of these activities. Future expansions could include an extension of the

privacy system to include more statuses than simply public and private. For

example, a user could set certain files to be shareable only with one user, or with

a group of users, such as the user’s family. Using a BlueTooth ID to address book

translation mechanism, such restrictions would be possible. In this enhanced

privacy system, a user could configure the application to ask for permission each

time a new, or unknown user requests a download from the uploading user. The

system could remember these users for a specific period of time, so that the user

is not prompted each time one of their friends requests a file.

16

In addition to these privacy settings, we have several other features we

would like to build into the system, time permitting.

These more advanced features include:

1. Changing the sharing settings.

a. Changing the secure connection level used in BlueTooth

communication [15].

b. Asking the user if operations should proceed when the battery level

drops below a certain percentage.

c. Swapping the network layer protocol in use.

 BlueTooth

 WiFi Direct

2. Searching through network file lists by expanding upon the existing search

functionality.

a. Searching by file category, and owner.

b. Implementing a more advanced search function. The current search

function is a simple rooted regular expression with no special

characters. An improvement could implement something more

powerful, searching for keys within the name of a file.

3. Improving the process of updating file privacy status.

a. Enabling bulk privacy status updates by flagging files, or searching

for files and setting all to a certain privacy status.

4. Managing current downloads

a. Pausing and resuming downloads

17

b. Cancelling downloads

c. Retrieving the Internet location of the file, so download can be

deferred until the user is connected to broadband.

d. If a download is interrupted, searching for new sources of the file on

the peer network.

18

5. Maintaining and browsing upload/download statistics.

a. Implementing a user ranking system similar to the one used in

BitTorrent.

b. Keeping track of common peers when choosing which to connect to

in the network, such that you can see what’s new in peers that you

don’t share with often as hinted by [8].

6. Pushing content from user to user, rather than only pulling content, if

possible.

Services

In the Android platform, a service is a background component without a

user interface [22]. Services are like daemons, with the exception that they need

not be started on system boot. A service performs tasks that do not require user

input, such as connecting to a network. The user can do other things while a

service runs in the background.

Figure 5 shows a diagram of the services available in our application. Each

service is represented by a yellow round-cornered square. Yellow rectangles

indicate categories.

19

Figure 5: A low-level diagram of the services available in our application.

These services and the functions they perform are described in more detail

below.

1. Manage peer connections

a. Discovers new peers and initiates connections with them so they

may join the local network.

b. Maintains a list of peers active in the network.

c. Closes connections with peers who leave, or peers who timeout.

2. Upload file

a. Sends a file from the current device to a remote device.

3. Upload file list

a. Sends a list of files available on the local device to a remote device.

4. Download file

a. Receives a file from a remote device and stores it on the current

20

device.

21

5. Download file list

a. Receives a list of files available on the local network, for browsing on

the local device.

6. Update local file list

a. Updates the list of files displayed on the My File interface to reflect

the files stored on the device’s file system.

b. This service may be triggered using a refresh button, or when the

user switches to the My File activity.

Additional services which may be added in a later phase of the project

might include a battery life and consumption monitor, and a service for pushing

data to other devices.

Content Providers / Local storage

A content provider is a local data storage mechanism. Content providers in

Android are implemented as local SQLite databases, private application-specific

files or files on the filesystem [23]. Content providers are used by applications to

persist important information within an application’s execution, and between

application executions

Figure 6 contains a description of the content providers in our application.

Each content provider is represented by a yellow round-cornered square. Yellow

rectangles indicate contextual usage of content providers. We differentiate

22

between My files and the File System because we will create a list of the files on

the file system, and store additional information about each file in this database.

23

Figure 6: Content providers in our application. Yellow, round-cornered squares represent

content providers, and yellow rectangles represent the context containing these content

providers.

The specific functions and responsibilities of these content providers are

laid out below.

1. My Files

a. Files may be public, or private, or have additional privacy settings

in later phases of the project. The privacy status of each file may be

changed in the My Files activity.

b. Additional file information:

i. File name

ii. Last modified date

iii. File size

iv. File type (image, video, sound, text)

v. Original owner

24

vi. Internet URL if applicable

25

2. List of available files

a. File information:

i. File name

ii. Last modified date

iii. File size

iv. File type (image, video, sound, text)

v. Original owner

vi. Remote owner

vii. Internet URL if applicable

3. List of active peers

a. A persistent list of peers the local device has encountered.

i. Also maintains statistics about communication with the

remote device, such as pairings with the user’s contact list, and

information about files exchanged with this user.

4. The file system

a. After downloading a file, it is added to the local file system.

b. When the local file system changes, the My Files list is updated,

either manually or automatically.

We may add additional content providers based on additional activities

implemented. Additionally, we may expand the data stored in each content

provider, as necessary.

A sample data storage schema for the local and remote file content

26

providers is outlined below, in Figure 7.

Field Type Restrictions

id Integer primary key, not null, automatically incremented

filename String not null, indexed, maximum of 256 bytes

directory String not null

last modified Date

public Boolean

size Integer [number of bytes in the file]

type String

checksum String

original
owner

Peer

remote owner Peer

url String

Figure 7: A storage schema for the files content providers.

Broadcast Receivers / Emitters

A broadcast receiver is a component that listens for and responds to

system-wide broadcasts. A broadcast emitter generates these announcements

[24]. These broadcasts can be used to control the execution of the application,

prompt a user for input, or general inter or intra-application message passing.

Figure 8 is a diagram of the broadcast receivers and emitters in our system.

27

The yellow triangles represent events generated by an emitter and dealt with by

a receiver.

Figure 8: A diagram of the broadcast emitters in our application.

The behaviour and functionality of these emitters is outlined below.

1. Downloaded a file

a. Upon completion of a file download, an emitter broadcasts a

message indicating there are changes to locally stored files. Receipt

of this emission results in updating the list of locally stored files on

the My Files screen.

2. Uploaded a file to a user

a. Upon completion of a file upload, an emitter broadcasts a message to

indicate that information about that upload may be logged.

Overview

28

Combining the components outlined above, a full low-level architecture

diagram can be obtained. The complete low-level architecture is given in Figure

9. This diagram models each of the activities, services, content providers, and

broadcast receivers and emitters, and the interactions between these

components.

29

Figure 9: The full low-level architecture of our application, with modules linked together.

30

Network Protocol

The network protocol is the major behind-the-scenes component of the

application. We want to provide efficient interactions between spatially close

peers. Although the application will be written for the Bluetooth technology,

the application is designed to have a modular network protocol that hides

the wireless technology from its supported features. The set of core network

features that will be implemented during the first phase of our implementation

is presented in this section, as well as extensions that will be subject to

consideration in later phases of the project.

NetworkAdapter Interface

The following set of public methods has been defined to make it easy to

change the underlying wireless technology used by the application.

discoverPeers(): This is the first network operation executed when the

application launches. The smartphone must be able to look for nearby

smartphones. The connectTo() method is triggered when a new peer is reachable.

This method is called repetitively during the application execution to keep the list

of connected users fresh.

listenForConnection(): This is the second network operation to start its

continuous execution until the application terminates. The application must

31

accept a minimum of connections with other users. If a connection request

is received, this method will relay it to the receiveConnection() method and

continue to listen.

connectTo(Peer p): This method allows the device to initiate connections with

discovered peer devices. Once a connection is successfully established, this

method relays the first exchange between peers to the getFileList() method. If the

connection fails, the device may try a second time but must be cautious to avoid

using too much energy.

receiveConnectionFrom(Peer p): This method allows the device to accept

connections with other devices. The device must keep this connection alive

as long as the slave wants, or until either peer leaves the network. Once a

connection is successfully established, this method relays the first exchange

between peers to the getFileList() method.

getFileList(Peer p): The first information exchanged by peers is the list of

available files that each can upload. This is before they will be able to download

any files. Initially, a list of all files on the phone will be sent between devices.

The information that can be communicated by the getFileList and sendFileList

methods include the filenames, last modified dates, file size in bytes, the file type,

the original owner and the checksum.

32

sendFileList(Peer p): This method is responsible for sending a list of files to the

peer which is passed as an argument. This will create the file list for the current

phone, and transmit it to the provided peer.

download(File f, Peer p): This method initiates the download of one file from

one peer. Only one file can be downloaded at any time, and this download may

be interrupted by the user.

upload(File f, Peer p): This method is the dual of the download method. If

upload is called for one of the phones, it will initiate an upload of the file over the

Bluetooth link which is connecting the two phones.

BluetoothAdapter Class

Android and its Bluetooth package use constructs similar to TCP sockets to

establish connections between pairs of devices. There is an important distinction

between having two devices paired and two devices connected together. Two

paired devices only indicate that they are aware of each other’s existence, but

in order to exchange data information, they must establish a connection. This

will have an important impact on connecting and receiving connections. The

implications involve additional dialogs displayed to the user for pairing with new

devices and stricter management of connections. Bluetooth’s limited number of

connections and transfer rate will also need to be taken into account.

33

The following figure gives an overview of the Bluetooth network topology.

This figure illustrates the roles of peers as slaves (S), masters (M) or inactive but

reachable (P) devices.

Figure 10: Bluetooth network topology, where M are masters, and S, slaves

Following the previous interface, the BluetoothAdapter class describes

how each method will be implemented based on features and limitations of the

Bluetooth technology. Note that the following implementation details are based

on the API found on Google’s website [15].

discoverPeers(): Android’s Bluetooth module provides the ability to scan

for other Bluetooth devices, including smartphones, using the method called

startDiscovery(). Bluetooth is automatically enabled upon calling this function.

This method is particularly power consuming, so we must minimize the

frequency at which it is called. Discovery attempts will execute every 2 minutes

as long as other phones are part of the network. For cases where no devices are

34

found, the scan frequency will be set to one minute until other phones are found.

When at least one device is found, then the scan frequency will be reset to 2

minutes. These policies will be tested and adjusted. Note that an inquiry scan on

Android takes around 12 seconds so it will seem to take more than 1 or 2 minutes

to discover peers.

listenForConnection(): Each device creates and runs a BluetoothServerSocket

to listen for incoming requests. Once a request comes in, the server socket will

break its loop, relay the request to the receiveConnection() method, and then

resume its continuous listening.

connectTo(Peer master), download(File f, Peer p): Discovered devices, or

masters, are connected to with the connecting device set as a slave. Having one

download at a time may be restricted by allowing only connections if the device

does not already share a connection with the peer as a slave. When connecting

as a slave, the device must select a service id to connect to; hence, the master

can refuse a connection if all its service ids are currently occupied, which in this

case, provokes a connection failure. The feature to connect peers as slave and

master lets users exchange information in a duplex fashion, since the Bluetooth

API only provides blocking reads and possibly blocking writes. Since there can

only be eight Bluetooth connections per device, we chose the maximum number

of connections as slaves to be four. This is justified because we want to allow

efficient exchange in both ways between peers, so that peers do not have to wait

35

until the user has finished using the link to start their own download with the

same device. This limit leaves enough room for four other devices in the state of

master. In order to tell the master which file the user wants, an initial message

is sent containing the name or id in the file list. Immediately after sending this

information, the device can read its input stream with the actual file coming in.

If the master disconnects or an error occurs in the middle of the download, it

is the slave responsibility to re-initiate connection to the master and renew the

connection using the connectTo() method.

receiveConnection(Peer slave), upload(File f, Peer slave): A list of service ids

must be handled in agreement with the connectTo() method to allow connection

between devices. At most 4 connections and uploads can occur in the role

of master. This makes it symmetric to connectTo; hence, it will be easier to

distribute the service ids for these two types of connections (master or slave).

Since there is no restriction as one download at a time for uploading, but this is

the case for the slaves, the device can upload as many as one file per slave.

getFileList(Peer master) and sendFileList(Peer slave): The device sends its

file list in the master state and receives one file list in the slave state; hence,

the download or upload can immediately occur if the connection is still alive

between peers. The device blocks by opening its input stream for any request

from the user. The device will receive the name or id of the file to upload, and

then switch to its output stream to send the corresponding file. If an error occurs

36

or the slave leaves, the upload is stopped and the connection is dropped, leaving

the responsibility to the slave to re-initiate the upload.

Extensions

The following extensions aim at improving the efficiency and user-

friendliness of communication between peers.

Discovering new peers and listening for connections indefinitely can

consume battery inefficiently in certain cases. Discovery of new peers can be

halted when the application is run in the background, since the user does not

look at available files during this time. When the application returns from its

background state, the discovery can resume its continuous execution. Bluetooth

does not allow an infinite number of connections to other devices; hence, there is

no need to listen for connections if all server sockets are occupied for receiving

connections. Further optimization also affects the behaviour of those methods,

such as in the possibility to close connections with peers after the file lists are

shared to promote connectivity with a higher number of users.

The loss of connectivity in the middle of a file transfer triggers a new

connection to occur between peers. This operation is not optimized if users must

exchange their file list before resuming the exchange. The download() method

can keep track of peers with which the connection failed in the middle of the

download operation and the getFileList() method can save the exchange of file list

for later.

In later phases, the getFileList and sendFileList methods should be re-

37

worked to only share a list of at most 50 files at a time. This will prevent very

large transmissions between phones which store a lot of files. The getFileList()

method should be called repetitively during the connection with peers or receive

notifications if the list of file changes. The user could even manually trigger

refresh of this file list using a user interface element on the Network File screen.

Whenever the peer requires more than the original 50 files, it will need to issue

a request for more files. This list of files can be compressed using the Gzip

compression algorithm before being transmitted to reduce the amount of data

being sent. The getFileList() method would listen to the Bluetooth socket for peer

p for the file list from that peer, in this particular implementation.

During download and upload, files can be opportunistically gzipped

if such compression will significantly decrease the size of the file. For files

which consists only of text, Gzip may be employed to compress the file before

transmission. In the case of files which have already been compressed, such as

epub, jpeg, png, mp3, and mp4 among others, additional compression will be

fruitless, so the file will be sent as is. If the file is gzipped for transmission, the

downloading peer will have to extract the file upon receipt. Additionally, upon

receipt of the file, the downloader will re-compute the checksum used to uniquely

identify the file, and verify that no errors have occurred during transmission.

This can become tedious for large files, where a single bit error in transmission

requires retransmission of the whole file. To address this issue, in a later phase,

we will implement a scheme to divide large files into chunks, and compute the

checksum for each chunk. Then, these chunks will be transferred sequentially

38

from host to host, and reunited at the destination. This means that a single bit

error only requires retransmission of the chunk, rather than the whole file.

For the case, where we would like to have more than one download at the

same time, modifications may need to be applied in order to have a fair number

of connections as master and slaves (specifically for Bluetooth) and also take

into account the case where more than one file are transmitted simultaneously

from the same user. These additional features may involve changes to the user

interface.

One of the major trade-offs outlined in [9] of peer-to-peer mobile networks

is energy consumption over speed or frequency. While there could be many

peers in a local network, in order to maintain communication with a limited

number of them, for energy consumption reasons, we may want to use what was

outlined in the previous reference to choose peers that may be most interesting

for the user’s community. By choosing weak ties, or in other words users that

are not met very often, we can allow peers to view each other’s content that

may differ from strong ties. This would involve keeping track of a list of known

devices and the frequencies at which the device communicates with those. More

precisely, we will emphasize connections with peers that are not met regularly to

keep data as diverse as possible among communities of users.

In addition to limiting the number of connected peers, we can limit power

consumption by reducing the application’s rate of activity when the battery

is low. In those cases, the number of uploads would be reduced, as well as the

number of connections, so that the user must explicitly permit any uploads

39

that occur from the device. This would protect the user from having his or her

phone’s battery be drained by the application.

Development Stages

SCRUM is the software development model chosen for next semester. It will

provide flexibility for the concurrent work to do in other classes and focus on the

core features to implement next semester.

The development plan over the next semester has been divided into

2 major phases. The first 10 weeks encompass the development of the core

features, and the last 5 weeks are reserved for extensions and optimizations of

the software. The first 10 weeks will be divided into small sprints for better time

management and frequent iterations.

40

Figure 11: developing stages

The next figure is a screenshot of user stories and their associated tasks.

41

Figure 12: User stories and associated tasks

42

Validation

Validation is an important part of any software development project. In

our project, we must worry about testing the functionality of the application on a

single phone, as well as testing the network protocol that we implement.

We will test the behaviour of the application on a single phone using

the Android emulator provided by Google. This will allow us to test execution

paths through the software in a non-connected environment. In this phase,

the only major feature to test is the user interface. We can implement a stub

to emulate the network layer and allow testing of the user interface against a

set of requirements, to ensure that the interface is displaying all of the correct

information it receives from the network layer.

The bulk of testing our application lies in verifying that the network

functions work as expected. We will need to verify that phones can be paired

with one another, that they can exchange file lists with one another, and that

they can each upload and download files. A more specific plan for validation is

outlined in figure 10, below.

43

Function Required Validation

User Interface Ensuring that control flow paths through the application

are logical and do not cause errors.

Connections Ensure that devices are connected, and can share data.

Sending File List Make sure that devices can send file lists to and from one

another, and that these file lists are properly displayed by

the Network Files activity.

Sending Files Make sure that files transferred between devices are

transferred successfully, and that the application is alerted

of this.

Ensure if a file is received with a checksum which differs

from the expected checksum, that the file is rejected.

Figure 13: Validation requirements.

We will make extensive use of the Android logging system for validating

the software, and to make debugging the application simpler.

44

Environmental/Social Impact

The merits and drawbacks of an application for sharing content between

mobile phones in the absence of network connectivity are not easily discernible.

This application is similar in many ways to the BitTorrent protocol, but extended

to a mobile environment. BitTorrent provides an efficient, reliable distribution

mechanism for files of all sizes to a network of peers [16]. BitTorrent is the most

popular peer-to-peer protocol, a family of protocols which are responsible for the

highest proportion of Internet traffic [25].

While BitTorrent is commonly used to illegally share copyrighted material

between users, it is also frequently used for legitimate means. Many Linux

distributions employ BitTorrent to distribute their disk images [26]. Facebook

and Twitter use BitTorrent to distribute code updates across vast arrays of

servers [27] [28].

There is clearly a high demand for peer-to-peer sharing applications, and if

commercialized, our application could address this demand. While it is possible

that this application could be used to share copyrighted material, mechanisms

may be built in to discourage this sort of sharing. Additionally, this application

serves only as a peer-to-peer file distribution protocol, and certainly does not

lend itself to a particular file type, or usage pattern other than those outlined

above.

While it is possible that an application such as this could be misused, the

45

application also presents a number of social benefits. This application could

easily be used by a higher-level application, in effect adding another layer to the

networking stack of the phone, to enable more complex functionality. Uses of this

might include sharing body scan imagery, such as MRIs, X-Rays, and CT scans

between doctor’s phones when they must consult each other; creating networks

of phones in less developed countries, where no Internet connections exist; and

controlling software updates on the device.

The application could also be used for more mundane purposes.

Applications in sharing image files between family and friends come to mind.

Another possible use for the application might involve sharing music files

as “previews.” Supposing one user downloaded a new song from the Google

Music Store, they might get five “shares,” and could share the song with five of

their friends, who may each listen to it exactly once. A point-to-point messaging

application for users near one another could be another use of the protocol.

These are only a few possible higher-level uses of this application, but it is

apparent that such an application could be used to serve society well.

There are clearly many uses for this application. This is expected, as

implementing a general protocol like file-transfer through ad-hoc local area

connections is quite a broad topic. While the social and economic impacts of this

application are not entirely clear yet, we have looked at a few potential uses for

the application.

Conclusion

46

In this report we have outlined the purpose of our design project, the

research that we have made on it and its projected implementation for the next

semester.

Our design project is an application for peer-to-peer file transfer on

Android mobile phones. It will provide an interface to browse files on the device

and on the network. As outlined, the components making up this application are

tied to the Android development model -Activities, Services, Content Providers

and Broadcast Receivers/Emitters- and the network technology used to transfer

files. We decided to go with the Bluetooth technology because of the API available

to us, but we will organize the software to allow for other potential technologies

like Wifi-direct.

 Because of the importance of our network protocol, we have also

explained how our application protocol will work by providing a tentative API for

it. We duly noted the challenges of our application and their potential solutions in

the face of our choice of technologies.

We then described broadly the work to be done next semester. The SCRUM

development model (adjusted for our needs) was chosen for its flexibility and its

methodology based on frequent results.

Finally the potential social impacts of our endeavour were discussed. A

peer-to-peer application has mitigated and unpredictable consequences.

References

[1] D. Murph. (2011, November). Gartner's Q3 2011 smartphone figures:

47

Samsung on top globally, Android tops 50 percent share [Online].

Available:

Engadget Blog & Gartner website (originally but link is broken):

http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-

figures-samsung-on-top-globally-a/

[2] P. Hui, J. Crowfort and E. Yoneki (2011, November). BUBBLE Rap:

Social-based forwarding in delay-tolerant networks. IEEE Transactions

on Mobile Computing, v10 n11 (2011 11 01): 1576-1589 [Online]. Available:

www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf

[3] R. Jones. “A technological revolution: mobile internet will be a major

growth area in the decade ahead. Despite fragmented access at present,

all Middle East countries are expected to have full mobile coverage by

2015”. MEED Middle East Economic Digest, vol. 54 (53) pp. 31, Dec. 31,

2010.

[4] J. Wortham. (2011, October 12). BlackBerry’s Service Hiccups Spread; Five

Continents Affected. The New York Times [Online]. Available: The New

York Times website: http://www.nytimes.com/2011/10/13/technology/

hiccups-in-blackberry-service-continue.html

[5] bump Technologies, Inc. (n.d.). The Bump App for iPhone and Android

[Online]. Available: http://bu.mp/

[6] touchbyte GmbH. (n.d.). Photosync [Online]. Available:

http://www.photosync-app.com/

[7] SoftFrame, Inc. (n.d.). QwikCards for iPhone [Online]. Available:

http://www.qwikcards.com/

48

http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.engadget.com/2011/11/15/gartners-q3-2011-smartphone-figures-samsung-on-top-globally-a/
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.cl.cam.ac.uk/~ph315/publications/hoc86309-hui.pdf
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://www.nytimes.com/2011/10/13/technology/hiccups-in-blackberry-service-continue.html
http://bu.mp/
http://bu.mp/
http://bu.mp/
http://bu.mp/
http://bu.mp/
http://bu.mp/
http://www.photosync-app.com/
http://www.photosync-app.com/
http://www.photosync-app.com/
http://www.photosync-app.com/
http://www.photosync-app.com/
http://www.photosync-app.com/
http://www.photosync-app.com/
http://www.photosync-app.com/
http://www.photosync-app.com/
http://www.photosync-app.com/
http://www.qwikcards.com/
http://www.qwikcards.com/
http://www.qwikcards.com/
http://www.qwikcards.com/
http://www.qwikcards.com/
http://www.qwikcards.com/
http://www.qwikcards.com/
http://www.qwikcards.com/

[8] S. Ioannidis, A. Chaintreau and L. Massoulié. (2009). Optimal and

Scalable Distribution of Content Updates over a Mobile Social Network.

Proceedings - IEEE INFOCOM [Online]. Available:

www.thlab.net/~lmassoul/ICM.Infocom09.pdf

[9] S. Ioannidis and A. Chaintreau. (2009, March). On the strength of weak

ties in mobile social networks. Proceedings of the Second ACM Workshop

on Social Network Systems (SNS) [Online]. Available:

http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf

[10] Apple, Inc. (n.d.). iOS Dev Center - Apple Developers [Online]. Available:

https://developer.apple.com/devcenter/ios/index.action

[11] Google, Inc. (n.d.). Android Developers [Online]. Available:

https://developer.android.com/index.html

[12] Google, Inc. (n.d.). Package Index [Online]. Available:

https://developer.android.com/reference/packages.html

[13] Google, Inc. (n.d.). The Developer’s Guide [Online]. Available:

https://developer.android.com/guide/index.html

[14] Wi-Fi Alliance. (n.d.). Wi-Fi Alliance: Wi-Fi DirectTM

[Online]. Available: http://www.wi-fi.org/Wi-Fi_Direct.php

[15] Google, Inc. (n.d.). Bluetooth [Online]. Available:

https://developer.android.com/guide/topics/wireless/bluetooth.html

[16] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach,

5th ed. Boston, MA: Addison-Wesley, 2010.

49

http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.thlab.net/~lmassoul/ICM.Infocom09.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
http://www.cs.columbia.edu/~augustin/pub/ioannidis09strength.pdf
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.wi-fi.org/Wi-Fi_Direct.php
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html
https://developer.android.com/guide/topics/wireless/bluetooth.html

[17] G. Held, Data over wireless networks: Bluetooth, WAP, and wireless

LANS, 1st edition. New York, NY: McGraw -Hill, 2000.

[18] M. Barbeau and E. Kranakis, Principles of ad hoc networking, 1st edition.

New York, NY: McGraw-Hill, 2007.

[19] C. Bisdikian, “An Overview of the Bluetooth Wireless Technology,” IEEE

Commun. Mag., vol. 39, no. 12, pp.86-94, Dec. 2001.

[20] Google, Inc. (n.d.). Activities [Online]. Available:

https://developer.android.com/guide/topics/fundamentals/activities.html

[21] Google, Inc. (n.d.). MessageDigest [Online]. Available:

http://developer.android.com/reference/java/security/

MessageDigest.html

[22] Google, Inc. (n.d.). Services [Online]. Available:

https://developer.android.com/guide/topics/fundamentals/services.html

[23] Google, Inc. (n.d.). Content Providers [Online]. Available:

https://developer.android.com/guide/topics/providers/

content-providers.html

[24] Google, Inc. (n.d.). Application Fundamentals [Online]. Available:

https://developer.android.com/guide/topics/fundamentals.html

[25] H. Schulze and K. Mochalski, “Internet Study 2008/2009,” ipoque, Leipzig,

Germany, 2009.

50

https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
https://developer.android.com/guide/topics/fundamentals/activities.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
http://developer.android.com/reference/java/security/MessageDigest.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/fundamentals/services.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html
https://developer.android.com/guide/topics/fundamentals.html

[26] Linuxtracker. Extra Stats [online]. Available:

http://linuxtracker.org/index.php?page=extra-stats

[27] T. Cook, “A Day in the Life of Facebook Operations,” presented at the

Open Source Bridge Conference, Portland, OR, 2012. Viewable at:

http://www.youtube.com/watch?v=T-

Xr_PJdNmQ&feature=player_embedded#t=14m

[28] L. Gadea, “Using BitTorrent for Fast Website Deploys,” presented at the

Canadian University Software Engineering Conference, Montreal, QC,

2010. Viewable at: http://vimeo.com/11280885

[29] Specification of the Bluetooth System, Version 4.0, June 30, 2010.

[30] F. Mazzenga, D. Cassioli, P. Loreti, and F. Vatalaro, “Evaluation of Packet

Loss Probability in Bluetooth Networks,” in IEEE International Conference

on Communications, New York, NY., 2002, pp. 313-317.

Appendix

Prototype Code

See ECSE476GR6_SP1Prototype.zip for prototype code. Also included in this

zip are screenshots of the prototype, for those who would not like to go through

the installation procedure.

51

http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://linuxtracker.org/index.php?page=extra-stats
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://www.youtube.com/watch?v=T-Xr_PJdNmQ&feature=player_embedded#t=14m
http://vimeo.com/11280885
http://vimeo.com/11280885
http://vimeo.com/11280885
http://vimeo.com/11280885
http://vimeo.com/11280885
http://vimeo.com/11280885

Speed Calculation

A calculation of the time required to send a selection of different files is

outlined below. This calculation assumes the use of Bluetooth protocol

specification 4.0 or higher, and will consider using the high speed operation of

the protocol, which offers transmission speeds up to 24 megabits per second, the

enhanced data rate operation of the protocol, which supports 2.1 megabits per

second, and the regular operation of the protocol, which is capable of 721.2

kilobits per second [29]. We will make the conservative assumption that 10% of

all data packets are dropped, which would be expected if there were 10 piconets

in a 20 meter squared area [30]. The files used for the analysis are:

1. Text File - Thomas Friedman’s New York Times column, “The Arab

Awakening and Israel,” which can be stored with relevant information in

8 Kilobytes in the RTF format. This can be compressed to 4 Kilobyes using

Gzip.

2. Text File - War and Peace electronic book in ePUB format, from Project

Gutenberg, which can be stored in 1.3 Megabytes. No reasonable

compression ratio can be achieved using a standard compression

algorithm.

3. Image - JPEG compression ratio 8 in Adobe Photoshop, image dimensions

1000 x 650, a photograph of a person holding a sign. The size of the image

is 130 Kilobytes. No reasonable compression ratio can be achieved using a

52

standard compression algorithm.

53

4. Music File - Led Zeppelin’s Stairway to Heaven, encoded in MP3 format at

128 Kilobits per second. The total file size is 7.31 Megabytes. No reasonable

compression ratio can be achieved using a standard compression

algorithm.

5. Video File - The first episode of the first season of Scrubs, encoded in AVI

format at 512x384 and 24 frames per second with 192 kbps audio is 176

Megabytes. No reasonable compression ratio can be achieved using a

standard compression algorithm.

We can calculate the time required for transmission using the equation:

 Regular
(721.2 Kbps)

Enhanced
(2.1 Mbps)

High Speed
(24 Mbps)

1 (RTF) [4 kB] 0.0488 s 0.0168 s 0.0014 s

2 (EPUB) [1.3 MB] 15.8625 s 5.4476 s 0.4767 s

3 (JPEG) [130 kB] 1.5862 s 0.5448 s 0.0477 s

4 (MP3) [7.31 MB] 89.1958 s 30.6324 s 2.6803 s

5 (AVI) [176 MB] 2147.5319 s 737.5238 s 64.5333 s
Figure 14: A calculation of the file transfer speeds achievable over Bluetooth. These

calculations assume a 10% rate of packet loss.

54

