
Project Deliverable 4
Writing your Application Program

Presented to
Bettina Kemme

COMP-421 – Database Systems

By
Patrick Desmarais (260 329 253)

Simon Hlywa (260 231 002)
Guillaume Viger (260 309 396)

McGill University
March 28th, 2011

1. Stored Procedure
The stored procedure is called refresh_privileges. It looks up transactions to find users with 25
transactions or more, and updates their privilege_status to the appropriate code for the month.
Gold members have access to special offered_entities depending on their privilege code. They
can buy one special offered_entity per month. This privilege is renewed the first day of each
month.

This stored procedure will be run over all users; hence, in the worst case, all N users will
have their Users tuple updated. All Transactions are analyzed to account if they are non-zero
transactions and then, counted to verify if the users will have its privilege_status updated to the
special monthly code.

1.1 Procedure
Data:
Data have been generated using the Java program called DataGenerator in the dataGen
directory. The generated data have been inserted into DB2 commands such as db2 -tf
users.del. It is assumed that tables were created and that no tuples were inserted to avoid any
collisions.

Script:
The script file can be found in stored_procedure/store_procedure.clp. The
README_StoredProcedure file explains how to test the stored procedure.

New Users table:
db2 => describe table users

Column Type Type
name schema name Length Scale Nulls
------------------------------ --------- ------------------ -------- ----- ------
EMAIL SYSIBM VARCHAR 100 0 No
PSWD SYSIBM VARCHAR 50 0 Yes
CREDIT_CARD SYSIBM CHARACTER 16 0 Yes
PRIVILEGE_STATUS SYSIBM SMALLINT 2 0 Yes

 4 record(s) selected.

Note that the privilege/monthly code must be different from 0 and 1, since these offered_entities
status are already taken. The range is now between 2 and 14.

1.2 Procedure in Action

Before calling procedure:
db2 => select email, privilege_status from users

EMAIL PRIVILEGE_STATUS
--- ----------------
specialOffers@website.com 0
1dln@86n5pnwy.vgo 0
2ustranspuec9pntlhmgjpgs@epmm.hb 0
...
75jm2tjpojkuq1qbjobz@e.ag 0
76wruj18sz89@rnzouwq9.wl 0
77pldnqff@mcd.jvm 0
78t5ibpkvgxwq5j42isy4zm9eip@w9gyrb.xs 0
79gsbtbuyo1fyajic5lyqigfto@rkdlvzjy.skh 0
80pcqlof@ik1vkr411.fso 0
...

Calling procedure:
db2 => call refresh_privileges(4)

 Return Status = 0

[Privilege code 4 for March special offers.]

After calling procedure:
db2 => select email, privilege_status from users

EMAIL PRIVILEGE_STATUS
-- ----------------
specialOffers@website.com 4
1dln@86n5pnwy.vgo 4
2ustranspuec9pntlhmgjpgs@epmm.hb 4
...
75jm2tjpojkuq1qbjobz@e.ag 4
76wruj18sz89@rnzouwq9.wl 0
77pldnqff@mcd.jvm 4
78t5ibpkvgxwq5j42isy4zm9eip@w9gyrb.xs 0
79gsbtbuyo1fyajic5lyqigfto@rkdlvzjy.skh 0
80pcqlof@ik1vkr411.fso 4
...

Verify validity of procedure:
One example of with a user that has more than or equal to 25 transactions, which means that
his privilege is updated.
db2 => select count(*) from Users U, Transactions T where U.email = '1dln@86n5pnwy.vgo' and
(U.email = T.provider or U.email = T.receiver)

1

 111

 1 record(s) selected.

One example of with a user that has less than 25 transactions, which means that his privilege is
not updated.
db2 => select count(*) from Users U, Transactions T where U.email = '76wruj18sz89@rnzouwq9.wl'
and (U.email = T.provider or U.email = T.receiver)

1

 23

 1 record(s) selected.

Operations are valid!

test_procedure.clp demonstrates a similar and simpler behaviour with two users.

2. User-Friendly Application
Example of menu and run of applications:

Welcome to WoW Store!

-WECLOME-

1. Login
2. Register a new user
3. Quit

Your selection: 2

--Register New User--
Username: patrick@wow.com
Password: p
Credit card (16 numbers no spaces): 0000000000000000

Registration succesful!
-MAIN MENU-
Please select and option:

1. Browse all offers
2. Search offers
3. Buy an offer
4. Post an offer
5. View transaction history
6. Logout
7. Quit

Your selection: 7

Welcome to WoW Store!

-WECLOME-

1. Login
2. Register a new user
3. Quit

Your selection: 2

--Login--
Username: patrick@wow.com
Password: p

Login succesful!
-MAIN MENU-
Please select and option:

1. Browse all offers
2. Search offers
3. Buy an offer
4. Post an offer
5. View transaction history
6. Logout
7. Quit

Your selection: ...

See WowStore.java, WowDisplay.java, RunStore.java (main class) and ResultSetWrapper.java
for the code files of the program inside the application directory.

3. Indexes

Indexes will be created on Character races and levels.

See scriptIndex.clp for the Indexes creation.

See timeDB.java for the java program timing the performance with and without the indexes.

See scriptTime.sh for the script executing scriptIndex.clp and timeDB.java.

The average results are the following after 10 runs:

Before the index creation: Query 1: 471 ms

Query 2: 224 ms

After the index creation: Query 1: 291 ms

Query 2: 225 ms

