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Abstract. This paper presents Soot, a framework for optimizing JavaTM

bytecode. The framework is implemented in Java and supports three in-

termediate representations for representing Java bytecode: Baf, a stream-

lined representation of Java's stack-based bytecode; Jimple, a typed

three-address intermediate representation suitable for optimization; and

Grimp, an aggregated version of Jimple.

Our approach to class �le optimization is to �rst convert the stack-based

bytecode into Jimple, a three-address form more amenable to traditional

program optimization, and then convert the optimized Jimple back to

bytecode.

In order to demonstrate that our approach is feasible, we present ex-

perimental results showing the e�ects of processing class �les through

our framework. In particular, we study the techniques necessary to ef-

fectively translate Jimple back to bytecode, without losing performance.

Finally, we demonstrate that class �le optimization can be quite e�ec-

tive by showing the results of some basic optimizations using our frame-

work. Our experiments were done on ten benchmarks, including seven

SPECjvm98 benchmarks, and were executed on �ve di�erent Java virtual

machine implementations.

1 Introduction

Java provides many attractive features such as platform independence, execu-

tion safety, garbage collection and object orientation. These features facilitate

application development but are expensive to support; applications written in

Java are often much slower than their counterparts written in C or C++. To use

these features without having to pay a great performance penalty, sophisticated

optimizations and runtime systems are required. For example, Just-In-Time com-

pilers[1], adaptive compilers such as HotspotTM and Way-Ahead-Of-Time Java

compilers[18, 17] are three approaches used to improve performance.

Our approach is to statically optimize Java bytecode. There are several

reasons for optimizing at the bytecode level. Firstly, the optimized bytecode

can then be executed using any standard Java Virtual Machine (JVM) imple-

mentation (interpreter, JIT, adaptive), or it could be used as the input to a



bytecode!C or bytecode!native-code compiler. Thus, the overall performance

improvement is due to both our static bytecode optimization, and the optimiza-

tions and sophisticated runtime systems used in the virtual machines executing

the optimized bytecode. Secondly, many di�erent compilers for a variety of lan-

guages (Ada, Scheme, Fortran, Ei�el, etc.) now produce Java bytecode as their

target code. Thus, our optimization techniques can be applied as a backend to

all of these compilers.

The goal of our work is to develop tools that simplify the task of optimizing

Java bytecode, and to demonstrate that signi�cant optimization can be achieved

using these tools. Thus, we have developed the Soot[20] framework which pro-

vides a set of intermediate representations and a set of Java APIs for optimizing

Java bytecode directly. Since our framework is written in Java, and provides a

set of clean APIs, it should be portable and easy to build upon.

Early in our work we found that optimizing stack-based bytecode directly

was, in general, too di�cult. Thus, our framework consists of three intermediate

representations, two of which are stackless representations. Baf is a streamlined

representation of the stack-based bytecode, whereas Jimple and Grimp are more

standard, stackless intermediate representations. Jimple is a three-address rep-

resentation, where each instruction is simple, and each variable has a type. It is

ideal for implementing standard compiler analyses and transformations. Grimp

is similar to Jimple, but has aggregated expressions. Grimp is useful for decom-

pilation, and as a means to generate e�cient bytecode from Jimple.

In order to optimize bytecode we �rst convert bytecode to Jimple (the three-

address representation), analyze and optimize the Jimple code, and then convert

the optimized Jimple back to bytecode. In this paper we focus on the techniques

used to translate from Jimple to e�cient bytecode, and we give two alternative

approaches to this translation.

Our framework is designed so that many di�erent analyses could be im-

plemented, above and beyond those carried out by javac or a JIT. A typical

transformation might be removing redundant �eld accesses, or inlining. For these

sorts of optimizations, improvements at the Jimple level correspond directly to

improvements in �nal bytecode produced.

We have performed substantial experimental studies to validate our ap-

proach. Our �rst results show that we can indeed go through the cycle, bytecode

to Jimple and back to bytecode, without losing any performance. This means

that any optimizations made in Jimple will likely also result in optimizations in

the �nal bytecode. Our second set of results show the e�ect of optimizing class

�les using method inlining and a set of simple intraprocedural optimizations.

These results show that we can achieve performance gains over a variety of Java

Virtual Machines.

In summary, our contributions in this paper are: (1) three intermediate rep-

resentations which provide a general-purpose framework for bytecode optimiza-

tions, and (2) a comprehensive set of results obtained by applying our framework

to a set of real Java applications.



The rest of the paper is organized as follows. Section 2 gives an overview

of the framework and the intermediate representations. Section 3 describes two

alternative approaches to translating Jimple back to bytecode. Section 4 presents

and discusses our experimental results. Section 5 discusses related work and

Section 6 covers the conclusions and future work.

2 Framework Overview

The Soot framework has been designed to simplify the process of developing

new optimizations for Java bytecode. Figure 1 shows the overall structure of the

framework. As indicated at the top of the �gure, many di�erent compilers can be

used to generate the class �les. The large box labeled SOOT demonstrates that

the framework takes the original class �les as input, and produces optimized class

�les as output. Finally, as shown at the bottom of the �gure, these optimized class

�les can then be used as input to Java interpreters, Just-In-Time (JIT) compilers,

adaptive execution engines like HotspotTM, and Ahead-of-Time compilers such

as the High Performance Compiler for Java (HPCJ)TM or TowerJTM.

The internal structure of Soot is indicated inside the large box in Figure 1.

Shaded components correspond to modules that we have designed/implemented

and each component is discussed in the following subsections.

2.1 Jimplify

The �rst phase is to jimplify the input class �les, that is, to convert class �les

to the Jimple three-address representation. We convert to a three-address repre-

sentation because optimizing stack code directly is awkward for several reasons.

First, the stack implicitly participates in every computation; there are e�ectively

two types of variables, the implicit stack variables and explicit local variables.

Second, the expressions are not explicit, and must be located on the stack[25].

For example, a simple instruction such as add can have its operands separated by

an arbitrary number of stack instructions, and even by basic block boundaries.

Another di�culty is the untyped nature of the stack and of the local variables in

the bytecode, as this does not allow analyses to make use of the declared type of

variables. A fourth problem is the jsr bytecode. The jsr bytecode is di�cult to

handle because it is essentially a interprocedural feature which is inserted into

a traditionally intraprocedural context.

We produce Jimple from bytecode by �rst processing the bytecode from the

input class �les and representing it in an internal format.1 During this translation

jsr instructions are eliminated by inline expansion of code. After producing the

internal form of bytecode, the translation to Jimple code proceeds as follows:

1. Produce naive 3-address code: Map every stack variable to a local variable, by

determining the stack height at every instruction. Then map each instruction

which acts implicitly on the stack variables to a 3-address code statement

1 We currently use a tool called Co� to achieve this translation.
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which refers to the local variables explicitly. For example, if the current stack

height is 3, then the instruction iadd would be translated to the Jimple

statement $i2 = $i2 + $i3. This is a standard technique and is also used

in other systems [18, 17].

2. Type the local variables: The resulting Jimple code may be untypable be-

cause a local variable may be used with two di�erent types in di�erent con-

texts. Thus, we split the uses and de�nitions of local variables according to

webs[16]. This produces, in almost all cases, Jimple code whose local vari-



ables can be given a primitive, class, or interface type.2 To do this, we invoke

an algorithm described in [9]. The complete solution to this typing problem is

NP-complete, but in practice simple polynomial algorithms su�ce. Although

splitting the local variables in this step produces many local variables, the

resulting Jimple code tends to be easier to analyze because it inherits some

of the disambiguation bene�ts of SSA form[5].

3. Clean up the code: Jimple code must now be compacted because step 1 pro-

duced extremely verbose code[18, 17]. We have found that simple aggregation

(collapsing single def/use pairs) followed by copy propagation/elimination of

stack variables to be su�cient to eliminate almost all redundant stack vari-

ables.

Figure 2(a) shows an input Java program and Figure 2(b) shows the byte-

code generated by javac as we would represent it in our Baf representation.

Figure 2(c) shows the Jimple code that would result from jimplifying the byte-

code. Note that all local variables have been given types. Variables beginning

with $ correspond to variables that were inserted to stand for stack locations,

whereas variables that do not begin with $ correspond to local variables from

the bytecode.

2.2 Optimize Jimple

Most of the analyses and transformations developed by our group, as well as
other research groups, are implemented using the Jimple representation. We have
currently implemented many intraprocedural and interprocedural optimizations.
In this paper we focus on studying the e�ect of several simple intraprocedural
techniques in conjunction with method inlining.

2.3 Convert Jimple back to Stack Code

Producing bytecode naively from Jimple code produces highly ine�cient code.
Even the best JIT that we tested can not make up for this ine�ciency. And it is
very important that we do not introduce ine�ciencies at this point that would
negate the optimizations performed on Jimple.

We have investigated two alternatives for producing stack code, labeled Op-

tion I and Option II in Figure 1. These two options are discussed in more detail
in Section 3, and they are experimentally validated in Section 4.

2.4 Generate Jasmin Assembler

After converting Jimple to Baf stack code, the �nal phase is to generate Jasmin
[11] assembler �les from the internal Baf representation. Since Baf is a relatively
direct encoding of the Java bytecode, this phase is quite simple.

2 Other cases must be handled by introducing type casts and/or introducing extra

copy statements.



Object[] a;
int x;

public void f(int i, int c)
{ g(x *= 10);

while(i * 2 < 10)
{ a[i++] = new Object();
}

}
(a) Original Java Source

.method public f(II)V
aload_0
aload_0
dup
getfield A/x I
bipush 10
imul
dup_x1
putfield A/x I
invokevirtual A/g(I)V
goto Label1

Label0:
aload_0
getfield A/a [Ljava/lang/Object;
iload_1
iinc 1 1
new java/lang/Object
dup
invokenonvirtual

java/lang/Object/<init>()V
aastore

Label1:
iload_1
iconst_2
imul
bipush 10
if_icmplt Label0

return

public void f(int, int)
{

Example this;
int i, c, $i0, $i1, $i2, $i3;
java.lang.Object[] $r1;
java.lang.Object $r2;

this := @this;
i := @parameter0;
c := @parameter1;

X:$i0 = this.x;
X:$i1 = $i0 * 10;

this.x = $i1;
this.g($i1);
goto label1;

label0:
Y:$r1 = this.a;
$i2 = i;
i = i + 1;
$r2 = new java.lang.Object;
specialinvoke $r2.<init>();

Y:$r1[$i2] = $r2;

label1:
Z:$i3 = i * 2;
Z:if $i3 < 10 goto label0;

return;
}

(b) Bytecode (c) Jimple

Fig. 2. Translating bytecode to Jimple

3 Transformations

After optimizing Jimple code, it is necessary to translate back to e�cient Java
bytecode. Figure 3(a) illustrates the bytecode produced by a naive translation
from Jimple.3 Note that this naive code has many redundant store and load in-
structions re�ecting the fact that Jimple computation results are stored to local
variables, while stack-based bytecode can use the stack to store many interme-
diate computations.

3 Note that our Baf representation closely mirrors Java bytecode. However, we do
streamline the representation somewhat and preserve the variable names as much as
possible.



3.1 Option I: Produce Naive Baf and Optimize

The main idea behind Baf optimizations is to identify and eliminate redundant
store/load computations. Figure 3(b) shows the results of applying the Baf op-
timizations on the naive code given in Figure 3(a).

The optimizations currently in use are all performed on discrete basic blocks
within a method. Inter-block optimizations that cross block boundaries have also
been implemented, but to date these have not yielded any appreciable speedups
on the runtime and are not described here. In the following discussion it is
assumed that all instructions belong to the same basic block.

In practice, the majority of the redundant store and load instructions present
in naive Baf code belong to one of the following code patterns:

store/load (sl pair) : a store instruction followed by a load instruction refer-
ring to the same local variable with no other uses. Both the store and load
instructions can be eliminated, and the value will simply remain on the stack.

store/load/load (sll triple) : a store instruction followed by 2 load instruc-
tions, all referring to the same local variable with no other uses. The 3
instructions can be eliminated and a dup instruction introduced. The dup
instruction replaces the second load by duplicating the value left on the stack
after eliminating the store and the �rst load.

We can observe these patterns occurring in Figure 3(a) where labels A, B, C
and E each identify distinct sl pairs, and where labels D and G identify sll triples.

To optimize a Baf method our algorithm performs a �xed point iteration
over its basic blocks identifying and reducing these patterns whenever possible.
By reducing, we mean eliminating an sl pair or replacing an sll triple to a dup
instruction.

Reducing a pattern is trivial when all its instructions directly follow each
other in the instruction stream. For example, the sl pairs at labels A and E in
Figure 3(a) are trivial ones. However, often the store and load instructions are
far apart (like at labels B and C.) To identify pairs of statements to reduce,
we must determine the e�ect on the stack of the intervening bytecode. These
bytecodes are called the interleaving sequences.

We compute two pieces of information as a means to analyse interleaving
sequences and their e�ects/dependencies on the stack. The net e�ect on the
stack height after executing a sequence of bytecode is referred to as the net
stack height variation or nshv. The minimum stack height variation attained
while executing a sequence of bytecode is referred to as the minimum stack
height variation or mshv. A sequence of instructions having both nshv = 0 and
mshv = 0 is referred to as a level sequence.

If interleaving sequences are level sequences, then the target patterns can
be reduced directly. This is because one can just leave the value on the stack,
execute the interleaving instructions, and then use the value that was left on the
stack. This is the case for the sl pair labeled B, and later the sl pair labeled C,
once B has been reduced. Finally, the sll triple D can be reduced, once both B

and C have been reduced. In general, however, many such interleaving sequences
will not be level and no reductions will be possible without some reordering of
the block's bytecode.



public void f(int, int)
{ word this, i, c, $i2, $r2;

this := @this: Example;
i := @parameter0: int;
c := @parameter1: int;
load.r this;
fieldget <Example: int x>;

A:store.i c;
A:load.i c;

push 10;
mul.i;

G:store.i c;
F:load.r this;
G:load.i c;

fieldput <Example: int x>;
F:load.r this;
G:load.i c;

virtualinvoke
<Example: void g(int)>;

goto label1;

label0:
load.r this;
fieldget

<Example: java.lang.Object[] a>;
B:store.r c;

load.i i;
C:store.i $i2;

inc.i i 1;
new java.lang.Object;

D:store.r $r2;
D:load.r $r2;

specialinvoke
<java.lang.Object: void <init>()>;

B:load.r c;
C:load.i $i2;
D:load.r $r2;

arraywrite.r;

label1:
load.i i;
push 2;
mul.i;

E:store.i $r2;
E:load.i $r2;

push 10;
ifcmplt.i label0;

return;
}

public void f(int, int)
{ word this, i, c;

this := @this: Example;
i := @parameter0: int;
c := @parameter1: int;
load.r this;

F:load.r this;
F:load.r this;

fieldget <Example: int x>;
push 10;
mul.i;

G:store.i c;
G:load.i c;

fieldput <Example: int x>;
G:load.i c;

virtualinvoke
<Example: void g(int)>;

goto label1;

label0:
load.r this;
fieldget

<Example: java.lang.Object[] a>;
load.i i;
inc.i i 1;
new java.lang.Object;

D:dup1.r;
specialinvoke

<java.lang.Object: void <init>()>;
arraywrite.r;

label1:
load.i i;
push 2;
mul.i;
push 10;
ifcmplt.i label0;

return;
}

(a) naive Baf generated from Jimple (b) optimized Baf

Fig. 3. Optimizing Baf



If an interleaving sequence has nshv > 1 for a sll triple or nshv > 0 for a sl
pair, then our algorithm will try to lower the nshv value by relocating a bytecode
having a positive nshv to an earlier location in the block. This is illustrated by
the movement of instructions labeled by F in Figures 3(a) and 3(b) in an attempt
to reduce the pattern identi�ed by G. Another strategy used when nshv < 0 is
to move level subsequence ending with the pattern's store instruction past the
interleaving sequence. Of course, this can only be done if no data dependencies
are violated.

Applying these heuristics produces optimized Baf code which becomes Java
bytecode and is extremely similar to the original bytecode. We observe that
except for two minor di�erences, the optimized Baf code in Figure 3(b) is the
same as the original bytecode found in Figure 2(b). The di�erences are: (1) the
second load labeled by F is not converted to a dup; and (2) the pattern identi�ed
by G is not reduced to a dup_x1 instruction. We have actually implemented
these patterns, but our experimental results did not justify enabling these extra
transformations. In fact, introducing bytecodes such as dup_x1 often yields non-
standard, albeit legal, bytecode sequences that increase execution time and cause
many JIT compilers to fail.

3.2 Option II: Build Grimp and Traverse

In this section, we describe the second route for translating Jimple into byte-
code. The compiler javac is able to produce e�cient bytecode because it has the
structured tree representation of the original program, and the stack based na-
ture of the bytecode is particularly well suited for code generation from trees[2].
Essentially, this phase attempts to recover the original structured tree represen-
tation, by building Grimp, an aggregated form of Jimple, and then producing
stack code by standard tree traversal techniques.

Grimp is essentially Jimple but the expressions are trees of arbitrary depth.
Figure 4(a) shows the Grimp version of the Jimple program in Figure 2(c).

Aggregation of bytecode The basic algorithm for aggregation is as follows.
We consider pairs (def, use) in extended basic blocks, where def is an assignment
statement with sole use use, and use has the unique de�nition def. We inspect the
path between def and use, to determine if def can be safely moved into use. This
means checking for dependencies and not moving across exception boundaries.
We perform this algorithm iteratively, and the pairs are considered in reverse
pseudo-topological order to cascade the optimizations as e�ciently as possible.
Examples of these aggregation opportunities are shown in �gure 2(c) at the
labels X, Y and Z. X and Z are trivial cases because their aggregation pairs are
adjacent, but the pair at Y are a few statements apart. Thus before producing
the aggregated code in 4(a) the interleaving statements must be checked for
writes to this.a.

Peephole optimizations In some cases, Grimp cannot concisely express Java
idioms. For example, the increment operation in a[i++] = new Object(); can-
not be expressed, because Grimp only allows a de�nition to occur as the left-hand



public void f(int, int)
{

Example this;
int i, c, $i1, $i2;

this := @this;
i := @parameter0;
c := @parameter1;

X:$i1 = this.x * 10;
this.x = $i1;
this.g($i1);
goto label1;

label0:
$i2 = i;
i = i + 1;

Y:this.a[$i2] =
new java.lang.Object();

label1:
Z:if i * 2 < 10 goto label0;

return;
}

public void f(int, int)
{ word this, i, c, $i2;

this := @this: Example;
i := @parameter0: int;
c := @parameter1: int;
load.r this;
fieldget <Example: int x>;
push 10;
mul.i;
store.i c;
load.r this;
load.i c;
fieldput <Example: int x>;
load.r this;
load.i c;
virtualinvoke

<Example: void g(int)>;
goto label1;

label0:
load.r this;
fieldget

<Example: java.lang.Object[] a>;
load.i i;
inc.i i 1;
new java.lang.Object;
dup1.r
specialinvoke

<java.lang.Object: void <init>()>;
arraywrite.r;

label1:
load.i i;
push 2;
mul.i
push 10;
ifcmplt.i label0;

return;
}

(a) Grimp (b) Baf generated from Grimp

Fig. 4. Generating Baf from Grimp

side of an assignment statement, not as a side e�ect.4 To remedy this problem,
we use some peephole optimizations in the code generator for Grimp.

For example, for the increment case, we search for Grimp patterns of the
form:

s1: local = <lvalue>;
s2: <lvalue> = local/<lvalue> + 1;
s3: use(local)

and we ensure that the local de�ned in s1 has exactly two uses, and that the uses
in s2; s3 have exactly one de�nition. Given this situation, we emit code for only
s3. However, during the generation of code for s3, when local is to be emitted,

4 This design decision was made to simplify analyses on Grimp.



we also emit code to duplicate local on the stack, and increment <lvalue>. An
example of this pattern occurs just after Label0 in Figure 4(a).

This approach produces reasonably e�cient bytecode. In some situations the
peephole patterns fail and the complete original structure is not recovered. In
these cases, the Baf approach usually performs better. See the section 4 for more
details.

4 Experimental Results

Here we present the results of two experiments. The �rst experiment, discussed
in Section 4.3, validates that we can pass class �les through the framework,
without optimizing the Jimple code, and produce class �les that have the same
performance as the original ones. In particular, this shows that our methods
of converting from Jimple to stack-based bytecode are acceptable. The second
experiment, discussed in Section 4.4, shows the e�ect of applying method inlining
on Jimple code and demonstrates that optimizing Java bytecode is feasible and
desirable.

4.1 Methodology

All experiments were performed on dual 400Mhz Pentium IITM machines. Two
operating systems were used, Debian GNU/Linux (kernel 2.2.8) and Windows
NT 4.0 (service pack 5). Under GNU/Linux we ran experiments using three
di�erent con�gurations of the Blackdown Linux JDK1.2, pre-release version 2.5

The con�gurations were: interpreter, Sun JIT, and a public beta version of Bor-
land's JIT6. Under Windows NT, two di�erent con�gurations of Sun's JDK1.2.2
were used: the JIT, and HotSpot (version 1.0.1)

Execution times were measured by running the benchmarks ten times, dis-
carding the best and worst runs, and averaging the remaining eight. All exe-
cutions were veri�ed for correctness by comparing the output to the expected
output.

4.2 Benchmarks and Baseline Times

The benchmarks used consist of seven of the eight standard benchmarks from the
SPECjvm987 suite, plus three additional applications from our collection. See
�gure 5. We discarded the mtrt benchmark from our set because it is essentially
the same benchmark as raytrace. The soot-c benchmark is based on an older
version of Soot, and is interesting because it is heavily object oriented, schroeder-
s is an audio editing program which manipulates sound �les, and jpat-p is a
protein analysis tool.

Figure 5 also gives basic characteristics such as size, and running times on
the �ve platforms. All of these benchmarks are real world applications that are

5 http://www.blackdown.org
6 http://www.borland.com
7 http://www.spec.org/



reasonably sized, and they all have non-trivial execution times. We used the
Linux interpreter as the base time, and all the fractional execution times are
with respect to this base.

Benchmarks for which a dash is given for the running time indicates that
the benchmark failed validity checks. In all these cases, the virtual machine
is to blame as the programs run correctly with the interpreter with the veri�er
explicitly turned on. Arithmetic averages and standard deviations are also given,
and these automatically exclude those running times which are not valid.

For this set of benchmarks, we can draw the following observations. The Linux
JIT is about twice as fast as the interpreter but it varies widely depending on
the benchmark. For example, with compress it is more than six times faster, but
for a benchmark like schroeder-s it is only 56% faster. The NT virtual machines
also tend to be twice as fast as the Linux JIT. Furthermore, the performance
of the HotSpot performance engine seems to be, on average, not that di�erent
from the standard Sun JIT. Perhaps this is because the benchmarks are not
long running server side applications (i.e. not the kinds of applications for which
HotSpot was designed).

4.3 Straight through Soot

Figure 6 compares the e�ect of processing applications with Soot with Baf and
Grimp, without performing any optimizations. Fractional execution times are
given, and these are with respect to the original execution time of the bench-
mark for a given platform. The ideal result is 1.00. This means that the same
performance is obtained as the original application. For javac the ratio is .98
which indicates that javac's execution time has been reduced by 2%. raytrace
has a ratio of 1.02 which indicates that it was made slightly slower; its execution
time has been increased by 2%. The ideal arithmetic averages for these tables
is 1.00 because we are trying to simply reproduce the program as is. The ideal
standard deviation is 0 which would indicate that the transformation is having
a consistent e�ect, and the results do not deviate from 1.00.

On average, using Baf tends to reproduce the original execution time. Its
average is lower than Grimp's, and the standard deviation is lower as well. For
the faster virtual machines (the ones on NT), this di�erence disappears. The
main disadvantage of Grimp is that it can produce a noticeable slowdown for
benchmarks like compress which have tight loops on Java statements containing
side e�ects, which it does not always catch.

Both techniques have similar running times, but implementing Grimp and its
aggregation is conceptually simpler. In terms of code generation for Java virtual
machines, we believe that if one is interested in generating code for slow VMs,
then the Baf-like approach is best. For fast VMs, or if one desires a simpler
compiler implementation, then Grimp is more suitable.

We have also measured the size of the bytecode before and after processing
with Soot. The sizes are very similar, with the code after processing sometimes
slightly larger, and sometimes slightly smaller. For the seven SPECjvm bench-
marks the total bytecode size was 0.5% larger after processing with Soot. This
is not a signi�cant increase in size.



4.4 Optimization via Inlining

We have investigated the feasibility of optimizing Java bytecode with Soot by
implementing method inlining. Although inlining is a whole program optimiza-
tion, Soot is also suitable for optimizations applicable to partial programs. Our
approach to inlining is simple. We build an invoke graph using class hierarchy
analysis[8] and inline method calls whenever they resolve to one method. Our
inliner is a bottom-up inliner, and attempts to inline all call sites subject to the
following restrictions: 1) the method to be inlined must contain less than 20 Jim-
ple statements, 2) no method may contain more than 5000 Jimple statements,
and 3) no method may have its size increased more than by a factor of 3.

After inlining, the following traditional intraprocedural optimizations are
performed to maximize the bene�t from inlining: copy propagation, constant
propagation and folding, conditional and unconditional branch folding, dead as-
signment elimination and unreachable code elimination. These are described in
[2].

Figure 7 gives the result of performing this optimization. The numbers pre-
sented are fractional execution times with respect to the original execution time
of the benchmark for a given platform. For the Linux virtual machines, we ob-
tain a signi�cant improvement in speed. In particular, for the Linux Sun JIT,
the average ratio is .92 which indicates that the average running time is reduced
by 8%. For raytrace, the results are quite signi�cant, as we obtain a ratio of .62,
a reduction of 38%.

For the virtual machines under NT, the average is 1.00 or 1.01, but a number
of benchmarks experience a signi�cant improvement. One benchmark, javac un-
der the Sun JIT, experiences signi�cant degradation. However, under the same
JIT, raytrace yields a ratio of .89, and under HotSpot, javac, jack and mpegaudio
yield some improvements. Given that HotSpot itself performs dynamic inlining,
this indicates that our static inlining heuristics sometimes capture opportunities
that HotSpot does not. Our heuristics for inlining were also tuned for the Linux
VMs, and future experimentation could produce values which are better suited
for the NT virtual machines.

These results are highly encouraging as they strongly suggest that a signif-
icant amount of improvement can be achieved by performing aggressive opti-
mizations which are not performed by the virtual machines.

5 Related Work

Related work falls into �ve di�erent categories:

Java bytecode optimizers: There are only two Java tools of which we are aware
that perform signi�cant optimizations on bytecode and produce new class
�les: Cream[3] and Jax[23]. Cream performs optimizations such as loop in-
variant removal and common sub-expression elimination using a simple side
e�ect analysis. Only extremely small speed-ups (1% to 3%) are reported,
however. The main goal of Jax is application compression where, for ex-
ample, unused methods and �elds are removed, and the class hierarchy is



# Jimple Linux Linux NT
Stmts Sun Int. Sun Bor. Sun Sun

(secs) JIT JIT JIT Hot.

compress 7322 440.30 .15 .14 .06 .07

db 7293 259.09 .56 .58 .26 .14

jack 16792 151.39 .43 .32 .15 .16

javac 31054 137.78 .52 .42 .24 .33

jess 17488 109.75 .45 .32 .21 .12

jpat-p 1622 47.94 1.01 .96 .90 .80

mpegaudio 19585 368.10 .15 - .07 .10

raytrace 10037 121.99 .45 .23 .16 .12

schroeder-s 9713 48.51 .64 .62 .19 .12

soot-c 42107 85.69 .58 .45 .29 .53

average .49 .45 .25 .25

std. dev. .23 .23 .23 .23

Fig. 5. Benchmarks and their characteristics.

Baf Grimp

Linux NT Linux NT
Sun Sun Bor. Sun Sun Sun Sun Bor. Sun Sun
Int. JIT JIT JIT Hot. Int. JIT JIT JIT Hot.

compress 1.01 1.00 .99 .99 1.00 1.07 1.02 1.04 1.00 1.01

db .99 1.01 1.00 1.00 1.00 1.01 1.05 1.01 1.01 1.02

jack 1.00 1.00 1.00 - 1.00 1.01 .99 1.00 - 1.00

javac 1.00 .98 1.00 1.00 .97 .99 1.03 1.00 1.00 .95

jess 1.02 1.01 1.04 .99 1.01 1.01 1.02 1.04 .97 1.00

jpat-p 1.00 .99 1.00 1.00 1.00 .99 1.01 1.01 1.00 1.00

mpegaudio 1.05 1.00 - - 1.00 1.03 1.00 - - 1.01

raytrace 1.00 1.02 1.00 .99 1.00 1.01 1.00 .99 .99 1.00

schroeder-s .97 1.01 - 1.03 1.01 .98 .99 - 1.03 1.00

soot-c .99 1.00 1.02 .99 1.03 1.00 1.01 1.00 1.01 1.01

average 1.00 1.00 1.01 1.00 1.00 1.01 1.01 1.01 1.00 1.00

std. dev. .02 .01 .01 .01 .01 .02 .02 .02 .02 .02

Fig. 6. The e�ect of processing class�les with Soot using Baf or Grimp, without opti-
mization.

compressed. They also are interested in speed optimizations, but at this
time their current published speed up results are extremely limited.

Bytecode manipulation tools: There are a number of Java tools which provide
frameworks for manipulating bytecode: JTrek[13], Joie[4], Bit[14] and Java-
Class[12]. These tools are constrained to manipulating Java bytecode in their
original form, however. They do not provide convenient intermediate repre-
sentations such as Baf, Jimple or Grimp for performing analyses or transfor-
mations.

Java application packagers: There are a number of tools to package Java ap-
plications, such as Jax[23], DashO-Pro[6] and SourceGuard[21]. Application



Linux NT
Sun Sun Bor. Sun Sun
Int. JIT JIT JIT Hot.

compress 1.01 .78 1.00 1.01 .99

db .99 1.01 1.00 1.00 1.00

jack 1.00 .98 .99 - .97

javac .97 .96 .97 1.11 .93

jess .93 .93 1.01 .99 1.00

jpat-p .99 .99 1.00 1.00 1.00

mpegaudio 1.04 .96 - - .97

raytrace .76 .62 .74 .89 1.01

schroeder-s .97 1.00 .97 1.02 1.06

soot-c .94 .94 .96 1.03 1.05

average .96 .92 .96 1.01 1.00

std. dev. .07 .12 .08 .06 .04

Fig. 7. The e�ect of inlining with class hierarchy analysis.

packaging consists of code compression and/or code obfuscation. Although
we have not yet applied Soot to this application area, we have plans to
implement this functionality as well.

Java native compilers: The tools in this category take Java applications and
compile them to native executables. These are related because they all are
forced to build 3-address code intermediate representations, and some per-
form signi�cant optimizations. The simplest of these is Toba[18] which pro-
duces unoptimized C code and relies on GCC to produce the native code.
Slightly more sophisticated, Harissa[17] also produces C code but performs
some method devirtualization and inlining �rst. The most sophisticated sys-
tems are Vortex[7] and Marmot[10]. Vortex is a native compiler for Cecil,
C++ and Java, and contains a complete set of optimizations. Marmot is
also a complete Java optimization compiler and is SSA based. There are
also numerous commercial Java native compilers, such as the IBM (R) High
Performance Compiler for Java, Tower Technology's TowerJ[24], and Su-
perCede[22], but they have very little published information.

Stack code optimization: Some research has been previously done in the �eld of
optimizing stack code. The work presented in [15] is related but optimizes the
stack code based on the assumption that stack operations are cheaper than
manipulating locals. This is clearly not the case for the Java Virtual Machines
we are interested in. On the other hand, some closely related work has been
done on optimizing naive Java bytecode code at University of Maryland[19].
Their technique is similar, but they present results for only toy benchmarks.

6 Conclusions and Future Work

We have presented Soot, a framework for optimizing Java bytecode. Soot consists
of three intermediate representations (Baf, Jimple & Grimp), transformations
between these IRs, and a set of optimizations on these intermediate representa-
tions.



In this paper we have given an overview of the structure of Soot, concentrat-
ing on the mechanisms for translating Java stack-based bytecode to our typed
three-address representation Jimple, and the translation of Jimple back to byte-
code. Jimple was designed to make the implementation of compiler analyses and
transformations simple. Our experimental results show that we can perform the
conversions without losing performance, and so we can e�ectively optimize at
the Jimple level. We demonstrated the e�ectiveness of a set of intraprocedural
transformations and inlining on �ve di�erent Java Virtual Machine implemen-
tations.

We are encouraged by our results so far, and we have found that the Soot
APIs have been e�ective for a variety of tasks including the optimizations pre-
sented in this paper.

We, and other research groups, are actively engaged in further work on Soot
on many fronts. Our group is currently focusing on new techniques for virtual
method resolution, pointer analyses, side-e�ect analyses, and various transfor-
mations that can take advantage of accurate side-e�ect analysis.
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